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Abstract: The paper technically proposes a newly secure scheme for simultaneous wireless power and
information transfer (SWIPT) frameworks. We take into account an orthogonal frequency division
multiplexing (OFDM)-based game which is in relation to a multi-input multi-output multi-antenna
Eavesdropper (MIMOME) strategy. The transceiver is generally able to witness the case imperfect
channel state information (ICSI) at the transmitter side. Transferring power and information are
conducted via orthogonally provided sub-carriers. We propose a two-step Stackelberg game to
optimise the Utility Functions of both power and information parts. The price for the first stage
(in connection with information) is the total power of the other sub-carriers over which the energy
is supported. In this stage, the sum secrecy rate should be essentially maximised. The second level
of the proposed Stackelberg game is in association with the energy part. In this stage, the price
essentially is the total power of the other sub-carriers over which the information is transferred.
In this stage, additionally, the total power transferred is fundamentally maximised. Subsequently,
the optimally and near-optimally mathematical solutions are derived, for some special cases such
as ICSI one. Finally, the simulations validate our scheme as well, authenticating our contribution’s
tightness and efficiency.
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1. Introduction

Physical-layer security techniques basically play a vital role in Green communication these
days. One of the important parts of these techniques are in relation to SWIPT frameworks [1–3].
These schemes as the emerging telecommunications technologies, are promising ones to highlight the
term green cited above.

Two challenging issues as the open trends in connection with SWIPT systems are: (i) actualising
a significantly appropriate tradeoff between the power and information parts; and (ii) guaranteeing
the secrecy capacity.

In connection with the tradeoff expressed above, a coefficient (ratio) should be technically defined.
Some recently conventional techniques to provide the mentioned tradeoff have been considered such
as power splitting [4], time switching [5], antenna selection [3], full/half duplexing [4] etc. However,
among them, one of the promising ones is sub-carriering [6–12].

The Stackelberg game has been widely taken into consideration in the literature aimed at
principally guaranteeing physical layer security. In [13], a game was determined in which the
transmitter was the Seller, whereas jammer was the Buyer. In [14–16], and even [17], the mentioned
game-based method was considered as well in order to maintain the secrecy rate for cognitive radio
frameworks. A dynamic hybrid-access control framework was defined in [18] exploiting the mentioned
game. For energy harvesting schemes [19,20], some secure Stackelberg games have been provided to
keep the quality of service.
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1.1. Differences and Motivation (Regarding the Related Work)

Regarding the literature, optimally closed-form solutions in terms of jointly guaranteeing the
secrecy capacity and power-information ratio are still required as favourable as possible. In other
words, even if new solutions in the technologically advanced equipment SWIPT have been widely
supported, however, they are also highly motivated.

More specifically, Ref. [21] sub-carriering in a MIMO OFDM-based SWIPT system in order to
enhance the configuration flexibility. Indeed, in [21], the norm of each sub-channel was mathematically
considered as 0.1× the number of the sub-carriers. In contrast, we use OFDM in order to pursue a goal.
This paper technically discusses how to guarantee this goal.

Finally, it should be noted that classifying the resources to the two principles energy and
information is often mapped to two totally different groups of users. Indeed, in the literature,
there seems to be (i) some schemes [22,23] in which SWIPT is defined for every specific user;
and (ii) some schemes [7,24–28] in which SWIPT is defined for two kinds of users, i.e., information
decoders, and energy harvesters (which use their energy according to their disciplines). For example,
Ref. [28] considered the energy/information for one class of users, whereas considering the artificial
noise/energy for the others who were energy harvesters. Or even more specifically, Ref. [7] designated
two separate classes of users, information receivers, and energy harvesters.

1.2. Our Contribution

More specifically, the contributions of our work are:

• Owing to the orthogonality between dually adjacent sub-carriers, the possibility of the energy
receivers being passive Eavesdroppers (Eves) is zero. For example, in [12], an OFDM block was
considered to jointly support the information and power. Inversely, in this paper, the coefficient
to handle the power-information tradeoff is in relation to the number of sub-carriers. Instead,
an active Eve is taken into account as well.

• We derive the mathematically closed-form solution as well.
• We extend and recast the solution into a sub-optimally closed-form solution using

equal-power allocation.
• We extend the two-level Stackelberg to a stochastic one for the special case ICSI.

1.3. Notation & Organisation

Some of the symbols and mathematical notations used throughout the paper are shown in Table 1.
Additionally, for more convenience, all vectors and matrices are respectively N × 1 and N × N,
without loss of optimality and generality.

