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Abstract: This work is focused on latent-variable graphical models for multivariate time series.
We show how an algorithm which was originally used for finding zeros in the inverse of the covariance
matrix can be generalized such that to identify the sparsity pattern of the inverse of spectral density
matrix. When applied to a given time series, the algorithm produces a set of candidate models.
Various information theoretic (IT) criteria are employed for deciding the winner. A novel IT criterion,
which is tailored to our model selection problem, is introduced. Some options for reducing the
computational burden are proposed and tested via numerical examples. We conduct an empirical
study in which the algorithm is compared with the state-of-the-art. The results are good, and the
major advantage is that the subjective choices made by the user are less important than in the case of
other methods.

Keywords: maximum entropy; Expectation-Maximization; graphical models; autoregressive model;
latent variables; information theoretic criteria; time series

1. Introduction

Graphical models are instrumental in the analysis of multivariate data. Originally, these models
have been employed for independently sampled data, but their use has been extended to multivariate,
stationary time series [1,2], which triggered their popularity in statistics, machine learning,
signal processing and neuroinformatics.

For better understanding the significance of graphical models, let x be a random vector having a
Gaussian distribution with zero-mean and positive definite covariance matrix Γ. A graph G = (V, E)
can be assigned to x in order to visualize the conditional independence between its components.
The symbol V denotes the vertices of G, while E is the set of its edges. There are no loops from a vertex
to itself, nor multiple edges between two vertices. Hence, E is a subset of {(a, b) ∈ V ×V : a 6= b}.
Each vertex of the graph is assigned to an entry of x. We conventionally draw an edge between
two vertices a and b if the random variables xa and xb are not conditionally independent, given all
other components of x. The description above follows the main definitions from [3] and assumes
that the graph G is undirected. Proposition 1 from the same reference provides a set of equivalent
conditions for conditional independence. The most interesting one claims that xa and xb are
conditionally independent if and only if the entry (a, b) of Γ−1 is zero. This shows that the missing
edges of G correspond to zero-entries in the inverse of the covariance matrix, which is called the
concentration matrix.

There is an impressive amount of literature on graphical models. In this work, we focus on a
generalization of this problem to time series. The main difference between the static case and the
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dynamic case is that the former relies on the sparsity pattern of the concentration matrix, whereas the
latter is looking for zeros in the inverse of the spectral density matrix. One of the main difficulties
stems from the fact that the methods developed in the static case cannot be applied straightforwardly
to time series.

Parametric as well as non-parametric methods have been already proposed in the previous
literature dedicated to graphical models for time series. Some of the recently introduced estimation
methods are based on convex optimization. We briefly discuss below the most important algorithms
which belong to this class.

• Reference [4] extends the static case by allowing the presence of latent variables. The key point
of their approach is to express the manifest concentration matrix as the sum of a sparse matrix
and a low-rank matrix. Additionally, they provide conditions for the decomposition to be
unique, in order to guarantee the identifiability. The two matrices are estimated by minimizing
a penalized likelihood function, where the penalty involves both the `1-norm and the nuclear
norm. Interestingly enough, the authors of the discussion paper [5] pointed out that an alternative
solution, which relies on the Expectation-Maximization algorithm, can be easily obtained.

• In the dynamic case, reference [6] has an important contribution which consists in showing
that the graphical models for multivariate autoregressive processes can be estimated by solving
a convex optimization problem which follows from the application of the Maximum Entropy
principle. This paved the way for the development of efficient algorithms dedicated to topology
selection in graphical models of autoregressive processes [7,8] and autoregressive moving
average processes [9].

• A happy marriage between the approach from [4] and the use of Maximum Entropy led to the
solution proposed in [10] for the identification of graphical models of autoregressive processes
with latent variables. Similar to [4], the estimation is done by minimizing a cost function whose
penalty term is given by a linear combination of the `1-norm and the nuclear norm. The two
coefficients of this linear combination are chosen by the user and they have a strong influence on
the estimated model. The method introduced in [10] performs the estimation for various pairs of
coefficients which yield a set of candidate models; the winner is decided by using a score function.

According to the best of our knowledge, there is no other work that extends the estimation method
from [5] to the case of latent-variable autoregressive models. The main contribution of this paper is to
propose an algorithm of this type, which combines the strengths of Expectation-Maximization and
convex optimization. The key point for achieving this goal is to apply the Maximum Entropy principle.

The rest of the paper is organized as follows. In the next section, we introduce the notation and
present the method from [10]. Section 3 outlines the newly proposed algorithm. The outcome of the
algorithm is a set of models from which we choose the best one by employing information theoretic
(IT) criteria. Section 4 is focused on the description of these criteria: We discuss the selection rules
from the previous literature and propose a novel criterion. The experimental results are reported in
Section 5. Section 6 concludes the paper.

2. Preliminaries and Previous Work

Let x1, . . . , xT be a κ-dimensional (κ > 1) time series generated by a stationary and stable VAR
process of order p. We assume that the spacing of observation times is constant and xt = [x1t, . . . , xκt]

>.
The symbol (·)> denotes transposition. The difference equation of the process is

xt = A1xt−1 + . . . + Apxt−p + εt, t = 1, T, (1)

where A1, . . . , Ap are matrix coefficients of size κ × κ and εt is a sequence of independently and
identically distributed random κ-vectors. We assume that the vectors {εt}T

t=1 are drawn from a
κ-variate Gaussian distribution with zero mean vector and covariance matrix Σ � 0. Additionally,
the vectors {xt}0

t=1−p are assumed to be constant.
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The conditional independence relations between the variables in xt are provided by the inverse of
the spectral density matrix (ISDM) of the VAR-process {xt}. The ISDM has the expression

Φ−1 (ω) = AH (ω)Σ−1A (ω) =
p

∑
i=−p

Qie−jωi, (2)

where j =
√
−1 and (·)H is the operator for conjugate transpose. We define A0 = −I, where I

stands for the identity matrix of appropriate size, and A (ω) = −∑
p
i=0 Aie−jωi. For i ≥ 0, we have

that Qi = ∑
p−i
k=0 A>k Σ−1Ak+i and Q−i = Q>i . The sparse structure of the ISDM contains conditional

dependence relations between the variables of xt, i.e., two variables xa and xb are independent,
conditional on the other variables, if and only if [1,11][

Φ−1(ω)
]

ab
= 0, ∀ω ∈ (−π, π] . (3)

In the graph corresponding to the ISDM Φ−1(ω), the nodes stand for the variables of the
model, and the edges stand for conditional dependence, i.e., there is no edge between conditionally
independent variables.

