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Abstract: The generator matrices of polar codes and Reed–Muller codes are submatrices of the
Kronecker product of a lower-triangular binary square matrix. For polar codes, the submatrix is
generated by selecting rows according to their Bhattacharyya parameter, which is related to the
error probability of sequential decoding. For Reed–Muller codes, the submatrix is generated by
selecting rows according to their Hamming weight. In this work, we investigate the properties of
the index sets selecting those rows, in the limit as the blocklength tends to infinity. We compute
the Lebesgue measure and the Hausdorff dimension of these sets. We furthermore show that these
sets are finely structured and self-similar in a well-defined sense, i.e., they have properties that are
common to fractals.
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1. Introduction

In his book on fractal geometry, Falconer characterizes a set F as a fractal if it has some of the
following properties [1] (p. xxviii):

• F has a fine structure, i.e., there is detail on arbitrarily small scales
• F does not admit a description in traditional geometrical language, neither locally nor globally; it

is irregular in some sense
• F has some form of self-similarity, at least approximate or statistical
• The fractal dimension of F exceeds its topological dimension
• F is defined in a simple, often recursive way

In this work, we investigate whether polar codes and Reed–Muller are fractal in above sense.
For a blocklength of 2n, these codes are based on the n-fold Kronecker product G(n) := F⊗n, where

F :=

[
1 0
1 1

]
(1)

i.e., on a simple, recursive operation. Based on this, it has long been suspected that Kronecker
product-based codes possess a fractal nature. For example, the authors of [2] observed that G(n),
when converted to a picture, resembles the Sierpinski triangle. In a personal communication [3], Abbe
expressed his suspicion that the set of “good” polarized channels is fractal. Nevertheless, to the best of
the author’s knowledge, a definite statement regarding this fractal nature has not been presented yet.

A rate-K/2n Kronecker product-based code is uniquely defined by a set F of K indices: Its
generator matrix is the submatrix of G(n) consisting of the rows indexed by F . Letting F index the K
rows of G(n) with the largest Hamming weight defines a Reed–Muller code. Alternatively, one can
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fix the order r of a Reed–Muller code, which defines F as the index set of all rows with a Hamming
weight at least as large as r (see Section 4). For polar codes, the rows of G(n) can be interpreted as a
communication channels. Then, a rate-K/2n polar code is defined by the set F indexing the K channels
with the lowest Bhattacharyya parameters [4] (the “good” channels, see Section 2).

Although the sets F are important for the construction of polar and Reed–Muller codes,
surprisingly little is known about their fractal properties. Recently, Renes, Sutter, and Hassani stated
conditions under which the good (bad) channels derived from one binary-input memoryless channel
are also good (bad) for another channel [5]. Moreover, the authors of [6,7] observed the self-similar
structure of F by showing that polar and Reed–Muller codes are decreasing monomial codes.

In this paper, we analyze the fractal properties of F for polar codes (Section 3) and Reed–Muller
codes (Section 5). In contrast to [6,7], we study the properties of F for infinite blocklengths, i.e., for
n→ ∞. Specifically, we compute the Hausdorff dimension of F , show that it is self-similar, and that it
has detail on arbitrarily small scales (e.g., F is symmetric and dense in some well-defined containing
set). Each of these results is relatively easy to obtain once appropriate definitions have been put in
place. Taken as a whole, however, they paint an interesting picture and make a convincing point for
the claim that polar and Reed–Muller codes are fractal.

The presented results will improve our understanding of polar and Reed–Muller codes, even
though we have to admit that their practical implication (e.g., in code construction) still eludes
us. Nevertheless, our results may apply in areas beyond channel coding: Arıkan’s polarization
technique was used to polarize Rényi information dimension [8] and to construct high-girth matrices [9].
Moreover, Nasser showed that a sufficient and necessary condition for a binary operation to be
polarizing is that it is uniformity preserving and that its inverse is strongly ergodic [10,11]. We are
convinced that fractality carries over to these applications as well and that an analysis similar to ours
can deepen understanding.

Since we consider the case n→ ∞, the set F indexes a subset of Ω := {0, 1}∞, the set of infinite
binary sequences. We let b := (b1b2 · · · ) ∈ Ω and abbreviate bn := (b1b2 · · · bn). Let b := (b1b2 · · · )
where bi := 1− bi. Let furthermore (Ω,A,P) be a probability space with A the Borel field generated
by the cylinder sets S(bn) := {w ∈ Ω: w1 = b1, . . . , wn = bn} and P a probability measure satisfying
P(S(bn)) = 1/2n. In the following, we represent every infinite binary sequence b ∈ Ω by a point in the
unit interval [0, 1]. The mapping between Ω and [0, 1] is given by

f (b) :=
∞

∑
n=1

bn

2n . (2)

Lemma 1 ([12] (Exercises 7–10, p. 80)). Let B[0,1] be the Borel σ-algebra on [0, 1] and let λ be the Lebesgue
measure. Let furthermore D := [0, 1] ∩ {p/2n: p ∈ Z, n ∈ N} denote the set of dyadic rationals in the unit
interval. Then, the function f : (Ω,A)→ ([0, 1],B[0,1]) in (2) satisfies the following properties:

1. f is measurable
2. f is bijective on Ω \ f−1(D)
3. for all I ∈ B[0,1], P( f−1(I)) = λ(I)

Example 1. Lemma 1 states that f is not injective in general. The reason is that dyadic rationals have a
non-unique binary expansion. For example, f maps both b = (01111111 · · · ) and b = (10000000 · · · ) to 0.5,
where we call the latter binary expansion terminating.
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2. Preliminaries for Polar Codes

Let W: {0, 1} → Y be a binary-input memoryless channel with finite output alphabet Y ,
(symmetric) capacity 0 ≤ I(W) ≤ 1, and with Bhattacharyya parameter

Z(W) := ∑
y∈Y

√
W(y|0)W(y|1). (3)

It can be shown using [13] (Proposition 1) that Z(W) = 0⇔ I(W) = 1 and Z(W) = 1⇔ I(W) = 0.
We say that the channel W is symmetric if there exists a permutation π: Y → Y such that π−1 = π and,
for every y ∈ Y , W(y|0) = W(π(y)|1).