The rest of the paper is organised as follows. Firstly, the main problem as well as the proposed
solution are subsequently realised in Section 2. Additionally, the results are addressed in Section 3.
Finally, conclusion and proofs are represented in Section 4 and Appendix A.

Table 1. Notations.

Notation Definition Notation Definition

A Matrix log{⋅} Logarithm
a Vector Tr{⋅} Trace of Matrix
a Scalar max{⋅} Maximum Value
I Identity Matrix Sup Supremum
0 All-zero Matrix vec{⋅} Vectorisation
ˆ(⋅) Estimation operation ∣∣ ⋅ ∣∣ Euclidean Norm
{⋅}H Hermitian ∶= Equal by Definition

det{⋅} Determinant (⋅)∗ Optimum Value
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2. System Description and Problem Formulation

In this section, firstly the system and the main problem are described, subsequently, our proposed
scheme is discussed.

2.1. System Description

A MIMOME OFDM-based transceiver is given in Figure 1 supporting K legitimate users and
M energy receivers. The MIMO channels between the legitimate transmitter and the kth legitimate
user as well as the active Eve are formulated by H(k) and G (Our scheme unhesitatingly satisfies for
H and G of sizes A × B, A ≠ B. However, we consider them square for more simplicity, without loss
of generality and optimality.), in a downlink scenario. The superscripts i and j are relation to the
sub-carriers over which the information and energy are respectively transferred. Moreover, due to the
orthogonality between the pair of adjacent sub-carriers, the energy receivers cannot be passive Eves.
Finally, the coefficient for handling the power-information tradeoff is in association with the number
of sub-carriers.

Over ith subcarrier: 

Information

Interception

Over jth subcarrier: 

Power

B
a

se S
ta

tio
n

iG

(k)

iH

Unique information

(m)
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1st Energy Device

…
…
…
…

Subcarriers: … ith jth …

Information       Energy

1st Legitimate User

kth Legitimate User

Eavesdropper

mth Energy Device

…
…

Figure 1. MIMOME OFDM-based Transceiver in downlink.

We should strongly highlight here that our scheme does not experience any limitations. Though over
both the jth sub-carrier, an energy harvester, and over the ith one, one information decoder is
respectively allocated, however, the interception between these two adjacent sub-carriers is unified by
zero. The interception should be fully considered since the energy harvester can potentially intercept
the information decoder, due to the closer location to the access point. However, in order to guarantee
a perfect scheme, an active Eavesdropper is also accordingly taken into account (We should add that
classifying the resources to the two principles energy and information is often mapped to two totally
different and separate sorts of users. Additionally, the energy harvested by the harvesters, may be
used to decoding (such as in non-orthogonal multiple access scenarios in which we have two kinds of
users, namely (i) strong users; and (ii) weak users); relaying (in cooperative schemes) etc.).

Assuming a fixed Bandwidth, Ergodic capacities C(k)r,i and Ce,i at the receiver of the kth legitimate
user and Eve over the ith sub-carrier (ith sub-channel) are respectively considered as

C(k)r,i = log
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

det
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

I +
1

δ
(k)2
r,i

H(k)i Qi H
(k)H
i

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, (1)
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and

Ce,i = log
⎧⎪⎪
⎨
⎪⎪⎩

det
⎧⎪⎪
⎨
⎪⎪⎩

I +
1

δ2
e,i

GiQiG
H
i

⎫⎪⎪
⎬
⎪⎪⎭

⎫⎪⎪
⎬
⎪⎪⎭

, (2)

with respect to (w.r.t.) the transmit covariance matrix Qi ∶= E{xixH
i }, and moreover the noise variance

terms δ
(k)2
r,i and δ2

e,i at the receiver sides (over the ith sub-channel). Thus, the secrecy capacity in relation
to the kth user over the ith sub-carrier is defined as

C
(k)
S,i ∶= max {0, C(k)r,i −Ce,i} . (3)

Fact 1: Consider S, Az and Uz respectively as a finite set of Players, a set of Actions of the zth
Player, and the Utility Function for the zth Player. A Game {S ,Az,Uz} unhesitatingly has a Stackelberg
Equilibrium, if

• Az,∀z ∈ Z is a non-empty compact convex subset over the Euclidian Space,
• and also Uz is quasi-concave over Az.

Please see [29] for the proof.