In a latent-variable graphical model it is assumed that κ = K + r, where K variables are accessible
to observation (they are called manifest variables) and r variables are latent, i.e., not accessible to
observation, but playing a significant role in the conditional independence pattern of the overall
model. The existence of latent variables in a model can be described in terms of the ISDM by the
block decomposition

Φ (ω) =

[
Φm(ω) Φ>`m(−ω)

Φ`m(ω) Φ`(ω)

]
, Φ−1 (ω) =

[
Υm(ω) Υ>`m(−ω)

Υ`m(ω) Υ`(ω)

]
, (4)

where Φm (ω) and Φ` (ω) are the manifest and latent components of the spectral density matrix,
respectively. Using the Schur complement, the ISDM of the manifest component has the form [10]
(Equation (21)):

Φ−1
m (ω) = Υm (ω)− Υ>`m (−ω)Υ−1

` (ω)Υ`m (ω) . (5)

When building latent variable graphical models, we assume that r� K, i.e., few latent variables
are sufficient to characterize the conditional dependence structure of the model. The previous formula
can therefore be written

Φ−1
m (ω) = S(ω)−Λ(ω), (6)

where S(ω) is sparse, and Λ(ω) has (constant) low-rank almost everywhere in (−π, π]. Furthermore,
we can write [12] (Equation (4)):

S(ω)−Λ(ω) = ∆(ω)X∆(ω)H , (7)

Λ(ω) = ∆(ω)L∆(ω)H , (8)

where ∆ (ω) =
[
I, ejωI, . . . , ejωpI

]
is a shift matrix, and X and L are K (p + 1)× K (p + 1) positive

semidefinite matrices. We split all such matrices in K×K blocks, e.g.,

L =


L00 . . . L0p

...
. . .

...
L>0p . . . Lpp

 . (9)

The block trace operator for such a matrix is D(·), defined by
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Di(L) =
p−i

∑
h=0

Lh,h+i, i = 0, p. (10)

For negative indices, the relation D−i(L) = Di(L)> holds. Note that (8) can be rewritten as

Λ(ω) =
p

∑
i=−p

Di(L)ejωi.

The first p + 1 sample covariances of the VAR process are [13]:

Ĉi =
1
T

T−i

∑
t=1

xt+ix>t , i = 0, p. (11)

However, only the upper left K × K blocks corresponding to the manifest variables can be
computed from data; they are denoted R̂i. With R̂ = [R̂0 . . . R̂p], we build the block Toeplitz matrix

T
(
R̂
)
=


R̂0 . . . R̂p
...

. . .
...

R̂>p . . . R̂0

 . (12)

It was proposed in [10] to estimate the matrices X and L by solving the optimization problem

minX,L tr(T
(
R̂
)

X)− log det X00 + λγ f (X + L) + λtr(L)
s.t. X � 0 L � 0,

(13)

where tr(·) is the trace operator, log(·) denotes the natural logarithm and det(·) stands for the
determinant. Minimizing tr(L) induces low rank in L and λ, γ > 0 are trade-off constants. The function
f (·) is a group sparsity promoter whose expression is given by

f (Z) =
K

∑
a=1

a−1

∑
b=1

max
i=0,p
|Di(Z)(a, b)|. (14)

Note that Di(X + L)(a, b) is the i-th degree coefficient of the polynomial that occupies the (a, b)
position in the matrix polynomial Φ−1

m (ω). Sparsity is encouraged by minimizing the `1-norm of the
vector formed by the coefficients that are maximum for each position (a, b).

3. New Algorithm

The obvious advantage of the optimization problem (13) is its convexity, which allows the safe
computation of the solution. However, a possible drawback is the presence of two parameters, λ and
γ, whose values should be chosen. A way to eliminate one of the parameters is to assume that the
number r of latent variables is known. At least for parsimony reasons, it is natural to suppose that r is
very small. Since a latent variable influences all manifest variables in the ISDM (5), there cannot be too
many independent latent variables. Therefore, giving r a fixed small value is likely to be not restrictive.

In this section, we describe an estimation method which is clearly different from the one in [10].
More precisely, we generalize the Expectation-Maximization algorithm from [5], developed there for
independent and identically distributed random variables, to a VAR process. For this purpose, we
work with the full model (4) that includes the ISDM part pertaining to the r latent variables. Without
loss of generality, we assume that Υ`(ω) equals the identity matrix I; the effect of the latent variables
on the manifest ones in (5) can be modeled by Υ`m alone. Combining with (2), the model is
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Φ−1(ω) =

[
Υm(ω) Υ>`m(−ω)

Υ`m(ω) I

]
=

p

∑
i=−p

Qie−jωi, (15)

where the matrices Qi have to be found.
The main difficulty of this approach is the unavailability of the latent part of the matrices (11).