Arıkan’s polarization technique [13] combines and splits two channel uses of W into one use of a
“worse” channel

W0
2 (y

2
1|u1) :=

1
2 ∑

u2

W(y1|u1 ⊕ u2)W(y2|u2) (4)

and one use of a “better” channel

W1
2 (y

2
1, u1|u2) :=

1
2

W(y1|u1 ⊕ u2)W(y2|u2) (5)

where u1, u2 ∈ {0, 1} and y1, y2 ∈ Y . The combining operation encodes two input bits by F in (1);
transmitting them via two channel uses of W creates a vector channel. This vector channel can then
be split into the two virtual binary-input memoryless channels indicated in (4) and (5). The better
(worse) channel obtained by polarization has a larger (smaller) capacity than the original channel W,
i.e., I(W0

2 ) ≤ I(W) ≤ I(W1
2 )—the inequalities are strict if 0 < I(W) < 1. The sum capacity equals two

times the capacity of the original channel, i.e., I(W0
2 ) + I(W1

2 ) = 2I(W) [13] (Proposition 4). Similarly,
polarization has an effect on the Bhattacharyya parameter:

Lemma 2 (Bounds on the Bhattacharyya Parameter).

Z(W1
2 ) = g1(Z(W)) := Z2(W) ≤ Z(W) (6)

Z(W) ≤ Z(W)
√

2− Z2(W) =: h0(Z(W)) ≤ Z(W0
2 )

(a)
≤ g0(Z(W)) := 2Z(W)− Z2(W) (7)

with equality in (a) if W is a binary erasure channel (BEC).

Proof. The equality and inequality in (6) follow from [13] (Proposition 7) and the fact that Z(W) ≤ 1,
respectively. The inequalities in (7) follow from the fact that Z(W) ≤ 1, from [14] (Lemma 20), and
from [13] (Proposition 7). The last inequality becomes an equality if W is a BEC [13] (Proposition 7).

For larger blocklengths 2n, n > 1, we apply the polarization procedure recursively and obtain, for
bn ∈ {0, 1}n, (

Wbn

2n , Wbn

2n

)
→
(

Wbn0
2n+1 , Wbn1

2n+1

)
(8)

where bn0 and bn1 denote the sequences of zeros and ones obtained by appending 0 and 1 to bn,
respectively. Note that the functions g1, g0, and h0 from Lemma 2 are non-negative and non-decreasing
and map the unit interval onto itself. Hence, the inequalities in (7) are preserved under composition:

Z(Wbn

2n ) ≤ pbn(Z(W)) := gbn(gbn−1(· · · gb1(Z(W)) · · · )) (9)

Z(Wbn

2n ) ≥ qbn(Z(W)) := hbn(hbn−1(· · · hb1(Z(W)) · · · )) (10)

where h1 ≡ g1.



Entropy 2018, 20, 70 4 of 18

Applying this recursive polarization infinitely often leads to a situation in which almost all
channels are either perfect or useless, i.e., either I(Wb

∞) = 1 or I(Wb
∞) = 0 for b ∈ {0, 1}∞. This is the

assertion of Arıkan’s polarization theorem:

Proposition 1 ([13] (Proposition 10)). With probability one, the limit RV I∞(b) := I(Wb
∞) takes values in

the set {0, 1}: P(I∞ = 1) = I(W) and P(I∞ = 0) = 1− I(W).

If we stop the polarization procedure at a finite blocklength 2n for n large enough, then still most
of the resulting 2n channels are either almost perfect or almost useless (i.e., the channel capacities
are close to one or to zero). The idea of polar coding is to transmit data only on those channels
that are almost perfect. The generator matrix of a blocklength-2n polar code is thus the submatrix
of G(n) consisting of rows indexed by F , where F contains the indices corresponding to the K
virtual channels with the largest capacities. Determining this set F is inherently difficult, since
(whenever W is not a BEC) the cardinality of the output alphabet increases exponentially in 2n [15]
(Chapter 3.3), [16] (p. 36). Tal and Vardy proposed an approximate construction method based on
reducing the output alphabet and showing that the resulting channels are either upgraded or degraded
w.r.t. the channel of interest [17] (see also Korada’s PhD thesis [16] (Definition 1.7 & Lemma 1.8)).
These upgrading/degrading properties are important tools in our proofs.

Definition 1 (Channel Upgrading and Degrading). A channel W−: {0, 1} → Z is degraded w.r.t. the
channel W (short: W− 4 W) if there exists a channel Q: Y → Z such that

W−(z|u) = ∑
y∈Y

W(y|u)Q(z|y). (11)

A channel W+: {0, 1} → Z is upgraded w.r.t. the channel W (short: W+ < W) if there exists a channel
P: Z → Y such that

W(y|u) = ∑
z∈Z

W+(z|u)P(y|z). (12)

Moreover, W+ < W if and only if W 4 W+.

Upgraded (degraded) channels remains upgraded (degraded) during polarization:

Lemma 3 ([16] (Lemma 4.7) & [17] (Lemmas 3 & 5)). Suppose that W− 4 W 4 W+. Then,

I(W−) ≤ I(W) ≤ I(W+)

Z(W−) ≥ Z(W) ≥ Z(W+)

(W−)1
2 4 W1

2 4 (W+)1
2

(W−)0
2 4 W0

2 4 (W+)0
2.

(13)

Lemma 4 ([15] (p. 9) & [6] (Lemma 3)). W 4 W1
2 . If W is symmetric, then W0

2 4 W 4 W1
2 .

Proof. By choosing

P(y|y2
1, u1) =

{
1, if y = y2

0, else.
(14)

one can show that W 4 W1
2 . To show that also W0

2 4 W for symmetric channels, take [6] (Lemma 3)

Q(y2
1|y) =


1
2 W(y2|0) if y1 = y
1
2 W(y2|1) if y1 = π(y)

0 else.

(15)
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3. Fractal Properties of the Sets of Good and Bad Channels

We next investigate the behavior of the set F as we let the blocklength tend to infinity, i.e., as
n→ ∞. This set indexes all sequences b for which we obtain I(Wb

∞) = 1. With the help of (2), we map
these sequences to a subset of the unit interval, which we will call the set of good channels.

Definition 2 (The Good and the Bad Channels). Let G denote the set of good channels, i.e.,

x ∈ G ⇔ ∃b ∈ f−1(x): I(Wb
∞) = 1. (16)

Let B denote the set of bad channels, i.e.,

x ∈ B ⇔ ∃b ∈ f−1(x): I(Wb
∞) = 0. (17)

If I(W) = 0, then all polarized channels are useless and we have B = [0, 1]. Similarly, if I(W) = 1,
then all polarized channels are perfect and we have G = [0, 1]. We hence assume throughout this
section that the channel W is nontrivial, i.e., that 0 < I(W) < 1.

