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Abstract: Cubic intuitionistic fuzzy (CIF) set is the hybrid set which can contain much more information
to express an interval-valued intuitionistic fuzzy set and an intuitionistic fuzzy set simultaneously for
handling the uncertainties in the data. Unfortunately, there has been no research on the aggregation
operators on CIF sets so far. Since an aggregation operator is an important mathematical tool in
decision-making problems, the present paper proposes some new Bonferroni mean and weighted
Bonferroni mean averaging operators between the cubic intuitionistic fuzzy numbers for aggregating
the different preferences of the decision-maker. Then, we develop a decision-making method
based on the proposed operators under the cubic intuitionistic fuzzy environment and illustrated
with a numerical example. Finally, a comparison analysis between the proposed and the existing
approaches have been performed to illustrate the applicability and feasibility of the developed
decision-making method.

Keywords: Bonferroni mean; aggregation operator; cubic intuitionistic fuzzy set; interval-valued
intuitionistic fuzzy numbers; group decision-making

1. Introduction

Decision-making is an important phenomenon to obtain the best-suited alternative among the
available ones. In it, a number of researchers have presented a variety of concepts to reach the correct
decisions. In primitive times, decisions were framed on the basis of crisp numbered data sets, but they
were led to inadequate results having less applicability towards the real-life operational situations.
However, with the passage of the time and due to the increase of the complexities in the system,
it is difficult for the decision maker to handle the uncertainties in the data and hence the decisions
under the traditional approach are unable to identify the best alternative. Thus, the researchers have
represented the information in terms of fuzzy sets (FSs) [1], interval-valued fuzzy sets (IVFSs) [2],
intuitionistic fuzzy sets (IFSs) [3], interval-valued intuitionistic fuzzy sets (IVIFSs) [4]. During the last
decades, the researchers are paying more attention to these theories and have successfully applied
it to the various situations in the decision-making process. Among these, an aggregation operator is
an important part of the decision-making which usually takes the form of mathematical function to
aggregate all the individual input data into a single one. For instance, Xu and Yager [5] developed
some geometric aggregation operators to aggregate the different preferences of the decision-makers
in the form of the intuitionistic fuzzy numbers (IFNs). Later on, Wang and Liu [6] extended these
operators by using Einstein norm operations. Garg [7] had presented generalized intuitionistic fuzzy
interactive geometric interaction operators using Einstein norm operations for aggregating the different
intuitionistic fuzzy information. Garg [8], further, proposed some series of interactive aggregation
operators for intuitionistic fuzzy numbers (IFNs). Garg [9] presented generalized intuitionistic fuzzy
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aggregation operators under the intuitionistic multiplicative preference relation instead of intuitionistic
fuzzy preference relations. Garg [10] extended the theory of the IFSs to the Pythagorean fuzzy sets
and presented their generalized averaging aggregation operators. Wang and Liu [11] presented some
hybrid weighted aggregation operators using Einstein norm operators while Garg [12] presented
some improved interactive aggregation operators. However, apart from that, some other authors have
presented different methods such as ranking functions [13–17], aggregation operators [18–25] to solve
the decision-making problems.

As the above aggregation operators have widely been used by the researchers during the
decision-making (DM) process in which they have highlighted the importance of each factor or
its ordered position but cannot reflect the interrelationships of the individual data. On the other
hand, in our real-life situation, there always exists a situation in which a relationship between the
different criteria such as prioritization, support, and impact each other plays a dominant role during
an aggregation process. For handling it and to incorporate into the DM analysis, Yager [26] introduced
the power average (PA) aggregation operator which allows argument values to support each other in
the aggregation process. Further, Xu and Yager [27], Yu [28] investigated the prioritized averaging and
geometric aggregation operators under IFS environment. Also, Yager [29] proposed the concept of the
Bonferroni Mean (BM) [30] whose main characteristic is its capability to capture the interrelationship
between the input arguments. Beliakov et al. [31] introduced the generalized Bonferroni mean to
overcome the drawback of BM. Xu and Yager [32] developed an intuitionistic fuzzy Bonferroni mean
to aggregate the intuitionistic fuzzy information. Xu and Chen [33] extended these mean operators to
the IVIFSs environment. Xia et al. [34] proposed the generalized intuitionistic fuzzy BMs. Liu et al. [35]
presented the partitioned BM operators under IFSs environment. Shi and He [36] threw light on
optimizing BMs with their applications to various decision-making processes. Garg and Arora [37]
presented BM aggregation operator under intuitionistic fuzzy soft set environment.

From the above existing literature, we can see that all the existing studies mainly focus on the
fuzzy set, interval fuzzy set, IFS, IVIFS, and their corresponding applications. Later on, Jun et al. [38]
introduced the concepts of the cubic sets (CSs) by the combination of both interval-valued fuzzy
numbers and fuzzy number and defined some logic operations of the cubic sets. Under this set,
Khan et al. [39] presented some cubic aggregation operators while Mahmood et al. [40] introduced
the concepts of the cubic hesitant fuzzy sets and their aggregation operators in the decision-making
process. However, above theories contain only the information in the form of membership intervals
and do not stress on the non-membership portion of the data entities, which also play an equivalent
role during assessing the alternative in the decision-making process. On the other hand, in the real
world, it is often difficult to express the value of a membership function by an exact value in a fuzzy set.
In such cases, it may be easier to describe vagueness and uncertainty in the real world using an interval
value and an exact value, rather than unique interval/exact values. Thus, the hybrid form of an
interval value and an exact value may be a very useful expression for a person to describe certainty and
uncertainty due to his/her hesitant judgment in complex decision-making problems. For this purpose,
we present the concept of the cubic intuitionistic fuzzy set (CIFS) which is described by two parts
simultaneously, where one represents the membership degrees by an interval-valued intuitionistic
fuzzy value and the other represents the membership degrees by intuitionistic fuzzy value. Hence,
a CIFS is the hybrid set combined by both an IVIFN and an IFN. Obviously, the advantage of the CIFS is
that it can contain much more information to express the IVIFN and IFN simultaneously. On the other
hand, the CIFS contains much more information than the general intuitionistic set (IVIFS/IFS) because
the CIFS is expressed by the combined information of both the sets. Hence, CIFS its rationality and
effectiveness when used for evaluating the alternatives during the decision-making process since the
general decision-making process may either use IVIFSs or IFSs information which may lose some useful
evaluation information, either IVIFSs or IFSs, of alternatives, which may affect the decision results.
Currently, since there is no study on aggregation operators which reflect the relationship between the
different criteria of the decision-making process having cubic intuitionistic fuzzy information.
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In the present communication, motivated by the concept of the Bonferroni mean and by taking
the advantages of the CIFS to express the uncertainty, we propose some new aggregation operators
called the cubic intuitionistic fuzzy Bonferroni mean (CIFBM), as well as weighted cubic intuitionistic
fuzzy Bonferroni mean (WCIFBM) operator to aggregate the preferences of decision-makers. Various
desirable properties of these operators have also been investigated in details. The major advantages
of the proposed operator are that they have considered the interrelationships of aggregated values.
Further, we examine the properties and develop some special cases of proposed work. Some of the
existing studies have been deduced from the proposed operator which signifies that the proposed
operators are more generalized than the others. Finally, a decision-making approach has been given
for ranking the different alternatives based on the proposed operators.

The remainder of the article is organized as follows. Section 2 briefly describes some concepts of IFSs,
IVIFSs, and CSs. Section 3 presents cubic intuitionistic fuzzy sets and the new aggregation operators called
the cubic intuitionistic fuzzy Bonferroni mean (CIFBM) and weighted cubic intuitionistic fuzzy Bonferroni
mean (WCIFBM) operators and discuss its particular cases. Some properties of these operators are also
discussed here. In Section 4, a decision-making approach has been established, based on proposed
operators, to solve the multi-attribute decision-making (MADM) problems. A numerical example
is presented in Section 5 to illustrate the proposed approach and to demonstrate its practicality and
effectiveness. The paper ends in Section 6 with concluding remarks.

2. Preliminaries

In this section, some basic concepts related to IFSs, IVIFSs etc., are reviewed briefly.

Definition 1. Ref. [3] An intuitionistic fuzzy set (IFS) A defined over the universal set X is given as an ordered
pair A =

{
(x, ζA(x), ϑA(x)), ∀x ∈ X

}
where 0 ≤ ζA(x) ≤ 1, 0 ≤ ϑA(x) ≤ 1 and ζA(x) + ϑA(x) ≤ 1.

We denote this pair as A = 〈ζA, ϑA〉 and name it as intuitionistic fuzzy number (IFN).

Definition 2. Let A = 〈ζA, ϑA〉 and B = 〈ζB, ϑB〉 be two IFNs. Then the following expressions are defined as [3]

(i) A ⊆ B if ζA(x) ≤ ζB(x) and ϑA(x) ≥ ϑB(x) for all x in X;
(ii) A = B if and only if A ⊆ B and B ⊆ A.
(iii) Ac = {x, 〈ϑA(x), ζA(x)〉 | x ∈ X〉}
(iv) A ∩ B = {x, 〈inf(ζA(x), ζB(x)), sup(ϑA(x), ϑB(x))〉 | x ∈ X}
(v) A ∪ B = {x, 〈sup(ζA(x), ζB(x)), inf(ϑA(x), ϑB(x))〉 | x ∈ X}

After that, Atanassov and Gargov [4] extended this concept to interval valued numbers as:

Definition 3. Ref. [4] An interval valued intuitionistic set (IVIFS) A defined over the universal set X is
defined as A =

{
〈x, [ζL

A(x), ζU
A(x)], [ϑL

A(x), ϑU
A(x)]〉

}
, such that [ζL

A(x), ζU
A(x)], [ϑL

A(x), ϑU
A(x)] ⊆ [0, 1]

and 0 ≤ ζU
A(x) + ϑU

A(x) ≤ 1 for each x. For convenience, we denote this pair as α =
(
[ζL

A, ζU
A ], [ϑ

L
A, ϑU

A ]
)

and called as an interval-valued intuitionistic fuzzy number (IVIFN). Furthermore, based on the operations of
IVIFNs, Xu [41] defined some operations of its as follows.

Definition 4. Ref. [41] Let α =
(
[ζL, ζU ], [ϑL, ϑU ]

)
, α1 =

(
[ζL

1 , ζU
1 ], [ϑ

L
1 , ϑU

1 ]
)

and α2 =
(
[ζL

2 , ζU
2 ], [ϑ

L
2 , ϑU

2 ]
)

be three IVIFNs and ξ > 0 be a real number, then the following operational laws are valid:

(i) α1 ⊕ α2 =
(
[1− (1− ζL

1 )(1− ζL
2 ), 1− (1− ζU

1 )(1− ζU
2 )], [ϑ

L
1 ϑL

2 , ϑU
1 ϑU

2 ]
)
,

(ii) α1 ⊗ α2 =
(
[ζL

1 ζL
2 , ζU

1 ζU
2 ], [1− (1− ϑL

1 )(1− ϑL
2 ), 1− (1− ϑU

1 )(1− ϑU
2 )]
)
,

(iii) ξα =
(
[1− (1− ζL)ξ , 1− (1− ζU)ξ ], [(ϑL)ξ , (ϑU)ξ ]

)
,

(iv) (α)ξ =
(
[(ζL)ξ , (ζU)ξ ], [1− (1− ϑL)ξ , 1− (1− ϑU)ξ ]

)
.