Were such matrices available, we could work with SDM Φ(ω) estimators (confined to order p) of
the form

Φ̃(ω) =
p

∑
i=−p

Cie−jωi, (16)

where Ci denotes the i-th covariance lag for the VAR process {xt} (see also (1) and (11)). We split the
matrix coefficients from (15) and (16) according to the size of manifest and latent variables, e.g.,

Ci =

[
Cm,i C>`m,−i
C`m,i C`,i

]
. (17)

To overcome the difficulty, the Expectation-Maximization algorithm alternatively keeps fixed
either the model parameters Qi or the matrices Ci, estimating or optimizing the remaining unknowns.
The expectation step of Expectation-Maximization assumes that the ISDM Φ−1(ω) from (15) is
completely known. Standard matrix identities [5] can be easily extended to matrix trigonometric
polynomials for writing down the formula

Φ(ω) =

[
Φm(ω) −Φm(ω)Υ>`m(−ω)

−Υ`m(ω)Φm(ω) I + Υ`m(ω)Φm(ω)Υ>`m(−ω)

]
. (18)

Identifying (16) with (18) gives expressions for estimating the matrices Ci, depending on the
matrices Qi from (15). The upper left corner of (18) needs no special computation, since the natural
estimator is

Φm(ω) =
p

∑
i=−p

R̂ie−jωi,

where the sample covariances R̂i are directly computable from the time series. It results that

Cm,i = R̂i, i = −p, p. (19)

The other blocks from (17) result from convolution expressions associated with the polynomial
multiplications from (18). The lower left block of the coefficients is

C`m,i = − ∑
k+s=i

Q`m,kR̂s = −
min(p,i+p)

∑
k=max(−p,i−p)

Q`m,kR̂i−k, i = −2p, 2p. (20)

Note that the trigonometric polynomial Υ`m(ω)Φm(ω) has degree 2p, since its factors have
degree p. With (20) available, we can compute

C`,i = δiI + ∑
k−s=i

C`m,kQ>`m,−s = δiI +
min(2p,i+p)

∑
k=max(−2p,i−p)

C`m,kQ>`m,i−k, i = −p, p, (21)

where δi = 1 if i = 0 and δi = 0 otherwise. Although the degree of the polynomial from the lower
right block of (18) is 3p, we need to truncate it to degree p, since this is the degree of the ISDM Φ−1(ω)

from (15). This is the reason for computing only the coefficients i = −p, p in (21). The same truncation
is applied on (20); note that there we cannot compute only the coefficients that are finally needed,
since all of them are required in (21).
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In the maximization step of Expectation-Maximization, the covariance matrices Ci are assumed to
be known and are fixed; the ISDM can be estimated by solving an optimization problem that will be
detailed below. The overall solution we propose is outlined in Algorithm 1, explained in what follows.

Algorithm 1 Algorithm for Identifying SP of ISDM (AlgoEM)

Input: Data (x1:K,1, . . . , x1:K,T), VAR-order p, number of latent variables r,

an information theoretic criterion (ITC).

Initialization:

Evaluate R̂i for i = 0, p; (see (11) and the discussion below it)

R̂← [R̂0 . . . R̂p];

Φ̂m(ω)←
p

∑
i=−p

R̂ie−jωi;{
Q̌(0)

i (1 : K, 1 : K)
}p

i=0
← MEI(R̂) (see (22));

Compute Υ̌
(0)
`m (ω) from EIG of Q̌(0)

0 ;

for all λ ∈ {λ1, . . . , λL} do

Maximum Entropy Expectation-Maximization (penalized setting):

for it = 1, . . . , Nit do

Use Φ̂m(ω) and Υ̌
(it−1)
`m (ω) to compute Č(it) (see (16)–(18));{

Q̌(it)
i

}p

i=0
← MEII(Č(it), λ) (see (23));

Get Υ̌
(it)
`m (ω) from

{
Q̌(it)

i

}p

i=0
(see (15));

end for

Use
{

Q̌(Nit)
i

}p

i=0
to compute Φ̌−1

λ (ω);

Determine SPλ (see (24));

if ADAPTIVE then

Υ̌
(0)
`m (ω)← Υ̌

(Nit)
`m (ω)

end if

Υ̂
(0)
`m (ω)← Υ̌

(Nit)
`m (ω);

Maximum Entropy Expectation-Maximization (constrained setting):

for it = 1, . . . , Nit do

Use Φ̂m(ω) and Υ̂
(it−1)
`m (ω) to compute Ĉ(it) (see (16)–(18));{

Q̂(it)
i

}p

i=0
← MEIII(Ĉ(it), SPλ) (see (25));

Get Υ̂
(it)
`m (ω) from

{
Q̂(it)

i

}p

i=0
(see (15));

end for

Use
{

Q̂(Nit)
i

}p

i=0
to compute Φ̂−1

λ (ω);

Find the matrix coefficients of the VAR-model by spectral factorization of Φ̂−1
λ (ω) and compute

ITC(Data; SPλ).

end for

ŜP← arg min
λ

ITC(Data; SPλ);
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The initialization stage provides a first estimate for the ISDM, from which the
Expectation-Maximization alternations can begin. An estimate for the left upper corner of Φ−1(ω)

is obtained by solving the classical Maximum Entropy problem for a VAR(p)-model, using the
sample covariances of the manifest variables. We present below the matrix formulation of this
problem, which allows an easy implementation in CVX (Matlab-based modeling system for convex
optimization) [14]. The mathematical derivation of the matrix formulation from the information
theoretic formulation can be found in [6,9].

First Maximum Entropy Problem [MEI(R̂)]:

minX tr(T (R̂)X)− log det X00

s.t. X � 0
(22)

The block Toeplitz operator T is defined in (12). The size of the positive semidefinite matrix
variable X is K(p + 1)×K(p + 1). For all i = 0, p, the estimate Q̌(0)

i (1 : K, 1 : K) of the ISDM (15) is
given by Di(X).