Definition 1 (Stackelberg Equilibrium [30]). The vector of Action Space A = (ã1, ã2) = (ã11, ã12, ã21, ã22)

basically is a Stackelberg Equilibrium if and only if: ã1 = arg max
a1
U1(a1, â2(a1)) satisfies, where â2(a1)

= arg max
a2

(a1, a2),∀a1, and also ã2 = â2(ã1).

Definition 2. Consider a given Price set {P∗n }
N

n=1 , n ∈ {i, j, i ≠ j, i = 1, ...,I, j = 1, ...,J }, N ∈{I,J ,I ≠ J }.
For example, P∗i is the power over the ith sub-carrier. As can be observed, the total number of sub-carriers is
ρI + (1− ρ)J ,∀ρ ∈ [0, 1). ρ is a coefficient by which the option information/energy transferring is handled.

2.2. Our Two-Stage Stackelberg Game

Let us define the two-level Stackelberg Game G as

G ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Uin f o ∶= ∑
I

i=1∑
K

k=1 C
(k)
S,i −∑

J
j=1,j≠i∑

M

m=1P
(m)
j ,

Upower ∶= ∑
J
j=1,j≠i∑

M

m=1P
(m)
j −∑

I

i=1,i≠jPi.
(4)

First step and the relative strategy: On this level, the Utility Function is Uin f o. The objective is the
secrecy capacity for the ith sub-carrier for K legitimate users. The Price is the total transmit power of
those sub-carriers over which power should be transferred toM energy receivers (P(m)j ).

Second step and the relative strategy: On this level, the Utility Function is Upower. The objective is
the total transmit power of those sub-carriers over which power should be transferred toM energy
receivers. The Price is the total transmit power of those sub-carriers over which information should be
transferred (Pi).

Claim 1: Our Stackelberg game is called two-stage since there appear to be two separately defined
controllers, i.e., Pi and P(m)j . These controllers are essentially assigned to respectively two separate
group-Players legitimate users and energy receivers.

Proposition 1. There undoubtedly exists a Stackelberg Equilibrium for the Game G.

Proof. See Appendix A.
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Theorem 1. The Game G has an optimal solution as Problem P1 as

(Q∗

i ,P∗i ,P(m)∗j ) = arg max
Qi ,Pi ,P

(m)
j

⎧⎪⎪
⎨
⎪⎪⎩

⎧⎪⎪
⎨
⎪⎪⎩

I

∑
i=1

K

∑
k=1
C
(k)
S,i −

J

∑
j=1,j≠i

M

∑
m=1
P
(m)
j

⎫⎪⎪
⎬
⎪⎪⎭

,

⎧⎪⎪
⎨
⎪⎪⎩

J

∑
j=1,j≠i

M

∑
m=1
P
(m)
j −

I

∑
i=1,i≠j

Pi

⎫⎪⎪
⎬
⎪⎪⎭

⎫⎪⎪
⎬
⎪⎪⎭

,

(5)

constraining

C1 ∶ Pi ∶ Tr {QiQ
H
i } ≤ P(i)th , (6)

in which P(i)th is a threshold defined for the transmit power over the ith sub-carrier, and finally

C2 ∶ P
(m)
j ≥ 0. (7)

Proof. See Appendix B.

Claim 2: According to Claim 1, we should highlight that our Stackelberg game is called two-stage
since, indeed, Q∗

i (P
∗

i ;P(m)∗j ) is a 2-D controller w.r.t. both Pi and P(m)j .
Claim 3: From (5), it can be conveniently witnessed that the security in our SWIPT scheme is

efficiently guaranteed for the kth user, that is, C(k)S,i .

Remark 1. The Game G has a sub-optimal solution as Problem P2 as

Q∗

i = arg max
Qi

⎧⎪⎪
⎨
⎪⎪⎩

⎧⎪⎪
⎨
⎪⎪⎩

I

∑
i=1

K

∑
k=1
C
(k)
S,i −

J

∑
j=1,j≠i

M

∑
m=1
P
(m)
j

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

J

∑
j=1,j≠i

M

∑
m=1
P
(m)
j −

I

∑
i=1,i≠j

Pi

⎫⎪⎪
⎬
⎪⎪⎭

⎫⎪⎪
⎬
⎪⎪⎭

, (8)

while constraining

C1 ∶ Pi ∶ Tr {QiQ
H
i } ≤

1
ρI

, (9)

and finally

C2 ∶ P
(m)
j ≤

1
(1− ρ)JM

. (10)

Proposition 2. Equivalently, Problem P2 can also be consequently re-stated as Problem P3 as

Q∗

i = arg max
Qi

⎧⎪⎪
⎨
⎪⎪⎩

⎧⎪⎪
⎨
⎪⎪⎩

I

∑
i=1

K

∑
k=1
C
(k)
S,i −

1
(1− ρ)JM

⎫⎪⎪
⎬
⎪⎪⎭

,{
1

(1− ρ)JM
−

1
ρI

}

⎫⎪⎪
⎬
⎪⎪⎭

. (11)

Proof. Regarding the principle Equal-power allocation, Problem P1 can be conveniently re-casted into
Problem P3, which near-optimally satisfies.