Definition 5. Ref. [38] A cubic fuzzy set (CFS) ‘A’ is defined over universal set X as

A =
{
(x, AF(x), λF(x)) | x ∈ X

}
(1)
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where, AF(x) = [AL(x), AU(x)] is an interval-valued FS and λF(x) represents a FS in X.

Definition 6. For any Ai = 〈Ai, λi〉 where i ∈ Λ, we have [38]

(i) P-union: ∪ P
i∈Λ
Ai =

〈
∪i∈Λ Ai,∨i∈Λλi

〉
.

(ii) P-intersection: ∩ P
i∈Λ
Ai =

〈
∩i∈Λ Ai,∧i∈Λλi

〉
.

(iii) R-union: ∪ R
i∈Λ
Ai =

〈
∪i∈Λ Ai,∧i∈Λλi

〉
.

(iv) R-intersection: ∩ R
i∈Λ
Ai =

〈
∩i∈Λ Ai,∨i∈Λλi

〉
.

Definition 7. Ref. [30] For p, q ≥ 0 and ai (i = 1, 2, . . . , n) a collection of non-negative numbers. If

BMp,q(a1, a2, . . . , an) =

 1
n(n− 1)

n

∑
i,j=1
i 6=j

ai
paj

q


1

p+q

(2)

then BMp,q is called the Bonferroni mean (BM) operator.

Xu and Yager [32] extended this BM to intuitionistic fuzzy environment and gave the following
concepts.

Definition 8. Ref. [32] Let δi be a set of non-negative intuitionistic fuzzy numbers. The intuitionistic fuzzy
Bonferroni mean (IFBM), the intuitionistic fuzzy weighted Bonferroni mean (IFWBM) are respectively, defined as

IFBMp,q(α1, α2, . . . , αn) =

 1
n(n− 1)

n⊕
i,j=1
i 6=j

(
α

p
i ⊗ α

q
j

)
1/(p+q)

and

IFWBMp,q(α1, α2, . . . , αn) =

 1
n(n− 1)

n⊕
i,j=1
i 6=j

((
ωiα

p
i

)
⊗
(

ωjα
q
j

))
1/(p+q)

3. Cubic Intuitionistic Fuzzy Sets and the Aggregation Operators

In this section, we have defined some basic operational laws between the pairs of the R-order
CIFNs, denoted by Ω, and hence based on it, some series of Bonferroni mean operators have
been proposed.

3.1. Cubic Intuitionistic Fuzzy Set

Definition 9. A CIFS A defined over the universal set X is an ordered pair which is defined as follows

A = {〈x, A(x), λ(x)〉 | x ∈ X} (3)

where A = {x,
〈
[ζL

A(x), ζU
A(x)], [ϑL

A(x), ϑU
A(x)]

〉
, | x ∈ X} represents the IVIFS defined on X while λ(x) =

{x, 〈ζA(x), ϑA(x)〉 | x ∈ X} represents an IFS such that 0 ≤ ζL
A(x) ≤ ζU

A(x) ≤ 1, 0 ≤ ϑL
A(x) ≤ ϑU

A(x) ≤ 1
and 0 ≤ ζU

A(x) + ϑU
A(x) ≤ 1. Also, 0 ≤ ζA(x), ϑA(x) ≤ 1 and ζA(x) + ϑA(x) ≤ 1. For the sake of

simplicity, we denote these pairs as A =
〈

A, λ
〉
, where A = 〈[ζL

A, ζU
A ], [ϑ

L
A, ϑU

A ]〉 and λ = 〈ζA, ϑA〉 and called
as cubic intuitionistic fuzzy number (CIFN).

Definition 10. A CIFS A defined in Equation (3) is said to be Internal CIFS if ζA(x) ∈ [ζL
A(x), ζU

A(x)] and
ϑA(x) ∈ [ϑL

A(x), ϑU
A(x)] for all x ∈ X, otherwise called as External Cubic Intuitionistic fuzzy set.
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Definition 11. For a family of CIFS {Ai, i ∈ Λ}, we have

(a) (P-union):
⋃

P
i∈Λ
Ai =

(
〈[sup

i∈Λ
ζL

i , sup
i∈Λ

ζU
i ], [ inf

i∈Λ
ϑL

i , inf
i∈Λ

ϑU
i ]〉, 〈sup

i∈Λ
ζi, inf

i∈Λ
ϑi〉
)

.

(b) (P-intersection):
⋂

P
i∈Λ
Ai =

(
〈[ inf

i∈Λ
ζL

i , inf
i∈Λ

ζU
i ], [sup

i∈Λ
ϑL

i , sup
i∈Λ

ϑU
i ]〉, 〈 inf

i∈Λ
ζi, sup

i∈Λ
ϑi〉
)

.

(c) (R-union):
⋃

R
i∈Λ
Ai =

(
〈[sup

i∈Λ
ζL

i , sup
i∈Λ

ζU
i ], [ inf

i∈Λ
ϑL

i , inf
i∈Λ

ϑU
i ]〉, 〈 inf

i∈Λ
ζi, sup

i∈Λ
ϑi〉
)

.

(d) (R-intersection):
⋂

R
i∈Λ
Ai =

(
〈[ inf

i∈Λ
ζL

i , inf
i∈Λ

ζU
i ], [sup

i∈Λ
ϑL

i , sup
i∈Λ

ϑU
i ]〉, 〈sup

i∈Λ
ζi, inf

i∈Λ
ϑi〉
)

.

Definition 12. Let δi =
(〈
[ζL

i , ζU
i ], [ϑ

L
i , ϑU

i ]
〉
,
〈
ζi, ϑi〉

)
where i = (1, 2) be two CIFNs in X. Then we define:

(a) (Equality) δ1 = δ2 if and only if [ζL
1 , ζU

1 ] = [ζL
2 , ζU

2 ], [ϑ
L
1 , ϑU

1 ] = [ϑL
2 , ϑU

2 ], ζ1 = ζ2 and ϑ1 = ϑ2.
(b) (P-order) δ1 ⊆P δ2 if [ζL

1 , ζU
1 ] ⊆ [ζL

2 , ζU
2 ],[ϑ

L
1 , ϑU

1 ] ⊇ [ϑL
2 , ϑU

2 ], ζ1 ≤ ζ2 and ϑ1 ≥ ϑ2
(c) (R-order) δ1 ⊆R δ2 if [ζL

1 , ζU
1 ] ⊆ [ζL

2 , ζU
2 ],[ϑ

L
1 , ϑU

1 ] ⊇ [ϑL
2 , ϑU

2 ], ζ1 ≥ ζ2 and ϑ1 ≤ ϑ2

Definition 13. The score function to rank the CIFN δi = (〈[ζL
i , ζU

i ], [ϑ
L
i , ϑU

i ]〉, 〈ζi, ϑi〉) is defined under
R-order as

Sc(δi) =
ζL

i + ζU
i − ϑL

i − ϑU
i

2
+ (ϑi − ζi) (4)

while for P-order as

Sc(δi) =
ζL

i + ζU
i − ϑL

i − ϑU
i

2
+ (ζi − ϑi) (5)

Also, an accuracy function is defined as

H(δi) =
ζL

i + ζU
i + ϑL

i + ϑU
i

2
+ (ζi + ϑi) (6)

It is evident that −2 ≤ Sc(δi) ≤ 2 and 0 ≤ H(δi) ≤ 2.

Definition 14. For any two CIFNs δi, the following comparison rule has been defined

(i) if Sc(δ1) > Sc(δ2) then δ1 is preferable over δ2 and is denoted by δ1 � δ2.
(ii) if Sc(δ1) = Sc(δ2)

(a) if H(δ1) > H(δ2) then δ1 � δ2.
(b) if H(δ1) = H(δ2) then δ1 ∼ δ2, where ∼ represent “equivalent to”.

Theorem 1. For CIFSs A =
〈

A, λ
〉
,B =

〈
B, µ

〉
, C =

〈
C, γ

〉
and D =

〈
D, ρ

〉
, where A, B, C and D are

IVIFSs and λ, µ, γ and ρ are IFSs in X, we have

(i) if A ⊆P B and B ⊆P C then A ⊆P C,
(ii) if A ⊆P B then Bc ⊆P Ac,
(iii) if A ⊆P B and A ⊆P C then A ⊆P B ∩P C,
(iv) if A ⊆P B and C ⊆P B then A∪P C ⊆P B,
(v) if A ⊆P B and C ⊆P D then A∪P C ⊆P B ∪P D and A∩P C ⊆P B ∩P D,
(vi) if A ⊆R B and if B ⊆R C then A ⊆R C,
(vii) if A ⊆R B then Bc ⊆R Ac,
(viii) if A ⊆R B and A ⊆R C then A ⊆R B ∩R C,
(ix) if A ⊆R B and C ⊆R B then A∪R C ⊆R B,
(x) if A ⊆R B and C ⊆R D then A∪R C ⊆R B ∪R D and A∩R C ⊆R B ∩R D,
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Proof. Straightforward, so proof is omitted.

Definition 15. Let δ =
(〈

[ζL, ζU], [ϑL, ϑU]
〉
,
〈
ζ, ϑ〉

)
, δi =

(〈
[ζL

i , ζU
i ], [ϑ

L
i , ϑU

i ]
〉
,
〈
ζi, ϑi〉

)
, (i = 1, 2, . . . , n)

be the collections of CIFNs, and ξ > 0 be a real number then the operational laws on these CIFNs are defined
as below:

(i) δ1 ⊕ δ2 =

(〈[
1−

2
∏
i=1

(1− ζL
i ), 1−

2
∏
i=1

(1− ζU
i )
]
,
[ 2

∏
i=1

ϑL
i ,

2
∏
i=1

ϑU
i

]〉
,
〈 2

∏
i=1

ζi, 1−
2

∏
i=1

(1− ϑi)
〉)

(ii) δ1 ⊗ δ2 =

(〈[ 2
∏
i=1

ζL
i ,

2
∏
i=1

ζU
i

]
,
[
1−

2
∏
i=1

(1− ϑL
i ), 1−

2
∏
i=1

(1− ϑU
i )
]〉

,
〈

1−
2

∏
i=1

(1− ζi),
2

∏
i=1

ϑi

〉)
(iii) ξδ =

(〈[
1− (1− ζL)ξ , 1− (1− ζU)ξ

]
,
[
(ϑL)ξ , (ϑU)ξ

]〉
,
〈
(ζ)ξ , 1− (1− ϑ)ξ

〉)
(iv) δξ =

(〈[
(ζL)ξ , (ζU)ξ

]
,
[
1− (1− ϑL)ξ , 1− (1− ϑU)ξ

]〉
,
〈

1− (1− ζ)ξ , (ϑ)ξ
〉)

Theorem 2. For two CIFNs δ1 and δ2, ξ > 0 be a real number then δ1⊕ δ2, δ1⊗ δ2, ξδ1 and δ
ξ
1 are also CIFNs.