In order to compute an initial value for Υ`m(ω), we resort to the eigenvalue decomposition
(EIG) of Q̌(0)

0 (1 : K, 1 : K). More precisely, after arranging the eigenvalues of Q̌(0)
0 (1 : K, 1 : K)

in the decreasing order of their magnitudes, we have Q̌(0)
0 (1 : K, 1 : K) = UDU>. Then, we set

Q̌(0)
0 (K + 1 : K + r, 1 : K) = D1/2(1 : r, 1 : r)U>(1 : K, 1 : r) and Q̌(0)

i (K + 1 : K + r, 1 : K) = 0
for i = 1, p.

When the covariances Ci are fixed in the maximization step of the Expectation-Maximization
algorithm, the coefficients of the matrix polynomial that is the ISDM (15) are estimated from the
solution of the following optimization problem:

Second Maximum Entropy Problem [MEII(C, λ)]:

minX tr(T (C)X)− log det X00 + λ f (X)
s.t. X � 0

D0(X)(K + 1 : K + r, K + 1 : K + r) = I
Di(X)(K + 1 : K + r, K + 1 : K + r) = 0, i = 1, p

(23)

Since now we work with the full model, the size of X is (K + r)(p + 1) × (K + r)(p + 1).
The function f (·) is the sparsity promoter defined in (14) and depends only on the entries of the
block corresponding to the manifest variables. The equality constraints in (23) guarantee that the latent
variables have variance one and they are independent, given the manifest variables, corresponding to
the lower right block of (15).

The estimates
{

Q̌(Nit)
i

}p

i=0
obtained after these iterations are further employed to compute Φ̌−1

λ (ω)

by using (15). If λ is large enough, then Φ̌−1
λ (ω) is expected to have a certain sparsity pattern, SPλ.

Since the objective of (23) does not ensure exact sparsification and also because of the numerical
calculations, the entries of Φ̌−1

λ (ω) that belong to SPλ are small, but not exactly zero. In order to turn
them to zero, we apply a method similar to the one from [6] (Section 4.1.3). We firstly compute the
maximum of partial spectral coherence (PSC),

max
ω∈(−π,π]

∣∣∣[Φ̌−1
λ (ω)

]
a b

∣∣∣√[
Φ̌−1

λ (ω)
]

a a

[
Φ̌−1

λ (ω)
]

b b

, (24)

for all a 6= b with 1 ≤ a, b ≤ K. Then SPλ comprises all the pairs (a, b) for which the maximum PSC is
not larger than a threshold Th. The discussion on the selection of parameters Nit and Th is deferred
to Section 5.
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The regularized estimate of ISDM is further improved by solving a problem similar to (23),
but with the additional constraint that the sparsity pattern of ISDM is SPλ, more precisely:

Third Maximum Entropy Problem [MEIII(C, SP)]:

minX tr(T (C)X)− log det X00

s.t. X � 0
D0(X)(K + 1 : K + r, K + 1 : K + r) = I
Di(X)(K + 1 : K + r, K + 1 : K + r) = 0, i = 1, p
Di(X)(a, b) = 0 , i = 0, p, if SP(a, b) = 0

(25)

This step of the algorithm has a strong theoretical justification which stems from the fact that
Φ̂−1(ω) is the Maximum Entropy solution for a covariance extension problem (see [10] (Remark 2.1)).
The number of iterations, Nit, is the same as in the case of the first loop.

The spectral factorization of the positive matrix trigonometric polynomial Φ̂−1
λ (ω) is computed

by solving a semidefinite programming problem. The implementation is the same as in [8], except that
in our case the model contains latent variables. Therefore, the matrix coefficients produced by spectral
factorization are altered to keep only those entries that correspond to manifest variables. The resulting
VAR model is fitted to the data and then various IT criteria are evaluated. The accuracy of the selected
model depends on the criterion that is employed as well as on the strategy used for generating the
λ-values that yield the competing models. In the next section, we list the model selection rules that we
apply; the problem of generating the λ-values is treated in Section 5.

As already mentioned, the estimation problem is solved for several values of λ:
λ1 < λ2 < · · · < λL. From the description above we know that, for each value of the parameter
λ, Υ`m(ω) gets the same initialization, which is based on (22). It is likely that this initialization is
poor. A better approach is an ADAPTIVE algorithm which takes into consideration the fact that the
difference λi − λi−1 is small for all i = 2, L. This algorithm initializes Υ`m(ω) as explained above only
when λ = λ1. When λ = λi for i = 2, L, the initial value of Υ`m(ω) is taken to be the estimate of
this quantity that was previously obtained by solving the optimization problem in (23) for λ = λi−1.
The effect of the ADAPTIVE procedure will be investigated empirically in Section 5.

The newly proposed estimation method outlined in Algorithm 1 is dubbed AlgoEM.
The Matlab code for AlgoEM can be downloaded from https://www.stat.auckland.ac.nz/~cgiu216/
PUBLICATIONS.htm.

4. Model Selection

4.1. IT Criteria

It is well-known that the IT criteria can be expressed as the sum of a goodness-of-fit (GOF) term
and a penalty. They are derived on various grounds, but their expressions cannot be obtained easily
for the problem we investigate. Due to this reason, we resort to the methodology applied previously
to VAR without latent variables, where the criteria originally proposed for model order selection
have been modified such that to be employed for finding the best sparsity pattern. As the GOF term
is obtained straightforwardly by fitting the model to the data, the difficult part is the alteration of
the penalty term. Based on the observation that all the penalty terms of the criteria for model order
selection involve the number of parameters of the model, reference [6] proposed to replace it with the
effective number of parameters:

Nef =
K(K + 1)

2
− N0 + p(K2 − 2N0). (26)

Note that N0 is the number of zeros in the lower triangular part of SPλ. The expression above
can be obtained straightforwardly by counting the number of non-zero entries in the K×K upper-left

https://www.stat.auckland.ac.nz/~cgiu216/PUBLICATIONS.htm
https://www.stat.auckland.ac.nz/~cgiu216/PUBLICATIONS.htm


