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Abstract: Many cryptographic systems require random numbers, and the use of weak random
numbers leads to insecure systems. In the modern world, there are several techniques for generating
random numbers, of which the most fundamental and important methods are deterministic
extractors proposed by von Neumann, Elias, and Peres. Elias’s extractor achieves the optimal
rate (i.e., information-theoretic upper bound) h(p) if the block size tends to infinity, where h(·) is
the binary entropy function and p is the probability that each bit of input sequences occurs. Peres’s
extractor achieves the optimal rate h(p) if the length of the input and the number of iterations tend
to infinity. Previous research related to both extractors has made no reference to practical aspects
including running time and memory size with finite input sequences. In this paper, based on some
heuristics, we derive a lower bound on the maximum redundancy of Peres’s extractor, and we
show that Elias’s extractor is better than Peres’s extractor in terms of the maximum redundancy
(or the rates) if we do not pay attention to the time complexity or space complexity. In addition, we
perform numerical and non-asymptotic analysis of both extractors with a finite input sequence with
any biased probability under the same environments. To do so, we implemented both extractors
on a general PC and simple environments. Our empirical results show that Peres’s extractor is
much better than Elias’s extractor for given finite input sequences under a very similar running time.
As a consequence, Peres’s extractor would be more suitable to generate uniformly random sequences
in practice in applications such as cryptographic systems.

Keywords: true random number generation; von Neumann’s extractor; Peres’s extractor;
Elias’s extractor

1. Introduction

Many cryptographic systems require random numbers, and the use of weak random numbers
leads to insecure systems. In fact, many past security problems were due to the use of weak random
numbers [1–4]. This tells us that random number generation is very important in cryptography,
in particular to ensure that secret keys are random and unpredictable. In the modern world,
there are several techniques for generating random numbers. A natural source such as physical
phenomena, the stock market, or Bitcoin [5] can produce unpredictable random sequences, although
such sequences are not uniformly random at the source (i.e., biased). However, there is a solution
to solve this problem, namely, to use deterministic extractors. A deterministic extractor is a function
which takes a non-uniformly random sequence as input and outputs a uniformly random sequence.
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The deterministic extractors have been studied in mathematics, information theory, and cryptography.
In information theory, those extractors can also be treated for the intrinsic randomness problem
(i.e., the problem of generating truly random numbers). Furthermore, as applications in cryptography,
the output sequence of those extractors can be used as secret keys in information-theoretic cryptography
or symmetric key cryptography. The extractors by von Neumann [6], Elias [7], and Peres [8] are
fundamental and important ones. In particular, Elias’s and Peres’s extractors are interesting, since they
can achieve the optimal rate (or redundancy), if we suppose that input size tends to infinity (i.e., from
an asymptotic viewpoint). However, it is not easy to conclude which one is better, since those are
constructed by completely different approaches. The main purpose of this paper is to investigate those
with finite inputs (i.e., from a non-asymptotic viewpoint) by numerical analysis to make it clear which
is better for practical use.

1.1. Related Work

Several works have proposed methods for extracting uniform random sequences from
non-uniform random sequences. The most famous among them is von Neumann’s extractor [6]
proposed in 1951. He demonstrated a simple procedure for extracting independent unbiased bits
from a sequence of independent, identically distributed (i.i.d.) and biased bits. The technique by von
Neumann guarantees that the output sequences are independent and uniform if the input sequence
is independent and constantly biased, while this cannot be guaranteed if the bias is not constant
(e.g., see [9]).

An improved algorithm of von Neumann’s extractor was proposed by Elias [7] in 1971.
Elias’s extractor utilizes a block coding technique to improve the rate (or redundancy) of
von Neumann’s extractor; however, the straightforward implementation of this extractor requires
exponential time and exponential memory size with respect to N, where N is the block size, to store all
2N input sequences with their assignment of output sequences. In 2000, Ryabko and Matchikina [10]
proposed an extension of Elias’s extractor that improved time complexity and space complexity by
using the enumerative encoding technique from [11] and the Schönhage–Strassen algorithm [12] for
fast integer multiplication in order to compute the assignment of output sequences. In this paper,
we call this improved method the RM method.