Proof. Since δ1 =
〈
〈[ζL

1 , ζU
1 ], [ϑ

L
1 , ϑU

1 ]〉, 〈ζ1, ϑ1〉
〉

and δ2 =
〈
〈[ζL

2 , ζU
2 ], [ϑ

L
2 , ϑU

2 ]〉, 〈ζ2, ϑ2〉
〉

are two CIFNs

such that 0 ≤ ζL
1 , ζL

2 , ζU
1 , ζU

2 , ϑL
1 , ϑL

2 , ϑU
1 , ϑU

2 ≤ 1 and ζU
1 + ϑU

1 ≤ 1, ζU
2 + ϑU

2 ≤ 1 which implies
that 0 ≤ (1− ζL

1 )(1− ζL
2 ) ≤ 1 and hence 0 ≤ ζL

1 + ζL
2 − ζL

1 ζL
2 ≤ 1. Similarly, we can prove that

0 ≤ ζU
1 + ζU

2 − ζU
1 ζU

2 ≤ 1, 0 ≤ ϑL
1 ϑL

2 ≤ 1 and 0 ≤ ϑU
1 ϑU

2 ≤ 1. Also, 0 ≤ ζ1, ζ2, ϑ1, ϑ2 ≤ 1 and
ζ1 + ϑ1 ≤ 1, ζ2 + ϑ2 ≤ 1 which implies that ζ1ζ2 ≤ 1 and 0 ≤ ϑ1 + ϑ2 − ϑ1ϑ2 ≤ 1. Finally, we have
ζU

1 + ζU
2 − ζU

1 ζU
2 + ϑU

1 ϑU
2 = 1− (1− ζU

1 )(1− ζU
2 ) + ϑU

1 ϑU
2 ≤ 1− ϑU

1 ϑU
2 + ϑU

1 ϑU
2 ≤ 1 and ζ1ζ2 + ϑ1 +

ϑ2 − ϑ1ϑ2 = ζ1ζ2 + 1− (1− ϑ1)(1− ϑ2) ≤ ζ1ζ2 + 1− ζ1ζ2 ≤ 1. Therefore, δ1 ⊕ δ2 is CIFN.
Further, for any positive number ξ and CIFN δ, we have 0 ≤ ζ

ξ
1 ≤ 1 , 0 ≤ 1− (1− ϑ1)

ξ ≤ 1,
0 ≤ (ϑL

1 )
ξ , (ϑU

1 )ξ ≤ 1 and 0 ≤ 1− (1− ζL
1 )

ξ , 1− (1− ζU
1 )

ξ ≤ 1. Thus, ξδ1 is also CIFN. Similarly, we
can prove that δ1 ⊗ δ2 and δ

ξ
1 are also CIFNs.

3.2. Cubic Intuitionistic Fuzzy Bonferroni Mean Operator

Definition 16. A cubic intuitionistic fuzzy Bonferroni mean (CIFBM) operator is a mapping CIFBM: Ωn → Ω
defined on the collection of CIFNs δi, and is given by

CIFBMp,q(δ1, δ2, . . . , δn) =

 1
n(n− 1)

n⊕
i,j=1
i 6=j

(δ
p
i ⊗ δ

q
j )


1

p+q

(7)

where p, q > 0 are the real numbers.

Theorem 3. The aggregated value by using CIFBM operator for CIFNs δi =
(
〈[ζL

i , ζU
i ], [ϑ

L
i , ϑU

i ]〉, 〈ζi, ϑi〉
)

is
still CIFN and is given by

CIFBMp,q(δ1, δ2, . . . , δn)

=



〈
(

1−
n

∏
i,j=1
i 6=j

(
1− (ζL

i )
p(ζL

j )
q
) 1

n(n−1)

) 1
p+q

,

(
1−

n

∏
i,j=1
i 6=j

(
1− (ζU

i )p(ζU
j )

q
) 1

n(n−1)

) 1
p+q
 ,



1−
(

1−
n

∏
i,j=1
i 6=j

(
1− (1− ϑL

i )
p(1− ϑL

j )
q
) 1

n(n−1)

) 1
p+q

,

1−
(

1−
n

∏
i,j=1
i 6=j

(
1− (1− ϑU

i )p(1− ϑU
j )

q
) 1

n(n−1)

) 1
p+q


〉

,

〈
1−

(
1−

n

∏
i,j=1
i 6=j

(
1− (1− ζi)

p(1− ζ j)
q
) 1

n(n−1)

) 1
p+q

,

(
1−

n

∏
i,j=1
i 6=j

(
1− (ϑi)

p(ϑj)
q
) 1

n(n−1)

) 1
p+q
〉



(8)
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Proof. For any two positive real numbers p, q and CIFNs δi, δj, we have from the basic operational
laws between CIFNs given in Definition 15,

δ
p
i =

([
(ζL

i )
p, (ζU

i )
p
]
,
[
1− (1− ϑL

i )
p, 1− (1− ϑU

i )p
]〉

,
〈

1− (1− ζi)
p, (ϑi)

p
)

(9)

and δ
q
j =

([
(ζL

j )
q, (ζU

j )
q
]
,
[
1− (1− ϑL

j )
q, 1− (1− ϑU

j )
q
]〉

,
〈

1− (1− ζ j)
q, (ϑj)

q
)

(10)

Therefore,

δ
p
i ⊗ δ

q
j =


〈[

(ζL
i )

p(ζL
j )

q, (ζU
i )

p(ζU
j )

q
]
,
[
1− (1− ϑL

i )
p(1− ϑL

j )
q,

1− (1− ϑU
i )p(1− ϑU

j )
q
]〉

,
〈

1− (1− ζi)
p(1− ζ j)

q, (ϑi)
p(ϑj)

q
〉
 (11)

Firstly, we prove

n⊕
i,j=1
i 6=j

(δ
p
i ⊗ δ

q
j ) =



〈[
1−

n

∏
i,j=1
i 6=j

(
1− (ζL

i )
p(ζL

j )
q), 1−

n

∏
i,j=1
i 6=j

(
1− (ζU

i )
p(ζU

j )
q)],

[ n

∏
i,j=1
i 6=j

(
1− (1− ϑL

i )
p(1− ϑL

j )
q), n

∏
i,j=1
i 6=j

(
1− (1− ϑU

i )p(1− ϑU
j )

q)]〉,

〈 n

∏
i,j=1
i 6=j

(
1− (1− ζi)

p(1− ζ j)
q), 1−

n

∏
i,j=1
i 6=j

(
1− (ϑi)

p(ϑj)
q)〉


(12)

by induction on n.
For n = 2 we get,

2⊕
i,j=1
i 6=j

(δ
p
i ⊗ δ

q
j ) =



〈[
1−

2

∏
i,j=1
i 6=j

(
1− (ζL

i )
p(ζL

j )
q), 1−

2

∏
i,j=1
i 6=j

(
1− (ζU

i )p(ζU
j )

q)],
[ 2

∏
i,j=1
i 6=j

(
1− (1− ϑL

i )
p(1− ϑL

j )
q
)

,
2

∏
i,j=1
i 6=j

(
1− (1− ϑU

i )p(1− ϑU
j )

q)]〉,

〈 2

∏
i,j=1
i 6=j

(
1− (1− ζi)

p(1− ζ j)
q), 1−

2

∏
i,j=1
i 6=j

(
1− (ϑi)

p(ϑj)
q)〉


(13)

Thus, it holds for n = 2. Assuming result is true for n = k i.e.,

k⊕
i,j=1
i 6=j

(δ
p
i ⊗ δ

q
j ) =



〈[
1−

k

∏
i,j=1
i 6=j

(
1− (ζL

i )
p(ζL

j )
q), 1−

k

∏
i,j=1
i 6=j

(
1− (ζU

i )
p(ζU

j )
q)],

[ k

∏
i,j=1
i 6=j

(
1− (1− ϑL

i )
p(1− ϑL

j )
q), k

∏
i,j=1
i 6=j

(
1− (1− ϑU

i )p(1− ϑU
j )

q)]〉,

〈 k

∏
i,j=1
i 6=j

(
1− (1− ζi)

p(1− ζ j)
q), 1−

k

∏
i,j=1
i 6=j

(
1− (ϑi)

p(ϑj)
q)〉


(14)

Now, for n = k + 1, we have

k+1⊕
i,j=1
i 6=j

(
δ

p
i ⊗ δ

q
j
)
=

 k⊕
i,j=1
i 6=j

(
δ

p
i ⊗ δ

q
j
)⊕( k⊕

i=1

(
δ

p
i ⊗ δ

q
k+1

))
⊕

 k⊕
j=1

(
δ

p
k+1 ⊗ δ

q
j
) (15)
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Now, we shall prove

k⊕
i=1

(
δ

p
i ⊗ δ

q
k+1

)
=



〈[
1−

k

∏
i=1

(1− (ζL
i )

p(ζL
k+1)

q), 1−
k

∏
i=1

(1− (ζU
i )

p(ζU
k+1)

q)
]
,

[ k

∏
i=1

(
1− (1− ϑL

i )
p(1− ϑL

k+1)
q), k

∏
i=1

(
1− (1− ϑU

i )p(1− ϑU
k+1)

q)]〉,

〈 k

∏
i=1

(
1− (1− ζi)

p(1− ζk+1)
q), 1−

k

∏
i=1

(1− (ϑi)
p(ϑk+1)

q)

〉


(16)

Again, for k = 2, using Equation (11), we have

δ
p
i ⊗ δ

q
2+1 =


〈[

(ζL
i )

p(ζL
2+1)

q, (ζU
i )

p(ζU
2+1)

q
]
,
[
1− (1− ϑL

i )
p(1− ϑL

2+1)
q,

1− (1− ϑU
i )p(1− ϑU

2+1)
q
]〉

,
〈

1− (1− ζi)
p(1− ζ2+1)

q, (ϑi)
p(ϑ2+1)

q
〉
 (17)

and thus,

2⊕
i=1

(
δ

p
i ⊗ δ

q
2+1
)

=
(
δ

p
1 ⊗ δ

q
2+1
)
⊕
(
δ

p
2 ⊗ δ

q
2+1
)

=



〈[
1−

2

∏
i=1

(
1− (ζL

i )
p(ζL

3 )
q), 1−

2

∏
i=1

(
1− (ζU

i )
p(ζU

3 )
q)],

[ 2

∏
i=1

(
1− (1− ϑL

i )
p(1− ϑL

3 )
q), 2

∏
i=1

(
1− (1− ϑU

i )p(1− ϑU
3 )q)]〉,

〈 2

∏
i=1

(
1− (1− ζi)

p(1− ζ3)
q), 1−

2

∏
i=1

(
1− (ϑi)

p(ϑ3)
q)〉


(18)