Entropy 2018, 20, 76 9 of 20

block of the matrices
{

Q̂(Nit)
i

}p

i=0
produced by Algorithm 1; counting takes into consideration all the

existing symmetries.
The formula in (26) was used in [6] in order to modify three celebrated criteria:

Schwarz Bayesian Criterion—SBC [15], Akaike Information Criterion—AIC [16] and its corrected
version—AICc [13] (pp. 432) and [17]. We name SBC the criterion from [15] because this is the term
used in time series literature; the same selection rule is called Bayesian Information Criterion (BIC) in
other works. Based on the empirical evidence from [6], SBC is ranked best when the sample size is
large, whereas AICc works better for small sample sizes. This makes us to employ these two criteria in
our experiments. Their expressions are [6]:

SBC(Data; SP) = T log det Σ̂ + Nef log T, (27)

AICc(Data; SP) = T log det Σ̂ +
2NefT

T − Nef − 1
,

where Σ̂ is the error covariance matrix. For simplicity, we write SP instead of SPλ. Even if our notation
does not emphasize on this fact, it is clear that both Nef and Σ̂ depend on λ.

Another criterion employed in our tests is a variant of the Final Prediction Error—FPE [18].
The formula we use was obtained in [8] by relying on the asymptotic equivalence between log FPE
and AIC. For ease of comparison with other criteria, we do not give the expression of FPE, but that of
log FPE:

log FPE(Data; SP) = log det Σ̂ + K log
T + η

T − η
,

where η = Nef/K.
We also apply the Renormalized Maximum Likelihood (RNML) criterion. Its derivation is related

to the problem of encoding losslessly measurements assumed to be a sequence of outcomes from an
unknown distribution. It has been proven in [19] that there is a unique distribution which, if it is used
to encode these measurements, then it leads to the minimum code length in the worst case scenario.
This particular distribution was further utilized in [20,21] in order to introduce the RNML criterion
for model selection. The major problem comes from the fact that, for most of the family of models,
its closed-form expression is hard to be obtained. The expression of RNML that can be employed for
choosing the order of VAR-models was firstly derived in [22]. The properties of this criterion have
been investigated in [8], where the criterion was also altered such that to be applied in the selection of
the sparsity pattern for ISDM of VAR-models. With our notation, the RNML criterion can be written
as follows:

RNML(Data; SP) =
T − η −K + 1

2
log det Σ̂ +

Nef
2

log tr
(
R̂0 − Σ̂

)
− log ΓK

(
T − η

2

)
− log Γ

(
Nef
2

)
, (28)

where ΓK(·) is the multivariate Gamma function and Γ(·) is the Gamma function. The matrix R̂0 has
the same significance as in (12). It is remarkable that the penalty term of RNML depends on the actual
measurements, and not only on the triple (T, K, Nef).

A common feature of all the criteria presented so far is that they do not take into consideration
how big is the family of the competing candidates. This might be problematic because the total number
of possible sparsity patterns is as large as 2K, where K = K(K− 1)/2. The solutions proposed in the
previous literature for circumventing this difficulty are called extended IT criteria. We show below how
these criteria can be applied for selecting the sparsity pattern. In this context, we also propose a novel
variant of RNML.
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4.2. Extended IT Criteria

First we write down the expression of the extended SBC proposed in [23]. In the statistical
literature, this criterion is named EBIC (Extended Bayesian Information Criterion):

EBIC(Data; SP) = SBC(Data; SP) + 2γ log
(

K
N0

)
, (29)

where γ ∈ [0, 1]. It is evident that EBIC is equivalent to SBC when γ = 0. More interestingly,
reference [24] uses arguments from information theory for justifying the use of a penalty term which
counts the number of models that have the same number of parameters. For our problem, this is
equivalent to choosing γ = 1 in (29). Because this is also the value of γ that we use in this work for
evaluating EBIC, we explain briefly the significance of the supplementary penalty term. The key point
is to consider a scenario in which Data should be transmitted losslessly from an encoder to a decoder
by employing the model given by SP. According to [24], the first step is to transmit the value of N0.
The assumption that all possible values of N0 are equally probable leads to the conclusion that the
code length for N0 is − log

(
1/(K + 1)

)
= log(K + 1). As this quantity is the same for all models, it

can be neglected. Then the decoder should be informed about the actual locations of the zeros in the
sparsity pattern SP. Since the list of all sparsity patterns for a given N0 is known by both the encoder
and the decoder, all that remains is to send to the decoder the index of SP in this list. Under the
hypothesis that all the sparsity patterns in the list are equally probable, the code length for the index is

log
(

K
N0

)
. In (29), this quantity is multiplied by two because of the scaling factor used in the definition

of SBC(Data; SP).
Another formulation of EBIC was introduced in [25] for finding the graphical structure of a

Gaussian model (static case), in the situation when the number of variables and the number of
observations grow simultaneously. After modifying the criterion from [25] by replacing the number of
edges of the graph with Nef, we get the following formula:

EBICFD(Data; SP) = SBC(Data; SP) + 4γNef log K, (30)

where γ has the same significance as in (29), and again we take γ = 1. Remark that the term

4γNef log K grows when N0 decreases; the term in (29), 2γ log
(

K
N0

)
= 2γ log

(
K

K− N0

)
, does not

have the same property.
Relying on the asymptotic equivalence between RNML and SBC [8], we alter RNML by adding

half of the extra penalty from (30); the scaling factor is needed because the ratio between the GOF
term in (28) and the GOF term in (27) tends to 1/2 when T → ∞. The new criterion, which is dubbed
RNMLFD, has the following expression:

RNMLFD(Data; SP) = RNML(Data; SP) + 2Nef log K. (31)

For all the selection rules listed above, the best model is the one which minimizes the value of
the criterion. For evaluating the performance of IT criteria, we conduct an empirical study. The main
results of this study are reported in the next section.