Proposition 2 (Denseness). G ∩ B = D, i.e., the good and bad channels are dense in the unit interval.
Moreover, G \D and B \D are dense in [0, 1].

Proof. See Appendix A.

It is not really surprising that G and B are not disjoint; this is a direct consequence of the fact
that f is not injective. It is not obvious, however, that the intersection exhausts the set on which f is
non-injective. A consequence of this proposition is that there is no interval that contains only good
channels. This has implications for code construction techniques. Indeed, the authors of [18,19] suggest
that, for a polar code of a given blocklength, one may stop polarizing channels at shorter blocklengths
and use copies of these channels rather than their polarization. For example, they suggest to use the
channels (Wbn

2n , Wbn

2n ) rather than the channels (Wbn0
2n+1 , Wbn1

2n+1) if I(Wbn

2n ) is sufficiently large. Such a
procedure can be justified if further polarizing Wbn

2n to the desired blocklength will lead to including
all channels polarized from Wbn

2n in the code. Such a justification can never appear for polar codes
with unbounded blocklength: Stopping polarizing at a given blocklength 2n for a given polarization
sequence and using copies of the resulting channel Wbn

2n is equivalent to including a dyadic interval in
the index set. This dyadic interval contains, by Proposition 2, bad channels, which shows that this
choice is suboptimal.

Proposition 3 (Symmetry). There exists a function ϑ, defined for almost all values in [0, 1], that is independent
of W and satisfies 0 ≤ ϑ(x) ≤ 1 and ϑ(1− x) = 1− ϑ(x). Let x ∈ [0, 1] be such that ϑ(x) is defined. Then,
ϑ(x) > Z(W) implies x ∈ G. If W is a BEC, then ϑ(x) < Z(W) implies x ∈ B.

Proof. See Appendix B.

Proposition 3 has two implications. The first implication concerns the alignment of the sets G
and G ′ for two different channels W and W ′. Specifically, it is connected to the question whether
Z(W) ≥ Z(W ′) implies G ⊆ G ′. In general, the answer is negative [5]. Indeed, it may happen that for
some b ∈ Ω, we have I(Wb

∞) = 1 despite Z(W) > ϑ( f (b)), i.e., that the polarized channel turns out
to be good even though the sufficient condition from Proposition 3 is not fulfilled. Such a situation
cannot occur for BECs, as Proposition 3 shows. Hence, the set of good channels for a BEC is also good
for any binary-input memoryless channel with a smaller Bhattacharyya parameter [20].

The second implication is that, at least for BECs, the sets G and B are symmetric. Indeed, if
ϑ(x) 6= Z(W), then x ∈ G implies 1− x ∈ B. This symmetry is visible in the polar fractal that we
display in Figure 1.
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Figure 1. The polar fractal. The center plot shows the thresholds ϑ(x) for a finite set of values x ∈ [0, 1];
the bottom and the top plots show thresholds for equally many values in the sets [0, 0.5] and [0.5, 1],
respectively. One can observe how the thresholds are ordered, i.e., thresholds in the top plot exceed
those in the center plot, which exceed those in the bottom plot. For a binary erasure channel (BEC) W,
the indicator function of G is obtained by setting each value in the plot to one (zero) if the Bhattacharyya
parameter Z(W) is smaller (larger) than the threshold. Note that this plot illustrates the behavior of G in
the limit n→ ∞. Note further that the figure illustrates the symmetry of ϑ(x) claimed in Proposition 3.
The MATLAB code to generate these thresholds is available as Supplementary Material.

It is possible to define ϑ for x ∈ D. We know from Proposition 2 that dyadic rationals are both
good and bad, hence setting ϑ(x) = 1 for every x ∈ D leads to D ⊆ G. (The fact that also D ⊆ B
is not captured by nor in conflict with this setting.) The question whether the function ϑ can be
defined for x ∈ Q \D is more interesting. In this case, the binary expansion is unique and recurring,
i.e., there is a length-k sequence ak ∈ {0, 1}k such that f (bnakakak · · · ) = x for some bn ∈ {0, 1}n.
It is straightforward to show that for every non-trivial sequence ak (i.e., ak contains zeros and ones),
pak is from [0, 1] to [0, 1], non-negative, and non-decreasing with vanishing derivatives at 0 and 1.
Since this ensures that pak (z) < z for z close to zero and pak (z) > z for z close to one, the operation
zi+1 = pak (zi) constitutes an iterated function system with attracting fixed points at z = 0 and z = 1.
Note further that, since pak corresponds to the recurring part of the binary expansion of x, Z(Wbnakak ···

∞ )

will be bounded from above by the value to which this iterated function system converges after being
initialized with Z(Wbn

2n ). To show that Proposition 3 holds for x ∈ Q \D requires showing that pak

intersects the identity function only once on (0, 1), i.e., that there is no attracting fixed point on this
open interval. We leave this problem for future investigation.

Example 2. Let x = 2/3, hence f−1(x) = 101010101 · · · . We determine the fixed points of the iterated
function system corresponding to one period of the recurring sequence, i.e, the fixed points of p10(z) = 2z2 − z4.
These are given by the roots of p10(z)− z, which are z = 0, z = 1, and z = (±

√
5− 1)/2. One of these
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latter nontrivial roots lies outside [0, 1] and is hence irrelevant. The remaining root determines the threshold,
ϑ(2/3) = (

√
5− 1)/2.

Now suppose that W is a BEC with Bhattacharyya parameter Z(W) = ϑ(2/3). Since ϑ(2/3) is a fixed

point, we get Z(W f−1(2/3)
∞ ) = Z(W) /∈ {0, 1}. This illustrates that Proposition 1 holds only almost surely.

Proposition 4 (Lebesgue Measure & Hausdorff Dimension). G is a Borel set and has Lebesgue measure
λ(G) = I(W). B is a Borel set and has Lebesgue measure λ(B) = 1− I(W). Therefore, the Hausdorff
dimensions of G and B satisfy d(G) = d(B) = 1.

Proof. See Appendix C.

Loosely speaking, the Lebesgue measure of G is the asymptotic equivalent of the rate of the
“infinite-blocklength” polar code for the channel W. The fact that λ(G) = I(W) states that the rate
approaches the symmetric capacity of W. A positive Lebesgue measure and a Hausdorff dimension
equal to one are not indicators of fractality.

The last fractal property we consider is self-similarity. As Falconer notes [1] (p. xxviii),
self-similarity often occurs only approximately. What we show in the following proposition is that the
set G is quasi self-similar. Along the same lines, the quasi self-similarity of B can be shown.