If Equation (16) holds for k = k0 i.e.,

k0⊕
i=1

(
δ

p
i ⊗ δ

q
k0+1

)
=



〈[
1−

k0

∏
i=1

(1− (ζL
i )

p(ζL
k0+1)

q), 1−
k0

∏
i=1

(1− (ζU
i )p(ζU

k0+1)
q)
]
,

[ k0

∏
i=1

(
1− (1− ϑL

i )
p(1− ϑL

k0+1)
q), k0

∏
i=1

(
1− (1− ϑU

i )p(1− ϑU
k0+1)

q)]〉,

〈 k0

∏
i=1

(
1− (1− ζi)

p(1− ζk0+1)
q), 1−

k0

∏
i=1

(1− (ϑi)
p(ϑk0+1)

q)

〉


(19)

then, for k = k0 + 1, using Definition 15 we have:

k0+1⊕
i=1

(
δ

p
i ⊗ δ

q
k0+2

)
=

k0⊕
i=1

(
δ

p
i ⊗ δ

q
k0+2

)
⊕
(
δ

p
k0+1 ⊗ δ

q
k0+2

)

=



〈[
1−

k0+1

∏
i=1

(
1− (ζL

i )
p(ζL

k0+2)
q
)

,
(

1− (ζU
i )p(ζU

k0+2)
q
)]

,

[ k0+1

∏
i=1

(
1− (1− ϑL

i )
p(1− ϑL

k0+2)
q), k0+1

∏
i=1

(
1− (1− ϑU

i )p(1− ϑU
k0+2)

q)]〉,

〈 k0+1

∏
i=1

(
1− (1− ζi)

p(1− ζk0+2)
q), 1−

k0+1

∏
i=1

(
1− (ϑi)

p(ϑk0+2)
q
)〉


(20)



Entropy 2018, 20, 65 9 of 26

and hence Equation (16) holds for k = k0 + 1. Thus, it holds true for every k. Similarly,

k⊕
j=1

(
δ

p
k+1 ⊗ δ

q
j
)

=



〈[
1−

k

∏
j=1

(1− (ζL
k+1)

p(ζL
j )

q), 1−
k

∏
j=1

(1− (ζU
k+1)

p(ζU
j )

q)
]
,

[ k

∏
j=1

(
1− (1− ϑL

k+1)
p(1− ϑL

j )
q), k

∏
j=1

(
1− (1− ϑU

k+1)
p(1− ϑU

j )
q)]〉,

〈 k

∏
j=1

(
1− (1− ζk+1)

p(1− ζ j)
q), 1−

k

∏
j=1

(1− (ϑk+1)
p(ϑj)

q)

〉


(21)

Therefore, by using Equations (14), (16) and (21), Equation (15) becomes

k⊕
i,j=1
i 6=j

(
δ

p
i ⊗ δ

q
j
)

=



〈[
1−

k

∏
i,j=1
i 6=j

(
1− (ζL

i )
p(ζL

j )
q
)

, 1−
k

∏
i,j=1
i 6=j

(
1− (ζU

i )
p(ζU

j )
q
)]

,

[ k

∏
i,j=1
i 6=j

(
1− (1− ϑL

i )
p(1− ϑL

j )
q
)

,
k

∏
i,j=1
i 6=j

(
1− (1− ϑU

i )p(1− ϑU
j )

q
)]〉

,

〈 k

∏
i,j=1
i 6=j

(
1− (1− ζi)

p(1− ζ j)
q
)

, 1−
k

∏
i,j=1
i 6=j

(
1− (ϑi)

p(ϑj)
q
)〉



⊕



〈[
1−

k

∏
i=1

(
1− (ζL

i )
p(ζL

k+1)
q), 1−

k

∏
i=1

(
1− (ζU

i )
p(ζU

k+1)
q)],

[ k

∏
i=1

(
1−

(
1− ϑL

i
)p(1− ϑL

k+1
)q
)

,
k

∏
i=1

(
1−

(
1− ϑU

i
)p(1− ϑU

k+1
)q
)]〉

,

〈 k

∏
i=1

(
1−

(
1− ζi

)p(1− ζk+1
)q
)

, 1−
k

∏
i=1

(
1− (ϑi)

p(ϑk+1)
q)〉



⊕



〈[
1−

k

∏
j=1

(
1− (ζL

k+1)
p(ζL

j )
q
)

, 1−
k

∏
j=1

(
1− (ζU

k+1)
p(ζU

j )
q
)]

,

[ k

∏
i=1

(
1−

(
1− ϑL

k+1
)p(1− ϑL

j
)q
)

,
k

∏
i=1

(
1−

(
1− ϑU

k+1
)p(1− ϑU

j
)q
)]〉

,

〈 k

∏
i=1

(
1−

(
1− ζk+1

)p(1− ζ j
)q
)

, 1−
(
1− ϑk+1

)p(1− ϑj
)q
)〉



=



〈[
1−

k+1

∏
i,j=1
i 6=j

(
1− (ζL

i )
p(ζL

j )
q
)

, 1−
k+1

∏
i,j=1
i 6=j

(
1− (ζU

i )
p(ζU

j )
q
)]

,

[ k+1

∏
i,j=1
i 6=j

(
1−

(
1− ϑL

i
)p(1− ϑL

j
)q
)

,
k+1

∏
i,j=1
i 6=j

(
1−

(
1− ϑU

i
)p(1− ϑU

j
)q
)]〉

,

〈 k+1

∏
i,j=1
i 6=j

(
1−

(
1− ζi

)p(1− ζ j
)q
)

, 1−
k+1

∏
i,j=1
i 6=j

(
1− (ϑi)

p(ϑj)
q
)〉


which is true for n = k + 1 and hence by principle of mathematical induction, Equation (16) holds for
all positive integers n.
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Now,

1
n(n− 1)

 n⊕
i,j=1
i 6=j

(
δ

p
i ⊗ δ

q
j
)

=



〈[
1−

( n

∏
i,j=1
i 6=j

(
1− (ζL

i )
p(ζL

j )
q)) 1

n(n−1) , 1−
( n

∏
i,j=1
i 6=j

(
1− (ζU

i )
p(ζU

j )
q)) 1

n(n−1)
]
,

[ n

∏
i,j=1
i 6=j

(
1−

(
1− ϑL

i
)p(1− ϑL

j
)q
) 1

n(n−1) ,
n

∏
i,j=1
i 6=j

(
1−

(
1− ϑU

i
)p(1− ϑU

j
)q
) 1

n(n−1)
]〉

,

〈 n

∏
i,j=1
i 6=j

(
1−

(
1− ζi

)p(1− ζ j
)q
) 1

n(n−1) , 1−
( n

∏
i,j=1
i 6=j

(
1− (ϑi)

p(ϑj)
q)) 1

n(n−1)
〉


(22)

So by definition of CIFBM, we get

CIFBMp,q(δ1, δ2, . . . , δn) =

 1
n(n− 1)

 n⊕
i,j=1
i 6=j

(
δ

p
i ⊗ δ

q
j

)


1
p+q

=



〈[(
1−

n

∏
i,j=1
i 6=j

(
1− (ζL

i )
p(ζL

j )
q
) 1

n(n−1)

) 1
p+q

,

(
1−

n

∏
i,j=1
i 6=j

(
1− (ζU

i )p(ζU
j )

q
) 1

n(n−1)

) 1
p+q
]

,


1−

(
1−

n

∏
i,j=1
i 6=j

(
1− (1− ϑL

i )
p(1− ϑL

j )
q
) 1

n(n−1)

) 1
p+q

,

1−
(

1−
n

∏
i,j=1
i 6=j

(
1− (1− ϑU

i )p(1− ϑU
j )

q
) 1

n(n−1)

) 1
p+q


〉

,

〈
1−

(
1−

n

∏
i,j=1
i 6=j

(
1− (1− ζi)

p(1− ζ j)
q
) 1

n(n−1)

) 1
p+q

,

(
1−

n

∏
i,j=1
i 6=j

(
1− (ϑi)

p(ϑj)
q
) 1

n(n−1)

) 1
p+q
〉



(23)

Hence, the result.
Finally, in order to show the aggregated value by using CIFBM is also CIFN, it is necessary to

satisfy the CIFN property. For it, since δi =
(
〈[ζL

i , ζU
i ], [ϑ

L
i , ϑU

i ]〉, 〈ζi, ϑi〉
)

is CIFN which implies that
[ζL

i , ζU
i ], [ϑ

L
i , ϑU

i ] ⊆ [0, 1] and ζU
i + ϑU

i ≤ 1, ζi, ϑiß[0, 1] and ζi + ϑi ≤ 1. Thus, for any positive number

p and q, we have 0 ≤ 1− (ζU
i )

p(ζU
j )

q ≤ 1 which turns 0 ≤
(

1− (ζU
i )

p(ζU
j )

q
) 1

n(n−1) ≤ 1 and hence

0 ≤

1−
n
∏

i,j=1
i 6=j

(
1− (ζU

i )
p(ζU

j )
q
) 1

n(n−1)


1

p+q

≤ 1. On the other hand, 0 ≤ ϑU
i , ϑU

j ≤ 1, thus 0 ≤ (1−

ϑU
i )p(1− ϑU

j )
q ≤ 1, which further gives 0 ≤ 1−

(
1−

n
∏

i,j=1
i 6=j

(
1− (1− ϑU

i )p(1− ϑU
j )

q
) 1

n(n−1)

) 1
p+q

≤ 1.
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Lastly, from ζU
i + ϑU

i ≤ 1, we have (ζU
i )

p ≤ (1− ϑU
i )p and (ζU

j )
q ≤ (1− ϑU

j )
q and thus follows that

n
∏

i,j=1
i 6=j

(
1− (ζU

i )
p(ζU

j )
q
) 1

n(n−1) ≥
n
∏

i,j=1
i 6=j

(
1− (1− ϑU

i )p(1− ϑU
j )

q
) 1

n(n−1) which in turns leads us to

1−
n

∏
i,j=1
i 6=j

(
1− (ζU

i )p(ζU
j )

q
) 1

n(n−1)


1

p+q

+ 1−

1−
n

∏
i,j=1
i 6=j

(
1− (1− ϑU

i )p(1− ϑU
j )

q
) 1

n(n−1)


1

p+q

= 1−


1−

n

∏
i,j=1
i 6=j

(
1− (1− ϑU

i )p(1− ϑU
j )

q
) 1

n(n−1)


1

p+q

−

1−
n

∏
i,j=1
i 6=j

(
1− (ζU

i )p(ζU
j )

q
) 1

n(n−1)


1

p+q


≤ 1

Similarly, we can prove for remaining components of CIFBM and hence the aggregated value by
CIFBM operator is again CIFN. This completes the proof.