Remark 2. Generally, assuming equal-power allocation among the sub-carriers consequently reduces the energy
consumption at the transmitter and receiver, as completely discussed in [12].

Remark 3. The rates obtained through two totally different approaches Water-filling and equal-power allocation
for the sub-carriers are nearly equal [12,31].
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Proposition 3 (ICSI case). Under the assumption of experiencing the case ICSI, the Game G has another
sub-optimal solution as Problem P4 as

max
Qi

R
(k)
i , (12)

while consequently defining the following probabilistic constraint w.r.t. C(k)S,i ∈ [0,R(k)i )

C1 ∶ P{C
(k)
S,i ≥R

(k)
i } ≥ 1− ε, (13)

and

C2 ∶ Pi ∶ Tr {QiQ
H
i } ≤

1
ρI

, (14)

and finally

C3 ∶ P
(m)
j ≤

1
(1− ρ)JM

, (15)

in which (13), according to Bernstein inequality as a probabilistic method to deal with the controversial case
ICSI (see for example [32,33]), can be re-casted as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tr {G
1
2
i F(k)i G

1
2
i }−

√
−2 ln(ε)α

(k)
i + ln(ε)β

(k)
i + d(k)1,i ≥ 0,

∣∣

⎡
⎢
⎢
⎢
⎢
⎢
⎣

vec (G
1
2
i F(k)i G

1
2
i )

√
2G

1
2
i F(k)i gi

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∣∣ ≤ α
(k)
i ,

β
(k)
i IN +G

1
2
i F(k)i G

1
2
i ≥ 0,

(16)

where α
(k)
i and β

(k)
i are Slack variables which are derived by the algorithm given in Algorithm 1 w.r.t. DogLeg

method [34,35], and

d(k)1,i ∶= gH
i F(k)i gi − ((2(R

(k)
i ))d(k)2,i − 1)δ2

e,i, (17)

F(k)i ∶= −2(R
(k)
i )d(k)2,i Qi, (18)

and

d(k)2,i ∶=
δ
(k)2
r,i

h(k)Hi Qih
(k)
i

, (19)

w.r.t.

ĝi ∶= gi + G
1
2
i gi

²
∆gi

,
(20)

and

⎧⎪⎪
⎨
⎪⎪⎩

gi ∶= vec{Gi},

h(k)i ∶= vec{H(k)i }.
(21)
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Algorithm 1. Dogleg method [34,35]. Proposed algorithm for deriving α
(k)
i and β

(k)
i .

Output: α
(k)∗
i , β

(k)∗
i

1. Initialisation: Set the Knees ϕ
(k)
i (α; t = 0), ϕ

(k)
i (β; t = 0), and the Legs γ

(k)
i (ϕ, α; t = 0),

γ
(k)
i (ϕ, β; t = 0).

2. Computation: Until convergence
3. Repeat: Update the Knees and Legs; go to Step 2; t = t + 1.

3. Results and Evaluation

In this section, we provide a theoretical and simulation-based analysis over our newly
proposed framework.

Some parameters taken into account in the simulations are given in Table 2, all of which are fixed,
if not mentioned otherwise.

Table 2. Simulation parameters.

Parameter Value

The size of MIMOs (N) 4 (i.e., 4× 4)
Transmit power threshold P(i)th SNR regime
Convex interface package CVX [36]
Number of sub-carriers 1024
Number of legitimate users (k) 25
Number of Randomly generated channel realisations 300

The secrecy capacity is depicted in Figure 2 against the number of iterations, for the two cases
ICSI and full CSI, where the size of MIMO, i.e., N is 4, using the equal-power technique.

Iterations
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Equal-power,N=4,Full CSI

Figure 2. Secrecy capacity vs. iterations’ number.