Proposition 5 (Self-Similarity). Let Gn(k) := G ∩ [(k − 1)2−n, k2−n] for k = 1, . . . , 2n. G = G0(1) is
quasi self-similar in the sense that, for all n and all k, Gn(k) = Gn+1(2k− 1) ∪ Gn+1(2k) is quasi self-similar
to its right half:

Gn(k) ⊆ 2Gn+1(2k)− k2−n (18)

If W is symmetric, Gn(k) is quasi self-similar:

2Gn+1(2k− 1)− (k− 1)2−n ⊆ Gn(k) ⊆ 2Gn+1(2k)− k2−n (19)

Proof. See Appendix D.

In other words, at least for a symmetric channel, G is composed of two similar copies of itself (see
Figure 1). The self-similarity is closely related to the fact that polar codes are decreasing monomial
codes [6] (Theorem 1).

Example 3. We want to determine whether 1/3 ∈ G for a given BEC W. This question translates the questions
whether 1/6 ∈ G1(1) and whether 2/3 ∈ G1(2). Along the lines of Example 2, we obtain ϑ(1/6) ≈ 0.214,
ϑ(1/3) ≈ 0.382, and ϑ(2/3) ≈ 0.618, i.e., ϑ(1/6) < ϑ(1/3) < ϑ(2/3). Since W is a BEC, we can connect
this with Proposition 3 and thus obtain the inclusion indicated in Proposition 5.

4. Preliminaries for Reed–Muller Codes

An order-r, length-2n Reed–Muller code is defined by having a generator matrix GRM(r, n)
composed of all length-2n sequences with a Hamming weight larger than 2n−r. For example, we
have GRM(n, n) = G(n), while GRM(0, n) is a single row vector containing only ones (length-2n

repetition code). To make this more precise, let w(bn) = ∑n
i=1 bi be the Hamming weight of bn ∈ {0, 1}n

and let si(n) be the i-th row of G(n). Then, the generator matrix GRM(r, n) of an order-r, length-2n

Reed–Muller code consists of the rows of G(n) indexed by [4]

F = {i ∈ {1, . . . , 2n}: w(si(n)) ≥ 2n−r}. (20)
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To analyze the effect of doubling the block length, note that

G(n + 1) :=

[
G(n) 0
G(n) G(n)

]
. (21)

Assume that we indicate the rows of G(n) by a sequence of binary numbers, i.e., let the i-th
row be indexed by hn(bn) := 2n ∑n

l=1 bl2−l . Furthermore, let 0bn and 1bn denote the sequences of
zeros and ones obtained by prepending 0 and 1 to bn, respectively. Clearly, hn+1(0bn) = hn(bn) and
hn+1(1bn) = hn(bn) + 2n. Combining this with (21) yields

w(shn+1(0bn)(n + 1)) = w(shn(bn)(n))

w(shn+1(1bn)(n + 1)) = 2w(shn(bn)(n)).

Defining G(0) := 1, we thus get

w(shn(bn)(n)) = 2w(bn) (22)

and
F = hn

(
{bn ∈ {0, 1}n: 2w(bn) ≥ 2n−r}

)
. (23)

In Section 5, we will analyze the properties of F in the limit as n tends to infinity. An important
ingredient in our proofs is the concept of normal numbers.

Definition 3 (Normal Numbers). A number x ∈ [0, 1] is called simply normal to base 2 (x ∈ N ) if and
only if

∃b ∈ f−1(x): lim
n→∞

w(bn)

n
=

1
2

. (24)

In general, a number is simply normal to base M if the fraction of its digits used in its M-ary
expansion is 1/M. A number is called normal if this property not only holds for digits, but also for
subsequences: a number is normal in base M if, for each k ≥ 1, the fraction of each length-k sequences
used in its M-ary expansion is 1/Mk. It immediately follows that a normal number is simply normal.
The converse is in general not true:

Example 4. Let x = 1/3, hence b = 010101 · · · . x is simply normal to base 2, but not normal (since
the sequences 00 and 11 never occur). Let x = 1/7, hence b = 001001001 · · · . x is neither normal nor
simply normal. Let x ∈ D, hence b is either terminating (limn→∞ w(bn)/n = 0) or non-terminating
(limn→∞ w(bn)/n = 1). Dyadic rationals are not simply normal.

Lemma 5 (Borel’s Law of Large Numbers, cf. [21] (Corollary 8.1, p. 70)). Almost all numbers in [0, 1] are
simply normal, i.e.,

λ(N ) = 1. (25)

Despite this result, there are uncountably many numbers in the unit interval which are not normal.
Moreover, the set of numbers that are not normal is superfractal, i.e., it has a Hausdorff dimension equal
to one although it has zero Lebesgue measure [22].

5. Fractal Properties of the Set of Heavy Codewords

If we let n tend to infinity, the definition of F in (23) becomes problematic. Rather than looking
at order-r, length-2n Reed–Muller codes, we investigate order-(1− ρ)n, length-2n codes, where we
assume that ρn is integer. In other words, we assume that the threshold for the Hamming weight
increases linearly with the blocklength. This gives rise to the definition of heavy codewords:
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Definition 4 (The Heavy Codewords). LetH(ρ) denote the set of ρ-heavy codewords, i.e.,

x ∈ H(ρ)⇔ ∃b ∈ f−1(x): lim inf
n→∞

2w(bn)

2nρ ≥ 1. (26)

Loosely speaking, the set of heavy codewords corresponds to those rows of G(n) that
asymptotically have a fractional Hamming weight larger than a given threshold.

Example 5. H(1) = {1}. This follows from the fact that 1 is the only number in the unit interval with a
binary expansion consisting only of ones. H(0) = [0, 1]. This follows from the fact that w(bn) ≥ 0.

Proposition 6 (Denseness). For all ρ ∈ [0, 1), D ⊂ H(ρ). Moreover, for ρ ∈ (0, 1), H(ρ) \ D and its
complement are dense in [0, 1].

Similarly as for polar codes, also Reed–Muller codes are such that no interval is contained in
either H(ρ) or its complement (unless in the trivial cases H(0) and H(1)). This is again in contrast
with the intuition one obtains for Reed–Muller code with finite blocklength. Suppose we fix n to be
even and set r = n/2, i.e., we require that at least one half of the bits in bn are one. The matrix G(n)
resembles a Sierpinski triangle, as depicted in [2] (Figure 2). In our notation, the set F indexes none of
the first 2n/2 − 1 rows of G(n), since they cannot have sufficient Hamming weight. Consequently, the
transition as n → ∞ creates complications that are not present for finite n, and one needs to depart
from intuition based on these finite-blocklength considerations.