5. Experimental Results

5.1. Artificial Data

In our simulations, the order of the VAR model in (1) is taken to be one, the number of manifest
variables is K = 15, and there is one single latent variable (r = 1). Let KS denote the number of
non-zero entries in the lower triangular part of the sparsity pattern of size K×K. We consider three
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different values for KS: 2, 3 and K. Remark that the larger is KS, less sparse is the ISDM. The locations
of the non-zero entries for each value of KS are graphically represented in Figure 1.

(a) KS = 2 (b) KS = 3 (c) KS = 15

Figure 1. Sparsity patterns for the ISDM of the generated data: KS is the number of non-zero entries
in the lower triangular part of SP. The black dots represent the locations of the non-zero entries,
whereas the light grey dots are the zero entries.

When generating the ISDM, all the matrices {Qi}
p
i=0 in (2) have only ones on their main diagonals.

The entries of the K× K upper-left block of the matrix Qi, which should be non-zero according to
Figure 1, are equal to 0.5/(i + 1). Additionally, the entries on the last row and on the last column of Qi,
except the one on the main diagonal, are equal to 0.3/(i + 1). Integer multiples of the κ × κ identity
matrix are added to Q0 until the resulting ISDM is positive definite. Furthermore, the spectral
factorization is applied in order to obtain the matrix coefficients of the VAR-model from the ISDM
(see [8] (Section 4.2) for more details). Hence, for each value of KS, one single VAR-model is produced
and this is used for generating Ntr = 10 κ-variate time series of length T = 50,000. To this end,
we utilize Matlab R2014b functions from the package available at the address http://climate-dynamics.
org/software/#arfit. After discarding from each time series the component corresponding to the latent
variable, the simulated data are used for evaluating the performance of AlgoEM.

5.2. Settings for AlgoEM

The order of VAR, as well as the number of latent variables, is assumed to be known.
The parameter λ takes values on a regular grid defined on the interval [10−3, 10−1], for which the grid
step is 10−3. It follows that the total number of values for λ is L = 100. The threshold Th, which is
used in conjunction with (24) in order to get the estimated sparsity pattern, equals 10−3.

We are interested to evaluate the impact of the adaptive initialization procedure that was
introduced in Section 3. This is why we run AlgoEM with and without this procedure, for all the time
series we have generated. For each time series and for each value of λ on the grid, the estimated SPλ is
compared to the true sparsity pattern. The comparison reduces to computing the distance between
the two sparsity patterns, which is given by the number of positions below the main diagonal where
the patterns differ. For the case KS = 15, statistics related to this distance are presented in Figure 2.
Remark that values of λ close to zero lead to estimated patterns which are not sparse. As expected,
this happens disregarding if the adaptive procedure is applied or not. The use of the procedure has
the positive effect that, for a large range of λ-values, the estimated patterns are close to the true one.
The same is true for both KS = 2 and KS = 3, which makes us apply the adaptive procedure in all the
experiments outlined below.

The results reported in Figure 2 are obtained by taking the number of iterations to be Nit = 4.
As the computational burden of the algorithm depends strongly on Nit, we investigate the effect of
reducing the number of iterations to Nit = 3 and Nit = 2, respectively. In each case, the evaluation of
performance is done by an oracle having complete knowledge about the true sparsity pattern. From the
set of sparsity patterns produced when applying AlgoEM to a particular time series, the oracle selects
the one which is closest to the true sparsity pattern. The closeness is measured by the distance defined

http://climate-dynamics.org/software/#arfit
http://climate-dynamics.org/software/#arfit
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above. The average distances computed from Ntr = 10 trials are plotted in Figure 3. We can see in
the figure that, in the case when KS = 2 and AlgoEM performs only two iterations, the true sparsity
pattern is always in the set of the candidates produced by the algorithm and this makes the average
distance to be zero. In general, all the results shown in the figure are good as the average distance
is smaller than one in all cases. Since the increase of Nit does not guarantee the improvement in
performance, we take Nit = 2 for reducing the complexity of the algorithm.

λ
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Figure 2. Results for VAR-models with KS = 15, for which the true sparsity pattern is shown in
Figure 1c. With the convention that dist denotes the distance between the estimated sparsity pattern
and the true one, we plot mean(dist) ±1 standard deviation(dist) versus the parameter λ. The statistics
are computed from Ntr = 10 trials, for both the adaptive and the non-adaptive case.
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Figure 3. Impact of Nit on the performance of AlgoEM: Evaluation is done by replacing in AlgoEM the
IT criterion with an oracle having full knowledge about the true sparsity pattern. For each KS and for
each Nit, we run Ntr = 10 trials for calculating the average distance between the true sparsity pattern
and the sparsity pattern selected by oracle.

It is clear from the description of Algorithm 1 that Nit is the same for the two major loops of
AlgoEM. We name the first loop MEEM(Pen) and the second one MEEM(Con). Obviously, MEEM is the
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acronym for Maximum Entropy Expectation-Maximization, Pen stands for penalized settings, and Con
means constrained settings. Because we want to quantify the influence of MEEM(Con) on the accuracy
of the estimation, we show in Figure 4 the average distances to the true pattern, when the estimates
are produced by MEEM(Pen) and by MEEM(Con), respectively. This time we do not report results
obtained only when an oracle is used for selecting the sparsity pattern, but also for the case when
the selection is done with the IT criteria defined in Section 4. We can observe that AICc and FPE
perform very poorly, whereas both EBICFD and RNMLFD are very good. The fact that RNMLFD is
superior to RNML demonstrates the importance of the extra-term in (31). Remark also that EBICFD is
more accurate than SBC, while EBIC has the same level of performance as SBC. The most important
conclusion is that removing MEEM(Con) from AlgoEM does not deteriorate the final outcome.