From CIFBM operator, it is observed that they satisfies certain properties for a collection of CIFN
δi, which are stated as follows:

Property 1. (Idempotency) If δi = δ for all i, then CIFBM satsifies

CIFBMp,q(δ, δ, . . . δ) = δ

Proof. Assume δ =
(
〈[ζL, ζU ], [ϑL, ϑU ]〉, 〈ζ, ϑ〉

)
and δi = δ for all i, then we have

CIFBMp,q(δ, δ, . . . δ)

=



〈[(
1−

n

∏
i,j=1
i 6=j

(
1− (ζL)p(ζL)q) 1

n(n−1)
) 1

p+q
,
(

1−
n

∏
i,j=1
i 6=j

(
1− (ζU)p(ζU)q) 1

n(n−1)
) 1

p+q
]
,

[
1−

(
1−

n

∏
i,j=1
i 6=j

(
1− (1− ϑL)p(1− ϑL)q) 1

n(n−1)
) 1

p+q
,

1−
(

1−
n

∏
i,j=1
i 6=j

(
1− (1− ϑU)p(1− ϑU)q) 1

n(n−1)
) 1

p+q
]〉

,

〈
1−

(
1−

n

∏
i,j=1
i 6=j

(
1− (1− ζ)p(1− ζ)q) 1

n(n−1)
) 1

p+q
,
(

1−
n

∏
i,j=1
i 6=j

(
1− (ϑ)p(ϑ)q) 1

n(n−1)
) 1

p+q
〉



=


〈[(

1−
(
1− (ζL)p+q)) 1

p+q
,
(

1−
(
1− (ζU)p+q)) 1

p+q
]
,
[
1−

(
1−

(
1− (1− (ϑL)p+q)

)) 1
p+q

,

1−
(

1−
(
1− (1− (ϑU)p+q)

)) 1
p+q
]〉

,
〈

1−
(

1−
(
1− (1− (ζ)p+q)

)) 1
p+q

,
(

1−
(
1− (ϑ)p+q)) 1

p+q
〉


=


〈[(

(ζL)p+q) 1
p+q ,

(
(ζU)p+q) 1

p+q
]
,
[
1−

(
(1− ϑL)p+q

) 1
p+q

,

1−
(
(1− ϑU)p+q

) 1
p+q
]〉

,
〈

1−
(
(1− ζ)p+q

) 1
p+q

,
(
(ϑ)p+q) 1

p+q

〉


=
(〈

[ζL, ζU ], [ϑL, ϑU ]
〉

,
〈

ζ, ϑ
〉)

= δ
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Property 2. (Monotonicity) Let δi =
(
〈[ζL

δi
, ζU

δi
], [ϑL

δi
, ϑU

δi
]〉, 〈ζδi , ϑδi 〉

)
and βi =(

〈[ζL
βi

, ζU
βi
], [ϑL

βi
, ϑU

βi
]〉, 〈ζβi , ϑβi 〉

)
be any two CIFNs such that ζL

δi
≤ ζL

βi
, ζU

δi
≤ ζU

δi
, ϑL

δi
≥ ϑU

βi
,

ϑU
δi
≥ ϑU

βi
and ζδi ≥ ζβi , ϑδi ≤ ϑβi , then

CIFBMp,q(δ1, δ2, . . . , δn) ≤ CIFBMp,q(β1, β2, . . . , βn)

.
Proof. Let CIFBMp,q(δ1, δ2, . . . , δn) =

(
〈[ζL

δ , ζU
δ ], [ϑ

L
δ , ϑU

δ ]〉, 〈ζδ, ϑδ〉
)

and CIFBMp,q(β1, β2, . . . , βn) =(
〈[ζL

β , ζU
β ] , [ϑ

L
β , ϑU

β ]〉, 〈ζβ, ϑβ〉
)

. Now, for any two CIFNs δi and δj, and by using relation that ζU
δi
≤ ζU

δi
,

we have (
ζU

δi

)p (
ζU

δj

)q
≤
(

ζU
βi

)p (
ζU

β j

)q

⇔
n

∏
i,j=1
i 6=j

(
1−

(
ζU

βi

)p (
ζU

β j

)q) 1
n(n−1) ≤

n

∏
i,j=1
i 6=j

(
1−

(
ζU

δi

)p (
ζU

δj

)q) 1
n(n−1)

⇔ 1−
n

∏
i,j=1
i 6=j

(
1−

(
ζU

δi

)p (
ζU

δj

)q) 1
n(n−1) ≤ 1−

n

∏
i,j=1
i 6=j

(
1−

(
ζU

βi

)p (
ζU

β j

)q) 1
n(n−1)

⇔

1−
n

∏
i,j=1
i 6=j

(
1−

(
ζU

δi

)p (
ζU

δj

)q) 1
n(n−1)


1

p+q

≤

1−
n

∏
i,j=1
i 6=j

(
1−

(
ζU

βi

)p (
ζU

β j

)q) 1
n(n−1)


1

p+q

i.e., ζU
δ ≤ ζU

β

Similarly,

1−
n

∏
i,j=1
i 6=j

(
1−

(
ζL

δi

)p (
ζL

δj

)q) 1
n(n−1)


1

p+q

≤

1−
n

∏
i,j=1
i 6=j

(
1−

(
ζL

βi

)p (
ζL

β j

)q) 1
n(n−1)


1

p+q

and

1−
n

∏
i,j=1
i 6=j

(
1−

(
ϑδi

)p
(

ϑδj

)q) 1
n(n−1)


1

p+q

≤

1−
n

∏
i,j=1
i 6=j

(
1−

(
ϑβi

)p
(

ϑβ j

)q) 1
n(n−1)


1

p+q

On the other hand, for ϑU
δi
≤ ϑU

βi
and hence for any two CIFNs δi and δj, we have

(
1− ϑU

δi

)p (
1− ϑU

δj

)q
≤
(

1− ϑU
βi

)p (
1− ϑU

β j

)q

⇔
n

∏
i,j=1
i 6=j

(
1−

(
1− ϑU

βi

)p (
1− ϑU

β j

)q) 1
n(n−1) ≤

n

∏
i,j=1
i 6=j

(
1−

(
1− ϑU

δi

)p (
1− ϑU

δj

)q) 1
n(n−1)

⇔

1−
n

∏
i,j=1
i 6=j

(
1−

(
1− ϑU

δi

)p (
1− ϑU

δj

)q) 1
n(n−1)


1

p+q

≤

1−
n

∏
i,j=1
i 6=j

(
1−

(
1− ϑU

βi

)p (
1− ϑU

β j

)q) 1
n(n−1)


1

p+q

⇔ 1−

1−
n

∏
i,j=1
i 6=j

(
1−

(
1− ϑU

βi

)p (
1− ϑU

β j

)q) 1
n(n−1)


1

p+q

≤ 1−

1−
n

∏
i,j=1
i 6=j

(
1−

(
1− ϑU

δi

)p (
1− ϑU

δj

)q) 1
n(n−1)


1

p+q



Entropy 2018, 20, 65 13 of 26

Similarly,

1−

1−
n

∏
i,j=1
i 6=j

(
1−

(
1− ϑL

βi

)p (
1− ϑL

β j

)q) 1
n(n−1)


1

p+q

≤ 1−

1−
n

∏
i,j=1
i 6=j

(
1−

(
1− ϑL

δi

)p (
1− ϑL

δj

)q) 1
n(n−1)


1

p+q

and 1−

1−
n

∏
i,j=1
i 6=j

(
1−

(
1− ζβi

)p
(

1− ζβ j

)q) 1
n(n−1)


1

p+q

≤ 1−

1−
n

∏
i,j=1
i 6=j

(
1−

(
1− ζδi

)p
(

1− ζδj

)q) 1
n(n−1)


1

p+q

Thus,

Sc(CIFBMp,q(δ1, δ2, . . . , δn)) =
ζL

δ + ζU
δ − ϑL

δ − ϑU
δ

2
− ζδ + ϑδ

≤
ζL

β + ζU
β − ϑL

β − ϑU
β

2
− ζβ + ϑβ

= Sc(CIFBMp,q(β1, β2, . . . , βn))

Hence, by comparison law, we have CIFBMp,q(δ1, δ2, . . . , δn) ≤ CIFBMp,q(β1, β2, . . . , βn).

Property 3. (Commutativity) If (δ̇1, δ̇2, . . . , δ̇n) be any permutation of CIFNs (δ1, δ2, . . . , δn), then
CIFBMp,q(δ1, δ2, . . . , δn) = CIFBMp,q(δ̇1, δ̇2, . . . , δ̇n).

Proof. For permutation (δ̇1, δ̇2, . . . , δ̇n) of (δ1, δ2, . . . , δn),

CIFBMp,q(δ1, δ2, . . . , δn) =

(
1

n(n− 1)

( n⊕
i,j=1
i 6=j

(
δ

p
i ⊗ δ

q
j

))) 1
p+q

=

(
1

n(n− 1)

( n⊕
i,j=1
i 6=j

(
δ̇

p
i ⊗ δ̇

q
j

))) 1
p+q

= CIFBMp,q(δ̇1, δ̇2, . . . , δ̇n)

Property 4. (Boundedness) Let δ− =
〈
[ζL

min, ζU
min], [ϑ

L
max, ϑU

max]〉, 〈ζmax, ϑmin〉
〉
, δ+ =

〈
[ζL

max, ζU
max],

[ϑL
min, ϑU

min]〉, 〈ζmin, ϑmax〉
〉

are the lower and upper bounds for the collection of CIFNs δi, then

δ− ≤ CIFBMp,q(δ1, . . . , δn) ≤ δ+.



Entropy 2018, 20, 65 14 of 26

Proof. Since, ζL
min ≤ ζL

i ≤ ζL
max and ζU

min ≤ ζU
i ≤ ζU

max which implies that(
ζL

min

)p+q
≤ (ζU

i )
p(ζL

j )
q ≤

(
ζL

max

)p+q

⇔
n

∏
i,j=1
i 6=j

(
1−

(
ζL

max

)p+q
) 1

n(n−1)
≤

n

∏
i,j=1
i 6=j

(
1−

(
ζL

i

)p (
ζL

j

)q) 1
n(n−1) ≤

n

∏
i,j=1
i 6=j

(
1−

(
ζL

min

)p+q
) 1

n(n−1)

⇔ 1−
(

ζL
max

)p+q
≤

n

∏
i,j=1
i 6=j

(
1−

(
ζL

i

)p (
ζL

j

)q) 1
n(n−1) ≤ 1−

(
ζL

min

)p+q

⇔
(

ζL
min

)p+q
≤ 1−

n

∏
i,j=1
i 6=j

(
1−

(
ζL

i

)p (
ζL

j

)q) 1
n(n−1) ≤

(
ζL

max

)p+q

⇔ ζL
min ≤

1−
n

∏
i,j=1
i 6=j

(
1−

(
ζL

i

)p (
ζL

j

)q) 1
n(n−1)


1

p+q

≤ ζL
max

Similarly, we get

ζU
min ≤

1−
n

∏
i,j=1
i 6=j

(
1−

(
ζU

i

)p (
ζU

j

)q ) 1
n(n−1)


1

p+q

≤ ζU
max

and ϑmin ≤

1−
n

∏
i,j=1
i 6=j

(
1− (ϑi)

p (ϑj
)q
) 1

n(n−1)