Proof. See Appendix E.

Proposition 7 (Lebesgue Measure & Hausdorff Dimension). H(ρ) is Lebesgue measurable and has
Lebesgue measure

λ(H(ρ)) =

{
1, if ρ < 1/2

0, if ρ ≥ 1/2.
(27)

The Hausdorff dimension satisfies

d(H(ρ))

{
= 1, if ρ ≤ 1/2

≥ h2(ρ), if ρ > 1/2
(28)

where h2(x) := −x log2 x− (1− x) log2(1− x).

Proof. See Appendix F.

Loosely speaking, the Lebesgue measure ofH(ρ) is the asymptotic equivalent of the rate of the
fractional order-ρ Reed–Muller code. As we showed in Proposition 4, the Lebesgue measure of G
is equal to the symmetric capacity of W. In contrast, the set H(ρ) does not depend on W. Rather,
Proposition 7 suggests that the order parameter ρ induces a phase transition for the rate of Reed–Muller
codes: If ρ < 1/2, the “infinite-blocklength” Reed–Muller code consists of almost all (in the sense
of Lebesgue measure) possible binary sequences. In contrast, if ρ ≥ 1/2, the “infinite-blocklength”
Reed–Muller code consists of almost no codewords (again, in the sense of Lebesgue measure).

Let us briefly consider the case ρ = 1/2. For this case, Proposition 7 states that H(ρ) is a
Lebesgue null set that has a Hausdorff dimension equal to 1. Thus, the set H(1/2) is a superfractal.
Unfortunately, we were not able to give an exact expression for the Hausdorff dimension ofH(ρ) for
ρ > 1/2. While the set of all non-normal numbers is superfractal, we are not sure if this holds also for
the specific proper subsetH(ρ).

The sets G and B exhibit self-similarity, i.e., detailed structure on every scale (cf. Figure 1). We next
show that alsoH(ρ) is self-similar. At least forH(0) andH(1) (cf. Example 5) this is as trivial as the



Entropy 2018, 20, 70 10 of 18

self-similarity of a point or a line. For ρ ∈ (0, 1) this self-similarity is more interesting, and related to
the fact that Reed–Muller codes are decreasing monomial codes [6] (Proposition 2).

Proposition 8 (Self-Similarity). Let Hn(ρ, k) := H(ρ) ∩ [(k − 1)2−n, k2−n] for k = 1, . . . , 2n.
H(ρ) = H0(ρ, 1) is quasi self-similar in the sense that, for all n and all k, Hn(ρ, k) = Hn+1(ρ, 2k −
1) ∪Hn+1(ρ, 2k) is quasi self-similar:

2Hn+1(ρ, 2k− 1)− (k− 1)2−n ⊆ Hn(ρ, k) ⊆ 2Hn+1(ρ, 2k)− k2−n. (29)

Proof. See Appendix G.

6. Discussion and Outlook

That Kronecker product-based codes possess fractal properties has long been suspected.
The present manuscript contains several results that back this suspicion with solid mathematical
analyses. Specifically, we assumed that the blocklength tends to infinity and investigated the properties
of the set G of virtual channels that are perfect and the setH(ρ) of codewords that have a fractional
Hamming weight no less than ρ. Since both polar codes and Reed–Muller codes are obtained by a
simple, recursive procedure, it remains to investigate whether the sets G andH(ρ) satisfy any of the
following properties [1] (p. xxviii):

• The set has a fine structure, i.e., there is detail on arbitrarily small scales;
• It does not admit a description in traditional geometrical language, neither locally nor globally; it

is irregular in some sense;
• It has some form of self-similarity, at least approximate or statistical;
• The fractal dimension of the set exceeds its topological dimension.

Indeed, the sets G andH(ρ) possess a fine structure in the sense that they are dense in the unit
interval, but that also their complements are dense in the unit interval (cf. Propositions 2 and 6).
Therefore, at an arbitrarily small scale, the sets G andH(ρ) admit no simple description in geometrical
language. Both of these sets are self-similar in a specific sense, as we outlined in Propositions 5 and 8.
Finally, while G has a fractal dimension of one (cf. Proposition 4), the setH(ρ) has, for a certain range
of ρ, a positive (fractional?) Hausdorff dimension despite being a Lebesgue null set. This result, which
we proved in Proposition 7, is one of the defining properties of a fractal set.

One reviewer pointed out that our definition of H(ρ) can be complemented by a different one.
Specifically, whileH(ρ) indexes the codewords with a fractional Hamming weight not smaller than
ρ, one could define a setH′(R) indexing the codewords of a Reed–Muller code with rate R. In other
words, whileH(ρ) is parameterized via the fractional order of the code,H′(R) is parameterized via its
rate. We expect that the Lebesgue measure of the (adequately defined) setH′(R) should be R and that,
thus, its Hausdorff dimension equals one. An appropriate definition ofH′(R) is tied to the set F of a
rate-R, length-2n Reed–Muller code (such as is our Definition 4). Since finding such a definition has so
far eluded us, we postpone this investigation to future work.

Another obvious extension of our work are non-binary polar and Reed–Muller codes. For example,
consider an `× ` matrix with entries from {0, . . . , q− 1}, where q is prime. One can show that this
matrix is polarizing as long as it is not upper-triangular [15] (Theorem 5.2). We believe that our analysis
can be replicated by considering the `-ary expansion of real numbers in [0, 1]. Along the same lines, it
would be interesting to examine the properties of q-ary Reed–Muller codes, e.g., [23,24].

Supplementary Materials: Supplementary material are available online at www.mdpi.com/1099-4300/20/1/70/s1.
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Appendix A. Proof of Proposition 2

That G ∩ B ⊆ D follows from the fact that only dyadic rationals have a non-unique binary
expansion. In particular, the preimage of x ∈ D consists of two elements, namely

b′ := (bn0000000 · · · ) (A1)

and
b′′ := (bn−1bn1111111 · · · ). (A2)

By the properties of polarization and with the assumption that 0 < I(W) < 1, we have that

0 < I(Wbn−1bn
2n ), I(Wbn

2n ) < 1, and hence also 0 < Z(Wbn−1bn
2n ), Z(Wbn

2n ) < 1. Moreover, it follows from
Lemma 2 and (9) that

Z(Wb′′
∞ ) ≤ lim

`→∞

(
Z(Wbn−1bn

2n )
)2`

= 0 (A3)

from which we obtain I(Wb′′
∞ ) = 1 and x ∈ G. Similarly, with Lemma 2 and (10) we obtain

Z(Wb′
∞) ≥ lim

`→∞

√
1−

(
1− Z2(Wbn

2n )
)2`

= 1. (A4)

Hence, I(Wb′
∞) = 0 and x ∈ B. Since this holds for every x ∈ D, we have that G ∩ B = D.