The secrecy capacity is shown in Figure 3 against the norm of the interception channel, while
changing the size of MIMO, i.e., N. In this figure, an average is thoroughly applied on n entries of
the matrices.
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Figure 3. Secrecy capacity vs. the interception channel’s norm.

Remark 4. It should be noted that Figure 3 succinctly indicates the Eve’s performance.

Figure 4 shows the secrecy capacity versus SNR(dB) while changing the size of MIMO, i.e., N,
comparing our work with [37,38]. Our proposed algorithm performs better than [37,38].
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Figure 4. Secrecy capacity vs. SNR(dB). (a) Complete SNR(dB) regime; (b) Low SNR(dB) regime.

Figure 5 shows the Cumulative distribution function of the secrecy capacity while changing SNR,
for the case ICSI.

Figure 6 illustrates the principle Goodput as the spent bits per sub-carrier (as the useful data:
the size of a transmitted packet devided to the transfer time), while comparing our work and [38].
Our proposed algorithm performs better than [38].

The proposed algorithm to derive the best solution to our proposed scheme is given in Algorithm 2.

Lemma 1. The algorithm stated above converges.

Proof. The algorithm is descending due to the decreasing behaviour of the inputs in the iteration step,
when Qi(Pi;P

(m)
j )→ Q∗

i (P
∗

i ;P(m)∗j ), hence, this converges. The inputs are assigned from the relative

equations, as shown in the algorithm, i.e., P(i)th , ρ,I,J ,M, ε, α
(k)
i , β

(k)
i .
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Figure 5. Cumulative distribution function vs. the secrecy capacity.
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Figure 6. Goodput vs. SNR(dB).

Algorithm 2. Proposed Resource Scheduling Algorithm.

Intput: P(i)th , ρ,I,J ,M, ε, α
(k)
i , β

(k)
i

Output: Q∗

i (P
∗

i ;P(m)∗j )
1. Initialisation: Set the given thresholds, counter = 0.
2. Computation: Until convergence
hjhSwitch
hhllllkkllllCase 1 Perfect CSI
hhdddddd.lllllkllll Solve Problem P1 (or P3).
hhllllkkllllCase 2 Imperfect CSI
hhllllffffffffffflkllll Solve Problem P4.
hjhend
If Q* is feasible for Problem, stop; store the resultant matrix.
3. Iteration: Repeat
Else if Otherwise, empty Q*; re-assign the possible candidates; update the subsets; go to Step 2;
counter = counter + 1.
End

As completely discussed in [37], since the utility functions are tightly concave over the feasible
solution sets, irrespective of some rare cases (for example spatially correlated MIMOs for which other
interface algorithms has been proposed such as proximal-point-based regularization approach [37]),
the algorithm converges. Of course, the aforementioned concavity is proven in the next parts, as well.
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Lemma 2. (Complexity): Our scheme’s complexity in terms of Big-O function is ≈O(N3), compared to
≈O(N5) obtained for [38].

The figures and discussions mentioned above straightforwardly highlight our scheme’s efficiency
and correctness.

4. Conclusions

A secure scheme for SWIPT systems was proposed in a MIMOME OFDM-multi-user-based strategy.
OFDM was used to transfer the power and information. A two-level Stackelberg game was also
proposed to optimise the Utility Functions of both power and information sides. The novelty stated
above was conducted as well, supporting some theorems and propositions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof of Proposition 1

The existence of any Stackelberg Equilibrium for the Game G is proven according to the uniqueness
of the Game G. Prior of this, we should prove the mentioned uniqueness regarding the concavity of
the two-step Game G. The concavity expressed above is proven regarding the fact that both steps of
the Game G are concave. Please see the following.

It is sufficient to prove the concavity (see for example [39]) of only the first level. h(bx1 + (1− b)x2),

0 ≤ b ≤ 1 is concave if and only if ∂2h(b)
∂b2 ≤ 0 (see for example [40]). Now, let us define the function

(For more convenience, in order to simplify the following equations (only in Appendix A), please
consider a single-user case. This assumption results in removing the superscript k in the following).

h(Qi) ∶= log
⎧⎪⎪
⎨
⎪⎪⎩

det
⎧⎪⎪
⎨
⎪⎪⎩

I +
1

δ2
r,i

H iQi H
H
i

⎫⎪⎪
⎬
⎪⎪⎭

⎫⎪⎪
⎬
⎪⎪⎭

− log
⎧⎪⎪
⎨
⎪⎪⎩

det
⎧⎪⎪
⎨
⎪⎪⎩

I +
1

δ2
e,i

GiQiG
H
i

⎫⎪⎪
⎬
⎪⎪⎭

⎫⎪⎪
⎬
⎪⎪⎭

, (A1)

and

Q(2)i + b(Q(2)i −Q(1)i ) = U i + bV i, (A2)

therefore,

h1(b) = log{det{I + (U(1)i + bV(1)i )W(1)
i }} , (A3)

and

h2(b) = log{det{I + (U(2)i + bV(2)i )W(2)
i }} , (A4)

where

W(1)
i ∶= HH

i H i, (A5)