1

p+q

≤ ϑmax

On the other hand, for ϑL
min ≤ ϑL

i ≤ ϑL
max and ϑU

min ≤ ϑU
i ≤ ϑU

max, we have(
1− ϑU

max

)p+q
≤
(

1− ϑU
i

)p (
1− ϑU

j

)q
≤
(

1− ϑU
min

)p+q

⇔ 1−
(

1− ϑU
min

)p+q
≤ 1−

(
1− ϑU

i

)p (
1− ϑU

j

)q
≤ 1−

(
1− ϑU

max

)p+q

⇔ 1−
(

1− ϑU
min

)p+q
≤

n

∏
i,j=1
i 6=j

(
1−

(
1− ϑU

i

)p (
1− ϑU

j

)q) 1
n(n−1) ≤ 1−

(
1− ϑU

max

)p+q

⇔
(

1− ϑU
max

)p+q
≤ 1−

n

∏
i,j=1
i 6=j

(
1−

(
1− ϑU

i

)p (
1− ϑU

j

)q) 1
n(n−1) ≤

(
1− ϑU

min

)p+q

⇔ 1− ϑU
max ≤

1−
n

∏
i,j=1
i 6=j

(
1−

(
1− ϑU

i

)p (
1− ϑU

j

)q) 1
n(n−1)


1

p+q

≤ 1− ϑU
min

⇔ ϑU
min ≤ 1−

1−
n

∏
i,j=1
i 6=j

(
1−

(
1− ϑU

i

)p (
1− ϑU

j

)q) 1
n(n−1)


1

p+q

≤ ϑU
max



Entropy 2018, 20, 65 15 of 26

Similarly, we have

ϑL
min ≤ 1−

1−
n

∏
i,j=1
i 6=j

(
1−

(
1− ϑL

i

)p (
1− ϑL

j

)q) 1
n(n−1)


1

p+q

≤ ϑL
max

and ζmin ≤ 1−

1−
n

∏
i,j=1
i 6=j

(
1− (1− ζi)

p (1− ζ j
)q
) 1

n(n−1)


1

p+q

≤ ζmax

Thus, by comparing the two CIFNs, we get δ− ≤ CIFBMp,q(δ1, δ2, . . . , δn) ≤ δ+.

In the following, we will discuss some special cases of CIFBM operator by taking different values
of p and q.

(Case 1) As q→ 0, then Equation (7) reduces to generalized cubic intuitionistic fuzzy mean which
is defined as follows:

CIFBMp,q(δ1, δ2, . . . , δn)

=



〈[(
1−

n

∏
i=1

(
1− (ζL

i )
p
) n−1

n(n−1)

) 1
p

,

(
1−

n

∏
i=1

(
1− (ζU

i )p
) n−1

n(n−1)

) 1
p
]

,

[
1−

(
1−

n

∏
i=1

(
1− (1− ϑL

i )
p
) n−1

n(n−1)

) 1
p

, 1−
(

1−
n

∏
i=1

(
1− (1− ϑU

i )p
) n−1

n(n−1)

) 1
p
]〉

,

〈
1−

(
1−

n

∏
i=1

(
1− (1− ζi)

p
) n−1

n(n−1)

) 1
p

,

(
1−

n

∏
i=1

(
1− (ϑi)

p
) n−1

n(n−1)

) 1
p
〉



=



〈[(
1−

n

∏
i=1

(
1− (ζL

i )
p
) 1

n

) 1
p

,

(
1−

n

∏
i=1

(
1− (ζU

i )p
) 1

n

) 1
p
]

,

[
1−

(
1−

n

∏
i=1

(
1− (1− ϑL

i )
p
) 1

n

) 1
p

, 1−
(

1−
n

∏
i=1

(
1− (1− ϑU

i )p
) 1

n

) 1
p
]〉

,

〈
1−

(
1−

n

∏
i=1

(
1− (1− ζi)

p
) 1

n

) 1
p

,

(
1−

n

∏
i=1

(
1− (ϑi)

p
) 1

n

) 1
p
〉


=

(
1
n

(
n⊕

i=1
δ

p
i

)) 1
p

= CIFBMp,0(δ1, δ2, . . . , δn)

(Case 2) If p = 2 and as q→ 0, then Equation (7) reduces to cubic intuitionistic fuzzy square mean
which is given as follows:

CIFBMp,q(δ1, δ2, . . . , δn)

=



〈[(
1−

( n

∏
i=1

(
1−

(
ζL

i
)2)) 1

n
) 1

2
,
(

1−
( n

∏
i=1

(
1−

(
ζU

i
)2
)
) 1

n
) 1

2
]
,

[
1−

(
1−

( n

∏
i=1

(1− (1− ϑL
i )

2)
) 1

n
) 1

2
, 1−

(
1−

( n

∏
i=1

(1− (1− ϑU
i )2)

) 1
n
) 1

2
]〉

,〈
1−

(
1−

( n

∏
i=1

(1− (1− ζi)
2)
) 1

n
) 1

2
,
(

1−
( n

∏
i=1

(1− (ϑi)
2)
) 1

n
) 1

2
〉
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=

(
1
n

n⊕
i=1

δ2
i

) 1
2

(Case 3) For p = 1 and q→ 0, Equation (7) becomes cubic intuitionistic fuzzy average operator as:

CIFBM1,0(δ1, δ2, . . . , δn)

=



〈[(
1−

( n

∏
i=1

(1− (ζL
i ))
) 1

n
)

,
(

1−
( n

∏
i=1

(1− (ζU
i ))
)) 1

2
]
,

[
1−

(
1−

( n

∏
i=1

(1− (1− ϑL
i ))
) 1

n
)

, 1−
(

1−
( n

∏
i=1

(1− (1− ϑU
i ))
) 1

n
)]〉

,〈
1−

(
1−

( n

∏
i=1

(1− (1− ζi))
) 1

n
)

,
(

1−
( n

∏
i=1

(1− (ϑi))
) 1

n
)〉


=

1
n

n⊕
i=1

δi

(Case 4) For p = q = 1, Equation (7) reduces to cubic intuitionistic interrelated square mean which
is defined as

CIFBM1,1(δ1, δ2, . . . , δn)

=



〈[( 1
n(n− 1)

( n⊕
i,j=1
i 6=j

(1− ζL
i ζL

j )
) 1

n(n−1)
) 1

2
,
( 1

n(n− 1)

( n⊕
i,j=1
i 6=j

(1− ζU
i ζU

j )
) 1

n(n−1)
) 1

2
]
,

[
1−

(
1−

(
∏
i,j=1
i 6=j

(1− (1− ϑL
i )(1− ϑL

i ))
) 1

n(n−1)
) 1

2
,

1−
(

1−
(

∏
i,j=1
i 6=j

(1− (1− ϑU
i )(1− ϑU

i ))
) 1

n(n−1)
) 1

2
]〉

,

〈
1−

(
1−

(
∏
i,j=1
i 6=j

(1− (1− ζi)(1− ζi))
) 1

n(n−1)
) 1

2
,
( 1

n(n− 1)

( n⊕
i,j=1
i 6=j

(1− ϑiϑj)
) 1

n(n−1)
) 1

2
〉


3.3. Weighted BM Operator of CIFNs

Definition 17. For CIFNs δi (i = 1, 2, . . . , n) and weight vector κ = (κ1, κ2, . . . , κn)T such that each κi > 0

and
n
∑

i=1
κi = 1, a weighted CIFBM defined over family of CIFNs Ω as WCIFBM : Ωn → Ω and is given by

WCIFBMp,q
κ (δ1, δ2, . . . , δn) =

 1
n(n− 1)

 n⊕
i,j=1
i 6=j

(
(κiδi)

p ⊗
(
κjδj
)q
)


1
p+q

(24)

for a positive real number p ad q.

Theorem 4. The aggregated value by using WCIFBM operator for collection of CIFNs δi =
(
〈[ζL

i , ζU
i ],

[ϑL
i , ϑU

i ]〉, 〈ζi, ϑi〉
)
, i = (1, 2, . . . , n) is also CIFN and can be expressed as

WCIFBMp,q
κ (δ1, δ2, . . . , δn) =

(
〈[ζL, ζU ], [ϑL, ϑU ]〉, 〈ζ, ϑ〉

)
(25)
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where

ζL =

1−
n

∏
i,j=1
i 6=j

(
1−

(
1−

(
1− ζL

i

)κi
)p (

1−
(

1− ζL
j

)κj
)q
) 1

n(n−1)


1

p+q

ζU =

1−
n

∏
i,j=1
i 6=j

(
1−

(
1−

(
1− ζU

i

)κi
)p (

1−
(

1− ζU
j

)κj
)q
) 1

n(n−1)


1

p+q

ϑL = 1−

1−
n

∏
i,j=1
i 6=j

(
1−

(
1−

(
ϑL

i

)κi
)p (

1−
(

ϑL
j

)κj
)q
) 1

n(n−1)


1

p+q

ϑU = 1−

1−
n

∏
i,j=1
i 6=j

(
1−

(
1−

(
ϑU

i

)κi
)p (

1−
(

ϑU
j

)κj
)q
) 1

n(n−1)


1

p+q

ζ = 1−

1−
n

∏
i,j=1
i 6=j

(
1−

(
1− (ζi)

κi
)p
(

1−
(
ζ j
)κj
)q) 1

n(n−1)


1

p+q

ϑ =

1−
n

∏
i,j=1
i 6=j

(
1−

(
1− (1− ϑi)

κi
)p
(

1−
(
1− ϑj

)κj
)q) 1

n(n−1)


1

p+q

and κ = (κ1, κ2, . . . , κn)T be the associated weight vector such that each κi > 0 and
n
∑

i=1
κi = 1.

Proof. Proof is similar to that of Theorem 3, so we omit here.

4. Proposed Decision-Making Approach Based of Cubic Intuitionistic Fuzzy Bonferroni
Mean Operator

In this section, we shall utilize the proposed Bonferroni mean aggregation operator to solve
the multi-attribute decision making under the cubic intuitionistic fuzzy sets environment. For it,
the following assumptions or notations are used to present the MADM problems for evaluating these
with a cubic intuitionistic fuzzy set environment. Let A = {A1, A2, . . . , Am} be the set of m different
alternatives which have to be analyzed under the set of ‘n’ different criteria C = {C1, C2, . . . , Cn}.
Assume that these alternatives are evaluated by an expert which give their preferences related to
each alternative Ai(i = 1, 2, . . . , m) under the CIFSs environment, and these values can be considered
as CIFNs D = (δij)m×n where δij =

(
〈[ζL

ij, ζU
ij ], [ϑ

L
ij, ϑU

ij ]〉, 〈ζij, ϑij〉
)

represents the priority values

of alternative Ai given by decision maker such that [ζL
ij, ζU

ij ], [ϑ
L
ij, ϑU

ij ] ⊆ [0, 1], ζij, ϑij ∈ [0, 1] and

ζU
ij + ϑU

ij ≤ 1, ζij + ϑij ≤ 1 for i = 1, 2, . . . , m; j = 1, 2, . . . , n. Let κ = (κ1, κ2, . . . , κn)T be the weight

vector of the criteria such that κj > 0 and
n
∑

j=1
κj = 1. Then, the proposed method has been summarized

into the various steps which are described as follows to find the best alternative(s).
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Step 1: Collect the information rating of alternatives corresponding to criteria and summarize
in the form of CIFN δij =

(
〈[ζL

ij, ζU
ij ], [ϑ

L
ij, ϑU

ij ]〉, 〈ζij, ϑij〉
)

: i = 1, 2, . . . , m; j = 1, 2, . . . , n.
These rating values are expressed as a decision matrix D as

D =

C1 C2 . . . Cn


A1 δ11 δ12 . . . δ1n
A2 δ21 δ22 . . . δ2n
...