The proof that G \ D and B \ D are dense in [0, 1] follows along similar lines. Specifically, we
show that between every dyadic rational we can find rational numbers x, x′ ∈ Q \D such that x ∈ G
and x′ ∈ B. To this end, fix x1 = p/2n and x2 = (p + 1)/2n. Let further bn be the terminating binary
expansion of x1, i.e., f (bn000 · · · ) = x1.

Let ak be such that a1 = · · · = ak−1 = 1 and ak = 0. We can bound the polynomial pak from above:

pak (z) = 2z2k−1 − z2k ≤ 2z2k−1

The bound crosses z at z = 0 and at z∗ = 2−1/(2k−1−1), where z∗ can be made arbitrarily close to one
for k sufficiently large. Now let zi+1 = pak (zi), where z0 = Z(Wbn

2n ). It follows that Z(Wbnakakak ···
∞ ) ≤

limi→∞ zi. However, zi → 0 if z0 < z∗, hence if k is sufficiently large such that this holds, then
Z(Wbnakakak ···

∞ ) ≤ 0. Thus, I(Wbnakakak ···
∞ ) = 1 and x = f (bnakakak · · · ) ∈ G.

Recall that ak is such that a1 = · · · = ak−1 = 0 and ak = 1. We next bound the polynomial qak

from below:
qak (z) = 1− (1− z2)2k−1 ≥ 1− e−2k−1z2

(A5)

which intersects z at z = 0, at some root z∗ that can be made arbitrarily close to zero for k sufficiently
large, and at some root z† < 1 that tends to one if k becomes large. Note further that the slope of qak

equals 2kz(1− z2)2k−1−1. By setting k sufficiently large, one can guarantee that this slope is smaller than
one on the interval [z†, 1]. Now let zi+1 = qak (zi), where z0 = Z(Wbn

2n ). Suppose further that we have
chosen k sufficiently large such that z0 > z∗ and that the slope of qak is smaller than one on the interval
[z†, 1]. We know that qak (z) > z on the interval (z∗, z†), since this is the case for the lower bound
in (A5). However, since the slope of qak is smaller than one on the interval [z†, 1] and since qak intersects
z at one, there can be no further intersection between qak and z on the interval [z†, 1]. Hence, qak (z) > z

on the interval (z∗, 1], and zi → 1 since z0 > z∗. Since furthermore Z(Wbnakakak ···
∞ ) ≥ limi→∞ zi, we

obtain Z(Wbnakakak ···
∞ ) ≥ 1. Thus, I(Wbnakakak ···

∞ ) = 0 and x′ = f (bnakakak · · · ) ∈ B.
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Since both f (bnakakak · · · ) and f (bnakakak · · · ) are in the interval (x1, x2), this shows that between
every two dyadic rationals, there are numbers x and x′ that are good and bad. This proves that G \D
and B \D are dense in [0, 1].

Appendix B. Proof of Proposition 3

Lemma A1 ([25] (Lemma 11)). For P-almost every realization b ∈ Ω, there exists a point θ(b) ∈ [0, 1]
such that

lim
n→∞

pbn(z) =

{
0, z ∈ [0, θ(b))

1, z ∈ (θ(b), 1].
(A6)

Furthermore, the thus constructed RV θ is uniformly distributed on [0, 1].

It can be easily verified that gi(1− z) = 1− g1−i(z) for i = 0, 1. Hence,

pbn(z) = gbn(gbn−1(· · · gb2(gb1(z)) · · · ))
= gbn(gbn−1(· · · gb2(1− gb1

(1− z)) · · · ))

= gbn(gbn−1(· · · 1− gb2
(gb1

(1− z)) · · · ))

= 1− gbn
(gbn−1

(· · · gb2
(gb1

(1− z)) · · · ))

= 1− pb
n(1− z).

Now suppose that b /∈ f−1(D) and that θ(b) is defined. If 0 ≤ z < θ(b), then 1− θ(b) < 1− z ≤ 1.
Since, by Lemma A1, 0 ≤ z < θ(b) implies pbn(z) → 0 and pb

n(1− z) → 1, we get θ(b) = 1− θ(b).
Now set ϑ( f (b)) := θ(b). Since b + b = 11111 · · · , it follows from the linearity of f that f (b) + f (b) =
f (b + b) = 1, i.e., if x /∈ D has binary expansion b, then 1− x has binary expansion b. Therefore, for all
x /∈ D for which θ( f−1(x)) is defined, we have ϑ(1− x) = 1− ϑ(x).

Recall that, by Lemma 2, we have

Z(Wbn

2n ) ≤ pbn(Z(W)) = gbn(gbn−1(· · · gb1(Z(W)) · · · )). (A7)

If Z(W) < ϑ(x), then by Lemma A1, Z(Wb
∞) ≤ limn→∞ pbn(Z(W)) = 0 and x ∈ G. If W

is a BEC, then (A7) holds with equality. Thus, by Lemma A1, if Z(W) > ϑ(x), then Z(Wb
∞) =

limn→∞ pbn(Z(W)) = 1 and x ∈ B.

Appendix C. Proof of Proposition 4

For the proof we utilize properties of f derived in the proof of [26] (Theorem 2.1, p. 7). Specifically,
let E ⊂ Ω be the set of all binary sequences with infinitely many zeros, i.e., E contains the binary
expansion of all numbers x ∈ [0, 1] \D and the terminating binary expansions of all numbers x ∈ D.
Since Ω \ E is countable, E is a Borel set. The function f restricted to E, f : E → [0, 1], is bijective
and measurable (since f is measurable by Lemma 1). Finally, the inverse function f−1: [0, 1] → E is
measurable, i.e., for all A ∈ A, A ⊆ E, we have f (A) ∈ B[0,1].