The next step is to compare AlgoEM with the algorithm that solves the optimization problem
in (13). We use the implementation from [12], which is publicly available at the address https:
//drive.google.com/file/d/0BykD2O6uX6KjSGlkQTRYWFVBZGM/view, and we call it AlgoSL.
The name comes from the fact that the method in (13) is sparse plus low-rank.
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Figure 4. Performance of IT criteria compared to that of an oracle: (a) Only the first major loop,
MEEM(Pen), of AlgoEM is executed; (b) Both MEEM(Pen) and MEEM(Con) are executed.

https://drive.google.com/file/d/0BykD2O6uX6KjSGlkQTRYWFVBZGM/view
https://drive.google.com/file/d/0BykD2O6uX6KjSGlkQTRYWFVBZGM/view
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5.3. Comparison of AlgoEM and AlgoSL

In [12], the sparsity pattern for a given pair of parameters (λ, γ) is found by solving (13).
Reference [10] uses further this sparsity pattern as an initialization for a constrained optimization
problem (see also the discussion below Equation (25)). In both cases, a set of sparsity patterns
is generated by choosing various values for the parameters λ and γ. For selecting the best one,
they consider an alternative to IT criteria, which is dubbed score function (SF). The key point is that,
when using SF, it is not needed to compute explicitly the matrix coefficients of the VAR-model. More
details are provided below.

Let Φ̂m be an estimate of Φm in (4), which is constrained to have a certain sparsity pattern, SP.
Using an idea from [9], reference [10] suggests to employ Data for computing the correlogram Φ̂c

m
(with Bartlett window) [26], and then to evaluate the relative entropy rate:

D(Φ̂c
m||Φ̂m) = −

1
4π

∫ π

−π
log det Ω(ω) + tr(I−Ω(ω))dω, (32)

where Ω(ω) = Φ̂c
m(ω)Φ̂−1

m (ω) for all ω ∈ (−π, π]. This formula can be regarded as a generalization
of the I-divergence of two positive definite matrices, which was originally introduced in connection
with graphical models (static case) [3]. The expression in (32) was also employed by [27] in the
inference of graphical models for time series. Some of the properties of the relative entropy rate are
discussed in [28]. It is worth noting that this index also belongs to the Tau divergence family [29]
and to the Beta divergence family [30]. It has been proven in these references that the use of (32) in
the formulation of the Maximum Entropy problem leads to the simplest solution, in the sense of the
minimum McMillan degree.

The most important is that, in [10], D(Φ̂c
m||Φ̂m) is utilized for quantifying the adherence of the

model to the data. The complexity of the model is determined by Ne, the total number of edges in the
graph (including the edges that connect the latent variables to the manifest variables). For instance,
if the model has a single latent variable, then Ne = K(K + 1)/2− N0. Note that N0 has the same
significance as in (26). It follows that Nef = Ne + p(K2 − 2N0), which leads to the conclusion that
Nef > Ne, and the difference between the two quantities increases when the order of the model raises.
If p = 1 and the number of latent variables is at least three (r ≥ 3), then Nef < Ne when N0 is large.

The score functions given in [10] are:

log SF1(Data; SP) = logD(Φ̂c
m||Φ̂m) + log Ne, (33)

SF2(Data; SP) = D(Φ̂c
m||Φ̂m) +

Ne

T
, (34)

SF3(Data; SP) = D(Φ̂c
m||Φ̂m) +

Ne log T
T

, (35)

where D(·||·) is defined in (32). The formula of SF1 is logged for ease of reading.
We apply AlgoSL to all the time series we have simulated (see again Section 5.1). In our

experiments, we consider the pairs (λ, γ) for which λ ∈ {0.1, 0.2, . . . , 0.6} and γ ∈ {0.01, 0.02, . . . , 0.5}.
For the selection of the sparsity pattern, we do not use only the score functions in (33)–(35), but we
also employ the IT criteria from Section 4. The results are shown in Figure 5. The best criterion is
RNMLFD, which is able to find the true sparsity pattern in all the experiments; the second best is
EBICFD. The comparison of the plots in Figure 5 to those in Figure 4 leads to the conclusion that AlgoSL
works better than AlgoEM when RNMLFD is employed for selecting the model. For understanding
these results, we should take into consideration two important aspects: (i) Oracle gives perfect results
for all KS in the case of AlgoSL, but not in the case of AlgoEM; to some extent this is due to the fact
that 300 (λ, γ)-pairs allow to produce a better set of candidates for AlgoSL than the one generated by
100 λ-values for AlgoEM; (ii) The score functions have been used in [10] for time series of hundreds of
samples, whereas the size of the time series we simulated is much larger (T = 50,000).
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In order to clarify the second aspect, we conduct an experiment with simulated time series for
which T = 500. The simulation procedure is the same as in Section 5.1 and all the settings are the
same, except that the non-zero entries of the matrices {Qi}

p
i=0 (which are not located on the main

diagonal) have values that are fifty times larger. For AlgoEM, the uniform grid for λ takes values on
the interval [10−3, 10−1]; the grid step is 10−3 (see also [31]). Based on some empirical evidence, we use
the parameters λ ∈ {0.02, 0.03, . . . , 0.3} and λγ ∈ {0.01, 0.015, . . . , 0.2} for AlgoSL. All IT criteria and
all the score functions are used for both AlgoEM and AlgoSL, and the estimation results are reported
in Figure 6. In general, they are worse than the results for large sample size (T = 50,000), and the
difference is more evident when KS = 15. This shows that, for small T, it might be difficult to recover
the true structure of ISDM when it is not sparse enough. It is encouraging that, even for KS = 15,
oracle used in conjunction with AlgoSL finds the true pattern in all trials.
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Figure 5. Estimation results obtained when AlgoSL is applied to the same time series which have
been used to evaluate the performance of AlgoEM in Figure 4. For selection of the sparsity pattern,
we employ the score functions in (33)–(35) and the IT criteria from Section 4. Score function SF2 is not
shown in the graph because it leads to large values of the average distance: 102.4 for KS = 2, 101.5 for
KS = 3, and 89.1 for KS = 15.