...
. . .

...
Am δm1 δm2 . . . δmn

Step 2: Normalize these collective information decision matrix by transforming the rating values of
cost type into benefit type, if any, by using the normalization formula:

rij =


(
〈[ζL

ij, ζU
ij ], [ϑ

L
ij, ϑU

ij ]〉, 〈ζij, ϑij〉
)

; for benefit type criterion(
〈[ϑL

ij, ϑU
ij ], [ζ

L
ij, ζU

ij ]〉, 〈ϑij, ζij〉
)

; for cost type criterion
(26)

and hence summarize it into the decision matrix R = (rij)m×n.
Step 3: Aggregate the different preference values rij, j = 1, 2, . . . , n of the alternatives Ai into the

collective one ri, i = 1, 2, . . . , m by using WCIFBM aggregation operator for a real positive
number p, q as

ri =
(〈
[ζL

ij, ζU
ij ], [ϑ

L
ij, ϑU

ij ]
〉
,
〈
[ζij, ϑij]

〉)
= WCIFBMp,q(ri1, ri2, . . . , rin)

Step 4: Compute the score value of the aggregated CIFN ri by using Equation (4) as

Sc(ri) =
ζL

i + ζU
i − ϑL

i − ϑU
i

2
+ (ϑi − ζi) (27)

Step 5: Rank the alternative Ai, i = 1, 2, . . . , m with the order of their score value Sc(ri).

5. Illustrative Example

For demonstrating the real-life application of the proposed approach, a numerical example has
been illustrated below:

5.1. Case Study

Inventory management is an issue of great concern these days. From an industrial viewpoint,
a company cannot excel in desired levels of manufacturing until its inventory is not managed properly.
Therefore, proper inventory management is the first step of the ladder of good production levels.
Any shortage of raw material in inventory may disrupt the whole manufacturing cycle which in-turn
can incur a huge loss to the company. Suppose, a Food company wants to keep track of various
inventory items. The company produces mainly four kinds of food (Ai)’s namely “Beverages”, “Edible
oils”, “Pickles” and “Bakery items”. For manufacturing these food items, the stock re-ordering
decisions for ingredients in inventory are to be taken on account of three factors Cj’s as “Cost
Price”, “Storage facilities” and “Staleness level”. The weight vector of these factors is taken as
κ = (0.20, 0.38, 0.42)T . The given alternatives are evaluated under these three factors and rate their
values in terms of CIFNs. In each CIFN, the IVIFNs shows the existing stock level in the inventory and
the IFNs represent the estimate of agreeness as well as disagreeness towards the present stock level for
a coming week. Since the company does not compromise with the quality of production, therefore
maximum priority is given to reduce staleness levels. Then, the aim is to identify the food-items whose
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ingredients’ stock is needed to be re-ordered frequently. For it, the following steps of the proposed
approach have been executed as follows.

Step 1: The preferences information related to each alternative are summarized in CIFNs and the
collection rating are given in the decision matrix as shown in Table 1.

Table 1. Rating values of the alternatives in terms of CIFNs.

Alternatives C1 C2 C3

A1
(
〈[0.50, 0.60], [0.10, 0.20]〉, 〈0.40, 0.20〉

) (
〈[0.20, 0.30], [0.40, 0.50]〉, 〈0.30, 0.20〉

) (
〈[0.40, 0.60], [0.20, 0.30]〉, 〈0.20, 0.35〉

)
A2

(
〈[0.20, 0.30], [0.40, 0.50]〉, 〈0.40, 0.60〉

) (
〈[0.15, 0.25], [0.30, 0.35]〉, 〈0.20, 0.30〉

) (
〈[0.20, 0.40], [0.10, 0.20]〉, 〈0.40, 0.50〉

)
A3

(
〈[0.50, 0.60], [0.20, 0.30]〉, 〈0.20, 0.40〉

) (
〈[0.40, 0.60], [0.25, 0.35]〉, 〈0.30, 0.40〉

) (
〈[0.50, 0.70], [0.10, 0.15]〉, 〈0.30, 0.50〉

)
A4

(
〈[0.30, 0.50], [0.10, 0.30]〉, 〈0.10, 0.30〉

) (
〈[0.40, 0.55], [0.15, 0.20]〉, 〈0.30, 0.40〉

) (
〈[0.40, 0.50], [0.20, 0.30]〉, 〈0.45, 0.35〉

)

Step 2: By using Equation (26), we obtain normalized CIFNs and summarized in Table 2.

Table 2. Normalized decision ratings.

Alternatives C1 C2 C3

A1 (〈[0.10, 0.20], [0.50, 0.60]〉, 〈0.20, 0.40〉)
(
〈[0.20, 0.30], [0.40, 0.50]〉, 〈0.30, 0.20〉

) (
〈[0.20, 0.30], [0.40, 0.60]〉, 〈0.35, 0.20〉

)
A2

(
〈[0.40, 0.50], [0.20, 0.30]〉, 〈0.60, 0.40〉

) (
〈[0.15, 0.25], [0.30, 0.35]〉, 〈0.20, 0.30〉

) (
〈[0.10, 0.20], [0.20, 0.40]〉, 〈0.50, 0.40〉

)
A3

(
〈[0.20, 0.30], [0.50, 0.60]〉, 〈0.40, 0.20〉

) (
〈[0.40, 0.60], [0.25, 0.35]〉, 〈0.30, 0.40〉

) (
〈[0.10, 0.15], [0.50, 0.70]〉, 〈0.50, 0.30〉

)
A4

(
〈[0.10, 0.30], [0.30, 0.50]〉, 〈0.30, 0.10〉

) (
〈[0.40, 0.55], [0.15, 0.20]〉, 〈0.30, 0.40〉

) (
〈[0.20, 0.30], [0.40, 0.50]〉, 〈0.35, 0.45〉

)

Step 3: For the sake of simplicity, we choose p = q = 1 and then by using Equation (25) to compute the
overall value of each alternative as r1 =

(
〈[0.0601, 0.0988], [0.7589, 0.8305]〉, 〈0.6681, 0.0892〉

)
,

r2 =
(
〈[0.0648, 0.1069], [0.6265, 0.7146]〉,〈0.7503, 0.1361〉

)
, r3 =

(
〈[0.0758, 0.1215], [0.7480,

0.8254]〉, 〈0.7436, 0.1132〉
)

and r4 =
(
〈[0.0844, 0.1463],[0.6609, 0.7358]〉, 〈0.6908, 0.1264〉

)
.

Step 4: By using Equation (4), the score value of each alternative is obtained as Sc(r1) = −1.2942,
Sc(r2) = −1.1989, Sc(r3) = −1.3185 and Sc(r4) = −1.1474.

Step 5: The ranking order of the alternatives based on the score values is found to be A4 � A2 �
A1 � A3. Thus, Bakery items’ stock needs maximum re-ordering.

The proposed aggregation operators are symmetric with respect to the parameters p and q.
However, in order to analyze the effect of these parameters on to the final ranking of the alternatives,
an investigation has been done by varying it simultaneously and their score values along with ranking
order are summarized in Table 3. From this table, we can find that by assigning different pairs of the
parameters p and q, the score values of the aggregated numbers are different; however, the ranking
orders of the alternatives remain same. This feature of the proposed operators is more crucial in real
decision-making problems. For instance, it has been seen that with the increase of the parameters,
the score values of the alternative increases, which gives us optimism view to the decision makers’.
Therefore, if the decision makers are optimistic then the higher values can be assigned to these
parameters during the aggregation process. On the other hand, if the decision makers are pessimistic
then lower values can be assigned to these parameters and the score values of the overall values are
decreasing. However, the best alternative is the same, which influenced that the results are objective
and cannot be changed by decision makes’ preference of pessimism and optimism. Thus, the ranking
results are reliable.

On the other hand, the variations of the complete score values of each alternative by varying
one of the parameter p are summarized in Figure 1. It can be analyzed from Figure 1, that the
maximum score possessing alternative remains A4 for all cases. However, in Figure 1a, by fixing
the parameter p = 1, and varying q from 0 to 10, it is observed that when q < 2.0307, alternative A3

shows least scores whereas for q > 2.0307, A1 possesses least score values. However, at q = 2.0307,
Sc(A1) = Sc(A3) = −1.2811 and thus, from the accuracy function, we get H(A1) = 1.6286 and
H(A3) = 1.6410. which implies that the ranking order of the alternatives at p = 1 and q = q′ = 2.0307
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is given as A4 � A2 � A3 � A1. Therefore, the worst alternative changes from A3 to A1. Similarly,
in Figure 1b, we observed that when q < 2.742, the worst alternative is A3 white it is A1 when
q > 2.742 corresponding to p = 2. Further, q = q′ = 2.742, the ranking order of the alternatives is
A4 � A2 � A3 � A1. The complete rating values for all the alternatives are summarized in Table 4.

Table 3. Effects on the ranking with the variation of the parameters p and q.

p q Sc(A1) Sc(A2) Sc(A3) Sc(A4) Ranking Order

p = 1

q = 1 −1.2942 −1.1989 −1.3185 −1.1474 A4 � A2 � A1 � A3
q = 2 −1.2815 −1.1726 −1.2825 −1.1047 A4 � A2 � A1 � A3
q = 3 −1.2674 −1.1386 −1.2335 −1.0582 A4 � A2 � A3 � A1
q = 4 −1.2552 −1.1065 −1.1881 −1.0172 A4 � A2 � A3 � A1

p = 2

q = 1 −1.2815 −1.1726 −1.2825 −1.1047 A4 � A2 � A1 � A3
q = 2 −1.2776 −1.1715 −1.2872 −1.0956 A4 � A2 � A1 � A3
q = 3 −1.2683 −1.1534 −1.2632 −1.0693 A4 � A2 � A3 � A1
q = 4 −1.2588 −1.1304 −1.2300 −1.0397 A4 � A2 � A3 � A1

p = 3

q = 1 −1.2674 −1.1386 −1.2335 −1.0582 A4 � A2 � A3 � A1
q = 2 −1.2683 −1.1534 −1.2632 −1.0693 A4 � A2 � A3 � A1
q = 3 −1.2628 −1.1487 −1.2627 −1.0594 A4 � A2 � A3 � A1
q = 4 −1.2559 −1.1357 −1.2456 −1.0417 A4 � A2 � A3 � A1

p = 4

q = 1 −1.2552 −1.1065 −1.1881 −1.0172 A4 � A2 � A3 � A1
q = 2 −1.2588 −1.1304 −1.2300 −1.0397 A4 � A2 � A3 � A1
q = 3 −1.2559 −1.1357 −1.2456 −1.0417 A4 � A2 � A3 � A1
q = 4 −1.2511 −1.1314 −1.2447 −1.0340 A4 � A2 � A3 � A1

Table 4. Ranking order of the alternatives with accuracy value at q′.