Peres’s extractor is another extended algorithm of von Neumann’s extractor. In 1992, Peres [8]
proposed a procedure which improved upon von Neumann’s extractor. The basic idea of Peres’s
extractor is to reuse the discarded bits in von Neumann’s extractor by iterating similar procedures in
von Neumann’s extractor.

The extractors by von Neumann, Elias, and Peres are the most fundamental and important
ones using a single source. In particular, Elias’s and Peres’s extractors are interesting, since they
can achieve the optimal rate (i.e., information-theoretic upper bound) h(p) if input size tends to
infinity (i.e., in an asymptotic case), where each bit of input sequences from a single source occurs
with probability p ∈ (0, 1) and h(·) is the binary entropy function. In this paper, we are interested
in the non-asymptotic case, namely, the achievable rate for finite input-sizes. The rate of Elias’s
extractor for finite input-sizes can be observed in the work [7], but the rate of Peres’s extractor for
finite input-sizes is not explicitly known. As a work related to Peres’s extractor, Pae [13] reported
a recursion formula to compute the rate for finite input-sizes, but it is difficult to give the rate function
with finite input-sizes since the recursion formula is complicated. Pae also computed the rate by
the recursion formula in the case p = 1/3, compared the rates of Peres’s extractor and Elias’s extractor,
and concluded that the rate of Peres’s extractor increased much slower than that of Elias’s extractor via
numerical analysis. However, it is not explicitly known which extractor is better to use in practice, if we
take into account the running time, implementation cost, and memory size required in the extractors,
as mentioned in [13].

There are several works for constructing extractors using multiple sources (i.e., not a single source).
Bourgain [14] provided a 2-source extractor under the condition that the two sources are independent
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and each source has min-entropy 0.499n, where n is the bit-length of the output of the sources. Raz [15]
proposed an improvement in terms of total min-entropy, and constructed 2-source extractors with
the condition that one source has min-entropy more than n/2 and the other source requires min-entropy
O(log n). In 2015, Cohen [16] constructed a 3-source extractor, where one source has min-entropy δn,
the second source has min-entropy O(log n) and the third source has min-entropy O(log log n). In 2016,
Chattopadhyay and Zuckerman [17] proposed a general 2-source extractor, where each source has
a polylogarithmic min-entropy. They combined two weak random sequences into a single sequence by
using K-Ramsey graphs and resilient functions. Their extractor has only one-bit output and achieves
negligible error and higher complexity than Peres’s extractor or Elias’s extractor.

Furthermore, there are various reports about extracting random bits in the real world. In particular,
in 2009, Bouda et al. [18] used mobile phones or pocket computers to generate random data that is close
to truly random data. They took 12 pictures per second then used their function to obtain four random
bits in each picture, and then applied Carter–Wegman universal2 hash functions. Halprin and Naor [19]
presented the idea of using human game-play as a randomness source in 2009. They constructed
the Hide and Seek game that produced approximately 17 bits of raw data per click, and then generated
with a pairwise independent hash function a 128-bit string which is 264-close to the random one in
less than two minutes. In 2011, Voris et al. [20] investigated the use of accelerators on the RFID tags as
a source. They implemented a two-stage extractor on the RFID tags. It can produce 128 random bits in
1.5 s by storing a Toeplitz matrix on the RFID tags and performing matrix multiplications.