W(2)
i ∶= GH

i Gi. (A6)

Let us define new variables

X(1)i ∶= I +U(1)i W(1)
i , (A7)
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X(2)i ∶= I +U(2)i W(2)
i , (A8)

Y(1)i ∶= V(1)i W(1)
i , (A9)

Y(2)i ∶= V(2)i W(2)
i . (A10)

Hence,

h f (b) ∶= log{det{X( f)
i + bY( f)

i }} , f ∈ {1, 2}, (A11)

which is equal to

h f (b) = log

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

det

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X
( f) 1

2
i (I + b X

( f)−1
2

i Y( f)
i X

( f)−1
2

i
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D( f)
i

)X
( f) 1

2
i

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

D
∑
d=1

log(1+ bλ
( f)
d )+ log{det{X( f)

i }} , f ∈ {1, 2},

(A12)

for which λ
( f)
d are the eigen-values of D( f)

i , ∀ f ∈ {1, 2}.
Now, we have

∂2h f (b)
∂b2 = −

D
∑
d=1

λ
2( f)
d

(1+ bλ
( f)
d )2

≤ 0, f ∈ {1, 2}. (A13)

Thus, the proof is completed regarding the concavity derived above.

Appendix B

Proof of Theorem 1

First of all, let us provide the following definition [41].

Definition A1. For the Stackelberg Equilibrium (a1, a2) the following should hold

Uz(a1) = Sup
Sup

az

Uz(a(1)z ),
(A14)

and

Uz(a2) = Sup
Sup

az

Uz(a(2)z ).
(A15)

Regarding Definition A1 given above, now, the following equations hold

I

∑
i=1

K

∑
k=1
C
(k)
S,i (Q∗

i ;P∗i )−

J

∑
j=1,j≠i

M

∑
m=1
P
(m)
j ≥

I

∑
i=1

K

∑
k=1
C
(k)
S,i (Qi;P

∗

i )−

J

∑
j=1,j≠i

M

∑
m=1
P
(m)
j , (A16)
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I

∑
i=1

K

∑
k=1
C
(k)
S,i (Q∗

i ;P∗i )−

J

∑
j=1,j≠i

M

∑
m=1
P
(m)
j ≥

I

∑
i=1

K

∑
k=1
C
(k)
S,i (Q∗

i ;Pi)−
J

∑
j=1,j≠i

M

∑
m=1
P
(m)
j , (A17)

I

∑
i=1

K

∑
k=1
C
(k)
S,i (Q∗

i ;Pi)−
J

∑
j=1,j≠i

M

∑
m=1
P
(m)
j ≥

I

∑
i=1

K

∑
k=1
C
(k)
S,i (Qi;Pi)−

J

∑
j=1,j≠i

M

∑
m=1
P
(m)
j , (A18)

I

∑
i=1

K

∑
k=1
C
(k)
S,i (Qi;P

∗

i )−

J

∑
j=1,j≠i

M

∑
m=1
P
(m)
j ≥

I

∑
i=1

K

∑
k=1
C
(k)
S,i (Qi;Pi)−

J

∑
j=1,j≠i

M

∑
m=1
P
(m)
j , (A19)

and

J

∑
j=1,j≠i

M

∑
m=1
P
(m)∗
j −

I

∑
i=1,i≠j

Pi ≥
J

∑
j=1,j≠i

M

∑
m=1
P
(m)
j −

I

∑
i=1,i≠j

Pi. (A20)

Hence, we are able to proceed with

∂{C
(k)
S,i (Q∗

i ;Pi)}

∂Q∗

i
= 0, (A21)

As completely discussed for example in [33] (Equation (43)) can be conveniently derived

exploiting the facts ∂ {log{det {U}}} = Tr {U−1∂U} [42], chain rule as ∂g(U= f(U))
∂U [43] (Equation (135)),

and ∂(W(U)V)
∂U = (∂(W(U)))V + 0 [43] (Equation (37)).

Solving (42) completes the proof.
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