The set E contains all binary sequences except for non-terminating expansions of dyadic rationals,
which lead to good channels by the proof of Proposition 2. Thus, we have

{b ∈ Ω: I(Wb
∞) = 0} ∩ E = {b ∈ Ω: I(Wb

∞) = 0}. (A8)

Since this set has probability 1− I(W) by Proposition 1, it is a Borel set (otherwise, it would not
be measurable). However, since f ({b ∈ E: I(Wb

∞) = 0}) = B, it follows that B is a Borel set of [0, 1].
That G is a Borel set can be shown along similar lines, with E containing all binary sequences with
infinitely many ones.
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Every Borel set is Lebesgue measurable. To evaluate the Lebesgue measure of B, note that

f−1(B) = {b ∈ Ω: I(Wb
∞) = 0} ∪ f−1(D). (A9)

Since B ∈ B[0,1], we get from Lemma 1 that λ(B) = P( f−1(B)). By the monotonicity and
countable subadditivity of measures, we have

P({b ∈ Ω: I(Wb
∞) = 0}) ≤ P( f−1(B)) ≤ P({b ∈ Ω: I(Wb

∞) = 0}) + P( f−1(D))︸ ︷︷ ︸
=λ(D)=0

. (A10)

Hence, by Proposition 1, λ(B) = P({b ∈ Ω: I(Wb
∞) = 0}) = 1− I(W). The proof for the set of

good channels follows along the same lines.
Since the one-dimensional Hausdorff measure of a Borel set equals its Lebesgue measure [1]

(Equation (3.4), p. 45), it immediately follows that G and B have a Hausdorff dimension equal to one.

Appendix D. Proof of Proposition 5

Since the dyadic rationals are self-similar and since D ⊂ G from Proposition 2, one has for all n
and k,

Gn(k) ∩D = 2 (Gn+1(2k) ∩D)− k2−n. (A11)

We now treat those values in [0, 1] that are not dyadic rationals. If bn
k = (b1b2 · · · bn) is the

terminating binary expansion of (k− 1)2−n, every value in [(k− 1)2−n, k2−n] has a binary expansion
bn

k a for some a ∈ Ω, where bn = 1 if and only if (k− 1) is odd. Similarly, and since (2k− 1) is always
odd, every value in [(2k − 1)2−n−1, k2−n] has a binary expansion bn

k 1a′ for some a′ ∈ Ω. Assume

that a′ = a. Then, by Lemmas 3 and 4, W
bn

k a
∞ 4 W

bn
k 1a

∞ for all a. Hence, if f (bn
k a) ∈ Gn(k), then

f (bn
k 1a) ∈ Gn+1(2k). It remains to show that 2 f (bn

k 1a)− f (bn
k+1) = f (bn

k a):

f (bn
k a) + f (bn

k+1) = f (bn
k ) + 2−n f (a) + f (bn

k+1)

= (k− 1)2−n + 2−n f (a) + k2−n

= (2k− 1)2−n + 2−n f (a)

= 2(2k− 1)2−n−1 + 2× 2−n−1 f (a)

= 2 f (bn
k 1) + 2× 2−n−1 f (a)

= 2 f (bn
k 1a)

Proof for Symmetric Channels. Since (2k− 2) is always even, every value in [(2k− 2)2−n−1, (2k−
1)2−n−1] has a binary expansion bn

k 0a for some a ∈ Ω. Then, by Lemmas 3 and 4, W
bn

k 0a
∞ 4 W

bn
k a

∞ for all a.
Hence, if f (bn

k 0a) ∈ Gn+1(2k), then f (bn
k a) ∈ Gn(k). It remains to show that 2 f (bn

k 0a)− f (bn
k ) = f (bn

k a):

f (bn
k a) + f (bn

k ) = f (bn
k ) + 2−n f (a) + f (bn

k )

= (k− 1)2−n + 2−n f (a) + (k− 1)2−n

= (2k− 2)2−n + 2−n f (a)

= 2(2k− 2)2−n−1 + 2× 2−n−1 f (a)

= 2 f (bn
k 0) + 2× 2−n−1 f (a)

= 2 f (bn
k 0a)
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Appendix E. Proof of Proposition 6

Note that in Definition 4 we can take the binary logarithm on both sides of the inequality to get
the condition

x ∈ H(ρ)⇔ ∃b ∈ f−1(x): lim inf
n→∞

w(bn)− nρ ≥ 0. (A12)

We first show that D ⊂ H(ρ) for every ρ ∈ [0, 1). To this end, consider the non-terminating
expansion of x ∈ D, i.e., there is a bk ∈ {0, 1}k such that f (bk1111 · · · ) = x. Hence, w(bn) ≥ n− k for
n ≥ k and, for ρ < 1,

lim inf
n→∞

w(bn)− nρ ≥ lim
n→∞

n(1− ρ)− k = ∞. (A13)

We next show that alsoH(ρ) \D is dense in [0, 1] for ρ < 1. We do so by showing that between
any two dyadic rationals x1 = p/2n and x2 = (p + 1)/2n, there exists a rational number x ∈ Q \D
that is inH(ρ). Let b` be the terminating binary expansion of x1, i.e., f (b`000 · · · ) = x1. Furthermore,
let ak be such that a1 = · · · = ak−1 = 1 and ak = 0. We set b = b`akakak · · · and get f (b) ∈ (x1, x2).
One can show that w(bn) ≥ n− `− 1− n−`

k . Hence, choosing k > 1/(1− ρ), ρ < 1, leads to

lim inf
n→∞

w(bn)− nρ ≥ lim
n→∞

n
(

1− 1
k
− ρ

)
− `− `

k
− 1 = ∞. (A14)

This proves that x ∈ H(ρ) if ρ < 1, from which follows thatH(ρ) \D is dense in [0, 1].
We finally show that the there exists a non-dyadic rational number x ∈ (x1, x2) such that x /∈ H(ρ).

From this follows that also the complement of H(ρ) \D is dense in [0, 1]. To this end, let ak be such
that a1 = · · · = ak−1 = 0 and ak = 1. Set b = b`akakak · · · . One can show that w(bn) ≤ n

k + `− `
k + 1.

Hence, choosing k > 1/ρ, ρ > 0, leads to

lim inf
n→∞

w(bn)− nρ ≤ lim
n→∞

n
(

1
k
− ρ

)
+ `− `

k
+ 1 = −∞. (A15)

Therefore, x /∈ H(ρ) if ρ > 0.

Appendix F. Proof of Proposition 7

By Example 4, dyadic rationals are not simply normal, hence letN ⊂ [0, 1] \D be the set of simply
normal numbers in [0, 1]. Note that f is bijective on N by Lemma 1. We furthermore have λ(N ) = 1,
hence [0, 1] \ N is a Lebesgue null set (both N and its complement are measurable). Every subset of a
Lebesgue null set is a Lebesgue null set and, a fortiori, Lebesgue measurable.