1.2. Our Contribution

In this paper, we revisit the extractors by von Neumann, Elias, and Peres, since they are
fundamental and only require a single source. In the studies on those extractors, it is normal to
asymptotically analyze the rate or redundancy of the extractors in the literature, where the rate is
the average bit-length of outputs per bit of input (see Section 2 for details). Specifically, the rate of
von Neumann’s extractor is p(1− p) that is far from the optimal rate (i.e., information-theoretic upper
bound) h(p). Meanwhile, the rate of Elias’s extractor converges to h(p) if the block size tends to infinity.
Specifically, Elias’s extractor outputs a uniformly random sequence at a high rate, when it takes a long
block size equal to the input length. However, it has a trade-off between the rates and computational
resources such as time complexity and memory size. On the other hand, Peres’s extractor achieves
the optimal rate h(p) if the length of input and the number of iterations tend to infinity, and it requires
smaller time complexity and memory size. However, it would be hard to explicitly derive the exact rate
for finite input sequences. Thus, it is not easy to conclude which is a more suitable extractor for practical
use in general. Among related work, only one, by Pae [13], compared both extractors as mentioned
in Section 1.1, but it does not completely answer the question, since it analyzed the performance of
both extractors only for restricted parameters, in particular, the case where each bit of input sequences
occurs with probability p = 1/3 and did not consider the running time. In this paper, we will perform
non-asymptotic analysis for the wide range of parameters for Elias’s and Peres’s extractors, to answer
the following question: which is more suitable for practical use in real-world applications? To do this,
we evaluate the numerical performance of Peres’s extractor and Elias’s extractor with the RM method
in terms of practical aspects including achievable rates (or redundancy) and running time with finite
input sequences. Specifically, the contribution of this paper is as follows:

(i) Based on some heuristics, we derive a lower bound on the maximum redundancy of Peres’s
extractor in Section 3. This result shows that the maximum redundancy of Elias’s extractor is
superior to Peres’s extractor in general, if we focus only on redundancy (or rates) and we do not
pay attention to the time complexity or space complexity.

(ii) By numerical analysis, we design our experiments by comparing both extractors with finite
input sequences of which each bit occurs with any biased probability p ∈ (0, 1) under
the same environments in terms of practical aspects. Both extractors are implemented on
a general PC and do not require any special resources, libraries, or frameworks for computation.
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Our implementation and results will be explained in Section 4. We calibrate our implementation
by comparing the theoretical and experimental redundancy of both extractors. Afterwards,
we analyze the time complexity of both extractors with respect to the bit-length of input sequences
from 100 to 5000. We compare the redundancy of both extractors, and our implementation shows
that Peres’s extractor is much better than Elias’s extractor under a very similar running time.
As a result, Peres’s extractor would be more suitable for generating uniformly random sequences
for practical use in applications.

The primary version of this paper appeared in CISS2017 [21], and this paper is an extended
and full version of it. The difference between the primary version [21] and this paper is as follows:
This paper contains the above result (i) in Section 3, and reports more detailed implementation results
for (ii) in Section 4. In particular, we implemented and confirmed the results (ii) at a larger scale (see
Section 4 for details) in addition to obtaining new figures in Section 4.1.

2. Preliminaries

Throughout this paper, we assume that log(·) := log2(·) and ln(·) := loge(·), and we define
0 log 0 := 0. h(·) is the binary entropy function defined by h(p) = −p log p− (1− p) log(1− p) for
p ∈ [0, 1]. Let (n

k) be a binomial coefficient defined by (n
k) := n(n−1)(n−2)···(n−k+1)

k(k−1)(k−2)···1 for nonnegative
integers n and k, and (n

0) := 1 for any n ≥ 0 (see [22] for an extension of the traditional definition of
binomial coefficients). Note that (n

k) > 0 if k ≤ n, and (n
k) = 0 if k > n.

The first deterministic extractor was constructed by von Neumann [6] in 1951, and later improved
ones were proposed by Elias [7] in 1971, and by Peres [8] in 1992. The prior work [6–8] considered
Bernoulli source Bern(p) from which input sequences were generated, namely Bern(p) outputs i.i.d.
(x1, x2, . . . , xn) ∈ {0, 1}n according to Pr(xi = 1) = p and Pr(xi = 0) = q = 1− p for some unknown
p ∈ (0, 1).