Figure Value of q′ Accuracy Value at q = q′
Ranking Order

When q < q′ When q = q′ When q > q′

1a 2.0307 H(A1) = 1.6286 , H(A3) = 1.6410 A4 � A2 � A1 � A3 A4 � A2 � A3 � A1 A4 � A2 � A3 � A1
1b 2.742 H(A1) = 1.6269 , H(A3) = 1.7417 A4 � A2 � A1 � A3 A4 � A2 � A3 � A1 A4 � A2 � A3 � A1
1c - - A4 � A2 � A3 � A1
1d - - A4 � A2 � A3 � A1
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Figure 1. Effect of the parameter q on to the score value by fixing the parameter p.

5.2. Graphical Analysis of Obtained Score Values Based on WCIFBM Operator

Figure 2 gives an outlook to influence of variable p and q values on the scores obtained by utilizing
WCIFBM operator. It clearly shows that the score function possess different values for different values
of parameters p and q ranging between 1 to 10. For an alternative A1, the score value lies between
−1.45 to −1.2 while from its corresponding rear-view plot, it is seen that the score value undergoes
surface change thrice. The first surface starts at p = q = 1 and ends at (the leftmost coordinate measure)
p = 10, q = 4.5 having score value −1.226. The second surface starts at p = 10 and q = 5.5 having
Sc = −1.353 whereas it ends at p = 10, q = 7.5 possessing Sc = −1.35. The third surface begins at
p = 10, q = 8.5 bearing Sc = −1.412 and ends at p = 10, q = 10 with Sc = −1.41. The alternatives
surface readings (Sr) with values of p and q are given in Table 5 along-with their corresponding score
values. In this table Sr(d)(B) denotes the beginning of dth surface and Sr(d)(E) denotes ending of dth
surface where “d” is an integer. It can be seen that A4 has score values ranging over two surfaces
whereas A2 has score values spread over 4 surfaces with only one value on the 4th surface i.e., (10, 10).
On the other hand, both alternatives A1 and A3 covers three surfaces with A3 having only one point
i.e., (10, 10) lying on 3rd surface.

p
q

-1.5
10

8.05

-1.35

10

sc
o
re

 v
a
lu

e
s

8.05

Alternative A
1

5.7

-1.2

5.73.35 3.35
1 1

(a)

qp

-1.5

11
3.353.35

-1.35

5.7

Alternative A
1
 (rear-view)

5.7

sc
o
re

 v
a
lu

e
s

8.058.05
1010

-1.2

(b)

Figure 2. Cont.



Entropy 2018, 20, 65 22 of 26

pq

-1.4
10

8.05

-1.1

10

sc
o
re

 v
a
lu

e
s

8.05

Alternative A
2

5.7

-0.8

5.73.35 3.35
1 1

(c)

p q

-1.4
1 1

3.35 3.35

-1.1

sc
o
re

 v
a
lu

e
s

Alternative A
2
 (rear-view)

5.7 5.7

-0.8

8.05 8.05
10 10

(d)

q
p

-1.6
10

8.05

-1.3

10

sc
o
re

 v
a
lu

e
s

8.05

Alternative A
3

5.7

-1

5.73.35 3.35
1 1

(e)

qp

-1.6
1 1

3.35 3.35

-1.3
sc

o
re

 v
a
lu

e
s

5.7

Alternative A
3
 (rear-view)

5.7
8.05 8.05

10 10

-1

(f)

q p

-1.2
10

8.05

-1

10

sc
o

re
 v

a
lu

e
s

8.05

Alternative A
4

5.7

-0.8

5.73.35 3.35
1 1

(g)

p
q

-1.2
1

13.35
3.35

-1

5.7

sc
o

re
 v

a
lu

e
s

Alternative A
4
 (rear-view)

5.7
8.05 8.05

10 10

-0.8

(h)

Figure 2. Score values of alternative for different values of p and q.

Table 5. Surface readings (Sr’s) for each alternative’s rear view.

A1 A2 A3 A4

(p, q) Sc(A1) (p, q) Sc(A2) (p, q) Sc(A3) (p, q) Sc(A4)

Sr(1)(B) (1, 1) −1.294 (1, 1) −1.199 (1, 1) −1.302 (1, 1) −1.147
Sr(1)(E) (10, 4.5) −1.226 (10, 4) −1.053 (10, 5.5) −1.166 (10, 7.5) −0.9665

Sr(2)(B) (10, 5.5) −1.353 (10, 5) −1.102 (10, 6.5) −1.227 (10, 8) −1.029
Sr(2)(E) (10, 7.5) −1.35 (10, 6.5) −1.115 (10, 8.5) −1.239 (10, 10) −1.027

Sr(3)(B) (10, 8.5) −1.412 (10, 7.5) −1.173 (10, 10) −1.458 – –
Sr(3)(E) (10, 10) −1.41 (10, 9) −1.174 (10, 10) −1.458 – –

Sr(4)(B) – – (10, 10) -1.323 – – – –
Sr(4)(E) – – (10, 10) -1.323 – – – –
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5.3. Validity Test

To demonstrate our approach’s viability in the dynamic working environment, following test
criteria, corroborated by Wang and Triantaphyllou [42], are accomplished

Test criterion 1: “If we replace the rating values of non-optimal alternative with worse alternative then
the best alternative should not change, provided the relative weighted criteria remains unchanged.”
Test criterion 2: “Method should possess transitive nature.”
Test criterion 3: “When a given problem is decomposed into smaller ones and the same MADM
method has been applied, then the combined ranking of the alternatives should be identical to the
ranking of un-decomposed one.”

5.3.1. Validity Check with Criterion 1

Since, ranking obtained from proposed approach is A4 � A2 � A1 � A3, then for testing the
analogous nature of our approach under test criterion 1, the non-optimal alternative A1 is replaced
with a worst alternative A′1 where rating value of A′1 under the three considered criteria are expressed
as
{(
〈[0.11, 0.15], [0.60, 0.70]〉, 〈0.30, 0.10〉

)
;
(
〈[0.22, 0.25], [0.45, 0.55]〉, 〈0.40, 0.10〉

)
and

(
〈[0.20, 0.28],

[0.45, 0.70]〉, 〈0.40, 0.15〉
)}

. Based on these observation, the proposed approach has been applied and
hence the final score values of the alternatives are obtained as Sc(r′1) = −1.4431, Sc(r2) = −1.1989,
Sc(r3) = −1.3185 and Sc(r4) = −1.1474. Therefore, the ranking order is A4 � A2 � A3 � A′1 in which
the best alternative remains same as that of the proposed approach. Thus, our approach is fetching out
consistent results with respect to the test criterion 1.

5.3.2. Validity Check with Criteria 2 and 3

For checking validity corresponding to criteria 2 and 3, the fragmented MADM subproblems
are taken as {A2, A3, A4}, {A1, A3, A2} and {A2, A4, A1}. Then, following the stated procedure of the
approach their ranking is obtained as: A4 � A2 � A3, A2 � A1 � A3 and A4 � A2 � A1, respectively.
The overall ranking by clubbing all of them is A4 � A2 � A1 � A3 which is same as that of the
results of the proposed original MADM problem, hence it beholds the transitive property. Therefore,
the proposed method is valid under the test criterion 2 and test criterion 3.

5.4. Comparative Studies

In order to justify the superiority of our proposed mean operator with respect to the existing
approaches namely, Bonferroni mean operator [33,36], averaging operator [11,24], geometric
operator [19,23], ranking method [13,15,16], an analysis has been conducted under the IVIFSs
environment by taking intuitionistic fuzzy judgements of CIFSs as zero and the weight vector is
κ = (0.20, 0.38, 0.42)T . The optimal score values and the ranking order of the alternatives are
summarized in Table 6. From this table, we observed that the best alternative coincides with the
proposed approach results which validate the stability of the approach with respect to state-of-art.
Compared with these existing approaches with general intuitionistic sets (IVIFSs or IFSs), the proposed
decision-making method under cubic intuitionistic fuzzy set environment contains much more
evaluation information on the alternatives by considering both the IVIFSs and IFSs simultaneously,
while the existing approaches contain either IFS or IVIFS information. Therefore, the approaches
under the IVIFSs or IFSs may lose some useful information, either IVIFNs or IFNs, of alternatives
which may affect the decision results. Furthermore, it is noted from the study that the computational
procedure of the proposed approach is different from the existing approaches under the different
environment, but the proposed result in this paper is more rational to reality in the decision process
due to the consideration of the consistent priority degree between the pairs of the arguments. In the
end, it is concluded that proposed operators consider the decision makers’ parameters p and q, which
provide, the more choices to the decision makers to avail their desirable alternatives depending
upon the different score values of the alternatives for the different parametric values of p and q.
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Also, the corresponding studies under the IVIFS or IFS environment can be considered as a special
case of the proposed operators. Finally, the existing decision-making methods cannot deal with the
decision-making problem with CIFS.

Table 6. Comparison analysis with some of the existing approaches.

Comparison with
Score Values

Ranking
A1 A2 A3 A4

Xu and Chen [33] −0.7152 −0.5847 −0.6880 −0.5830 A4 � A2 � A3 � A1
Shi and He [36] −0.2680 −0.0685 −0.2244 −0.0301 A4 � A2 � A3 � A1

Wang and Liu [11] −0.2593 −0.0635 −0.1552 0.0194 A4 � A2 � A3 � A1
Chen et al. [24] −0.2633 −0.0630 −0.1425 0.0096 A4 � A2 � A3 � A1
Chen et al. [23] −0.2608 −0.0613 −0.2154 −0.0315 A4 � A2 � A3 � A1

Sivaraman et al. [15] −0.2120 −0.0792 −0.1910 0.0214 A4 � A2 � A3 � A1
Wan et al. [19] −0.2610 −0.0705 −0.1835 −0.0100 A4 � A2 � A3 � A1
Dugenci [16] 0.7940 0.7316 0.7693 0.7106 A4 � A2 � A3 � A1

Garg [13] 0.1082 0.1101 0.1230 0.1649 A4 � A3 � A2 � A1

6. Conclusions

The cubic intuitionistic fuzzy set is an important tool for dealing with the uncertainty and
fuzziness by expressing the interval-valued intuitionistic fuzzy number and intuitionistic fuzzy value
simultaneously during the decision-making process. The aim of this manuscript is to present an
aggregation operator named as Bonferroni mean whose remarkable characteristic is to capture the
relationships between the individual arguments. For this, we have presented two BM operators i.e.,
the CIFBM operator and the WCIFBM operator, to aggregate the different preferences of experts
over the different attributes under CIFS environment. Also, various desirable characteristics of these
operators are studied. Finally, an approach for solving the decision-making problems has been
presented by taking different values of parameters p and q, which makes the proposed operators more
flexible and offers the various choices to the decision-maker for assessing the decisions. A comparative
study with some existing operators shows that the proposed operators and their corresponding
techniques provide a more stable, practical, and optimistic nature to the decision-maker during the
aggregation process. Thus, we conclude that the proposed operators can be applied as an alternative
way to solve the problem in real-life situations. In the future, we will extend the proposed approach to
some other uncertain environment [43–45].
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