By Lemma 5 we have

∀b ∈ f−1(N ): w(bn) =
1
2

n + o(n). (A16)

Fix ρ. Then,

lim inf
n→∞

w(bn)− nρ = lim
n→∞

n
(

1
2
− ρ

)
+ o(n). (A17)

If ρ < 1/2, then this limit diverges to infinity, and hence N ⊂ H(ρ). Thus, [0, 1] \ H(ρ) is a
subset of [0, 1] \ N , hence measurable, from which measurability of H(ρ) follows. Since λ(N ) = 1,
we have λ(H(ρ)) = 1. If ρ > 1/2, the limit diverges to minus infinity, and hence N 6⊂ H(ρ). Thus,
H(ρ) ⊂ [0, 1] \ N , from which λ(H(ρ)) = 0 follows.

Now let ρ = 1/2. We define a random variable B on our probability space, such that for all b ∈ Ω,
B(b) = b. B is a sequence of independent, identically distributed Bernoulli-1/2 random variables, i.e.,
for all i we have P(Bi = 1) = P(Bi = 0) = 1/2. We now evaluate

P
(

lim inf
n→∞

w(Bn)− n
2
≥ 0

)
. (A18)
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Consider the simple random walk Sn := w(Bn)− n
2 . Let N0(n) be the number of zero crossings

of the sequence S1, . . . , Sn and let N0(n, b) be the number of zero crossings corresponding to the
realization b ∈ Ω. The event lim infn→∞ w(bn) − n

2 ≥ 0 can only happen if the realization of Sn

corresponding to b has only finitely many zero crossings, i.e.,

{b ∈ Ω: lim inf
n→∞

w(bn)− n
2
≥ 0} ⊆ {b ∈ Ω: ∃R ∈ N0: lim

n→∞
N0(n, b) ≤ R}

=
∞⋃

R=0
{b ∈ Ω: lim

n→∞
N0(n, b) ≤ R}

=
∞⋃

R=0
lim inf

n→∞
{b ∈ Ω: N0(n, b) ≤ R}

and hence
P
(
{b ∈ Ω: lim infn→∞ w(bn)− n

2 ≥ 0}
)

≤ ∑∞
R=0 P(lim infn→∞{b ∈ Ω: N0(n, b) ≤ R})

≤ ∑∞
R=0 limn→∞ P(N0(n) ≤ R)

(A19)

where the second inequality is due to Fatou’s lemma [27] (Lemma 1.28, p. 23).
With [28] (Chapter III.5, p. 84)

P(N0(n) = R) = 2P(S2n+1 = 2R + 1) (A20)

we get

P(N0(n) ≤ R) = 2
R

∑
r=0

P(S2n+1 = 2r + 1)

(a)
= 2

R

∑
r=0

(
2n + 1
n− r

)
2−2n−1

≤ 2−2n
R

∑
r=0

(
2n + 2
n + 1

)
= 2−2n(R + 1)

(
2n + 2
n + 1

)
(b)
≤ 2−2n(R + 1)e22n+2 1√

(n + 1)π

=
4e(R + 1)√
(n + 1)π

where (a) is [28] (Equation (2.2), p. 75) and (b) is due to Stirling’s approximation [29] (Equation (6.1.38),
p. 257). Since this probability tends to zero as n→ ∞, we have by (A19)

P
(

lim inf
n→∞

w(Bn)− n
2
≥ 0

)
= 0. (A21)

Since the set inside the probability measure is thus measurable, we can apply the same reasoning
as in the proof of Proposition 4 to argue that H(1/2) is Lebesgue measurable. We then obtain
λ(H(1/2)) = 0 which completes the proof for the Lebesgue measure.

We now turn to the proof of the Hausdorff dimension. For ρ < 1/2, H(ρ) has full Lebesgue
measure. Since every Lebesgue measurable set has a Borel subset with the same Lebesgue measure,
and since Hausdorff dimension is monotonic, we have d(H(ρ)) = 1 for ρ < 1/2.
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For ρ ≥ 1/2, we define

Ñξ :=
{

x ∈ [0, 1]: ∃b ∈ f−1(x): lim
n→∞

w(bn)

n
= ξ

}
(A22)

for some ξ ∈ (0, 1). Note that Ñ1/2 = N . By [30] (cf. [21] (Chapter 8) for further notes), the
Hausdorff dimension of this set is given by (Interestingly, in Eggleston’s paper, the dimension was not
connected to entropy; it was submitted earlier in the same year as Shannon’s Mathematical Theory of
Communication was published).

d(Ñp) = h2(ξ). (A23)

Reasoning as in the proof for the Lebesgue measure, Ñξ ⊂ H(ρ) if ξ > ρ and Ñp 6⊂ H(ρ) if ξ < ρ.
As a consequence,

∞⋃
n=1

Ñρ+1/n ⊂ H(ρ). (A24)

For a countable sequence of sets An, Hausdorff dimension satisfies [1] (p. 49)

d(
∞⋃

n=1

An) = sup
n≥1

d(An) (A25)

and hence, by the monotonicity of Hausdorff dimension [1] (p. 48),

d(H(ρ)) ≥ sup
n≥1

h2(ρ + 1/n) = h2(ρ) (A26)

where the last equality follows from the fact that the binary entropy function decreases with increasing
ρ for ρ ≥ 1/2. In particular, for ρ = 1/2, d(H(ρ)) = 1. This completes the proof.

Appendix G. Proof of Proposition 8

The proof follows along the lines of the proof of Proposition 5. Let again bn
k be the terminating

expansion of (k− 1)2−n and let a ∈ Ω. The connections between the sequences b := bn
k a, b− := bn

k 0a,
and b+ := bn

k 1a have been established above. To prove the theorem, we have to show that

lim inf
m→∞

w(bm
−)− ρm ≥ 0 (A27)

⇒ lim inf
m→∞

w(bm)− ρm ≥ 0 (A28)

⇒ lim inf
m→∞

w(bm
+)− ρm ≥ 0. (A29)

This is obtained by

lim inf
m→∞

w(bm
−)− ρm = w(bn

k 0)− ρ(n + 1) + lim inf
m→∞

w(am)− ρm

= w(bn
k )− ρn− ρ + lim inf

m→∞
w(am)− ρm

≤ w(bn
k )− ρn + lim inf

m→∞
w(am)− ρm (A30)

≤ w(bn
k )− ρn + (1− ρ) + lim inf

m→∞
w(am)− ρm

= w(bn
k 1)− ρ(n + 1) + lim inf

m→∞
w(am)− ρm (A31)

where (A30) equals (A28) and where (A31) equals (A29). The inequalities yield the desired result.
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