A deterministic extractor A takes (x1, x2, . . . , xn) ∈ {0, 1}n as input and outputs
(y1, y2, . . . , y`) ∈ {0, 1}`, and its average bit-length of output is denoted by ¯̀(n) which is a function
of n, and defines its rate function by rA(p) := limn→∞ ¯̀(n)/n. Additionally, for a deterministic
extractor A, we define the redundancy function by fA(p) := h(p) − rA(p), and the maximum
redundancy by Γ := supp∈(0,1) fA(p). Note that the above definition of redundancy functions is
meaningful, since h(p) is shown to be the information-theoretic upper bound of the extractors
in [7,8]. Furthermore, in this paper we define a non-asymptotic rate function rA(p, n) := ¯̀(n)/n,
a non-asymptotic redundancy function fA(p, n) := h(p)− rA(p, n), and the non-asymptotic maximum
redundancy Γ(n) := supp∈(0,1) fA(p, n), which will be used in our non-asymptotic analysis.

2.1. Von Neumann’s Extractor

Von Neumann’s extractor was a simple algorithm for extracting independent unbiased bits from
biased bits. This algorithm divides the input sequences (x1, x2, x3, x4, . . . , xn) into the pairs (If n is odd,
we discard the last bit.) ((x1x2), (x3x4), . . .) and maps each pair with a mapping as follows:

00 7→ ∧, 01 7→ 0, 10 7→ 1, 11 7→ ∧, (1)

where ∧ means no output was generated. After that, it concatenates all resulting outputs of (1).
To facilitate understanding, we give an example as follows.

Example 1. Suppose that an input sequence is (x1, x2, x3, . . . , x8) = (1, 0, 0, 1, 0, 0, 1, 1). Firstly, divide it
into the pairs as ((1, 0), (0, 1), (0, 0), (1, 1)). Next, map each pair with the mapping (1). Finally, the extractor
outputs (y1, y2) = (1, 0).
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Complexity: Von Neumann’s extractor is efficient in the sense that both time complexity and
space complexity are small such that time complexity is evaluated as O(n), and space complexity is
evaluated as O(1).

Redundancy: Von Neumann’s extractor is not desirable, since the maximum redundancy
is far from zero. In fact, the rate function rvN(p) of von Neumann’s extractor is evaluated
by rvN(p) = limn→∞ np(1− p)/n = p(1− p), which is 1/4 at p = 1/2 and less elsewhere.
In addition, the (non-asymptotic) rate functions, (non-asymptotic) redundancy functions, and
the (non-asymptotic) maximum redundancy is evaluated as follows: f vN(p, n) = f vN(p) = h(p)−
p(1− p), ΓvN(n) = ΓvN = 3/4.

2.2. Elias’s Extractor

Elias [7] improved von Neumann’s extractor by using a block coding technique in 1971. Let N ∈ N
(N ≥ 2) be the block size in Elias’s extractor. For all binary sequences with bit-length N, partition
them into N + 1 sets Sk (k = 0, 1, 2, . . . , N), where Sk consists of all the (N

k ) sequences of length
N which have k ones and N − k zeros. Here, we note that each sequence of Sk is equiprobable,
i.e., the probability pkqN−k.

We consider binary representation of the nonnegative integer |Sk| = (N
k ) as follows:

(N
k ) = αm2m + αm−12m−1 + ... + α020, where m = blog (N

k )c, αj ∈ {0, 1}, and αm = 1. In this case,
we briefly write |Sk| = (N

k ) = (αm, αm−1, . . . , α0). For each j (1 ≤ j ≤ m) such that αj = 1, we assign 2j

distinct output sequences of length j to 2j distinct sequences of Sk which have not already been assigned.
If α0 = 1, one sequence of Sk is assigned to ∧. In particular, since |S0| = |SN | = 1, two sequences
(0, 0, . . . , 0) and (1, 1, . . . , 1) are assigned to ∧. For instance, we show a procedure of Elias’s extractor in
Example 2.