To gain more insight, we give in Figure 7 a graphical representation of all the distances which
are computed by oracle for a time series whose ISDM has KS = 15. It follows from the way in which
we have chosen the experimental parameters that the total number of such distances calculated for
AlgoSL is more than eleven times larger than the number of distances for AlgoEM. We should keep in
mind that we need to compute the distance from the pattern estimated by each candidate in the list to
the true sparsity pattern. After a laborious process of selecting the values of λ and λγ, we ended-up
with a two-dimensional grid which yields a good number of estimated patterns that are identical to
the true pattern (see the white area inside the square shown in Figure 7b). The behavior of AlgoEM is
different: For a large range of λ-values, the K×K upper-left block of the estimated pattern is equal
to the identity matrix, which makes the distance to the true pattern to be equal to KS. This happens
when the number of latent variables used in AlgoEM equals the true number (r = 1) as well as when
r = 2 is utilized in estimation. However, it is evident in Figure 7a that the estimation results are better
when r = 1. If the number of latent variables is not known a priori, one possibility might be to use
an ITC for selecting it. Note that the definition of Nef in (26) should be modified. The score functions
given in (33)–(35) do not need to be altered in order to be employed in selection of the number of
latent variables.
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Figure 6. Estimation results when sample size is small (T = 500).
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Figure 7. Distances computed for sparsity patterns which are estimated from a time series of length
T = 500; the value of KS for the true sparsity pattern is 15. (a) AlgoEM (r is the number of latent
variables used in estimation); (b) AlgoSL.

5.4. Real-World Data

In addition to the experiments with simulated data, we test the capabilities of AlgoEM on
multivariate time series of daily stock markets indices at closing time, which can be downloaded from
the following address: http://au.mathworks.com/matlabcentral/fileexchange/48611-international-
daily-stock-return-data-for-system-identification. This dataset was produced by pre-procesing the
original data from http://finance.yahoo.com, which have been measured from 4 January 2012 to
31 December 2013. We refer to [10] for details regarding the pre-processing. The time series is K-variate
with K = 22, and the sample size is T = 518.

For each component of the time series, we give the name of the country where was measured
and we write in parentheses the acronym used in this analysis: Australia (AU), New Zealand (NZ),
Singapore (SG), Hong Kong (HK), China (CH), Japan (JA), Korea (KO), Taiwan (TA), Brazil (BR),
Mexico (ME), Argentina (AR), Switzerland (SW), Greece (GR), Belgium (BE), Austria (AS),
Germany (GE), France (FR), Netherlands (NL), United Kingdom (UK), United States (US), Canada (CA),
Malaysia (MA). The official names of the price indices can be found in [10].

Similar to [10], we take the order of VAR-model to be p = 1, and we assume that there is a single
latent variable (r = 1). For AlgoEM, we have Nit = 4 and λ takes values on a uniform grid on the
interval [2× 10−3, 2× 10−1], for which the grid step is 2× 10−3. When AICc is used for choosing the
model, the results are disappointing because the selected sparsity pattern contains very few zeros.
The same type of outcome is also obtained when applying SF2 or SF3. It is interesting that SF1 as
well as six different IT criteria (SBC, EBIC, EBICFD, FPE, RNML, RNMLFD) select exactly the same
sparsity pattern. This one is compared in Figure 8 to the sparsity pattern given in [10], for the same
data set. Observe that the conditional independence graph yielded by AlgoEM has only four edges
which connect manifest variables: Three of them connect vertices corresponding to Asian markets,
(HK,CH), (HK,JA), (JA,KO), and the fourth one connects two European markets, (GR,AT). This is
different from the conditional graph in [10], where all the edges between manifest variables connect
only the European markets (with the exception of Greece). An in-depth analysis of the two graphs is
beyond the interest of this paper.

http://au.mathworks.com/matlabcentral/fileexchange/48611-international-daily-stock-return-data-for-system-identification
http://au.mathworks.com/matlabcentral/fileexchange/48611-international-daily-stock-return-data-for-system-identification
http://finance.yahoo.com
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Figure 8. International stock markets data: Comparison between the sparsity pattern for manifest
variables from [10] and the pattern produced by AlgoEM when either SF1 or one of the following IT
criteria is used: SBC, EBIC, EBICFD, FPE, RNML, RNMLFD.

6. Final Remarks

The main motivation for this study is the solution proposed in [5] for the static case, as an
alternative to the method from [4]. We have shown how the estimation method from [5] can be
generalized for the dynamic case. The resulting algorithm is dubbed AlgoEM. We have conducted
an empirical study in which we have investigated the capabilities of AlgoEM and we have also
compared it with the generalization of the method from [4], which was proposed in [10]. It is
important to emphasize that the two methods for latent-variable autoregressive models, which we
have compared, have some common features: apply the Maximum Entropy principle, use convex
optimization, and generate a set of candidate models from which the best one is selected by a certain
rule. In the case of AlgoEM, the set of the candidates depends strongly on the parameter λ, which is
chosen by the user. For the method in [10], the user should choose two parameters, λ and γ. Based on
our experience, the selection of the two parameters is much more difficult than the selection of the
single parameter for AlgoEM. Another important aspect is how to pick-up the winner from the
competing models. In [10], this was restricted to the use of score functions. We have demonstrated
empirically that the IT criteria might be an option to consider. Especially when the sample size is large,
it is recommended to employ the criterion RNMLFD which we have introduced in this work.
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