Example 2. Suppose that the given input sequence x = (1, 0, 0, 1, 0, 0, 1, 1) with block size N = 4, is the same
as in Example 1. Firstly, we partition the set {0, 1}4 of possible input sequences into the following subsets:

S0 = {(0, 0, 0, 0)},
S1 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},
S2 = {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)},
S3 = {(1, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1), (0, 1, 1, 1)},
S4 = {(1, 1, 1, 1)}.

Then, we have |S0| = |S4| = 1 = (1), |S1| = |S3| = 4 = (1, 0, 0), |S2| = 6 = (1, 1, 0). We consider
the following assignment of output sequences:

(0, 0, 0, 0) 7→ ∧, (1, 1, 1, 1) 7→ ∧,

(1, 0, 0, 0) 7→ (0, 0), (1, 1, 1, 0) 7→ (0, 0),

(0, 1, 0, 0) 7→ (0, 1), (1, 0, 1, 1) 7→ (1, 0),

(0, 0, 1, 0) 7→ (1, 0), (1, 1, 0, 1) 7→ (1, 1),

(0, 0, 0, 1) 7→ (1, 1), (0, 1, 1, 1) 7→ (0, 1),

(0, 0, 1, 1) 7→ (0, 1), (1, 0, 1, 0) 7→ (1, 0),

(0, 1, 1, 0) 7→ (0, 0), (1, 0, 0, 1) 7→ (1, 1),

(0, 1, 0, 1) 7→ (0), (1, 1, 0, 0) 7→ (1).

Suppose that an input sequence x = (1, 0, 0, 1, 0, 0, 1, 1) is given. Since the block size N = 4,
the sequence is divided as x = ((1, 0, 0, 1), (0, 0, 1, 1)). By the above assignment of output sequences,
the output sequence is y = ((1, 1)(0, 1)) = (1, 1, 0, 1). Furthermore, there are several ways to assign
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mk bits to binary output sequences with the same probability that affect the output sequence y.
Thus, the output sequence of 10010011 will not be 1101, if we use another assignment. Note that
Elias’s extractor with block size N = 2 is equivalent to von Neumann’s extractor, or equivalently
the mapping (1). In this sense, Elias’s extractor is an extension of von Neumann’s extractor.

Complexity: It can be seen that the straightforward implementation of Elias’s extractor requires
much space and time complexity to make a table of the assignment of output sequences, as illustrated
by Example 2. Specifically, it requires exponential time and exponential memory size with respect
to N to store all 2N binary sequences with their assignment of output sequences. To reduce the time
and space complexity of Elias’s extractor, Ryabko and Matchikina [10] proposed a method that is
extended from Elias’s extractor, which we call the RM method in this paper. The RM method utilizes
the enumerative encoding technique from [11] and the Schönhage–Strassen algorithm [12] for fast
integer multiplication in order to compute the assignment of output sequences without making
the table large. The procedure of the RM method is described as follows.

Firstly, suppose that a binary input sequence xN = (x1, x2, . . . , xN) contains k ones and N − k
zeros. Let Num(xN) ≥ 0 be a number which is defined by xN depending on the lexicographical order
set Sk. Namely, if xN has k ones, then the number Num(xN) ≥ 0 is defined by

Num(xN) =
N

∑
t=1

( xtN − t

k−
t−1
∑

i=1
xi

)
, (2)

where the summation is taken over all 1 ≤ t ≤ N such that xt = 1, and Num(0N) := 0. Then,
we calculate a binary codeword code(xN) of xN , which is the assignment of an output sequence of xN

as follows:

(i) Compute Num(xN) in the set Sk, if xN contains k ones.

(ii) Let |Sk| = (N
k ) = 2j0 + 2j1 + ... + 2jm for 0 ≤ j0 < j1 < ... < jm.

(iii) If j0 = 0 and Num(xN) = 0, then code(xN) = ∧.
(iv) If 0 ≤ Num(xN) < 2j0 , then code(xN) is defined to be the j0 low-order binary string of Num(xN).

(v) If
t

∑
s=0

2js ≤ Num(xN) <
t

∑
s=0

2js + 2jt+1 for some 0 ≤ t ≤ m, then code(xN) is defined to be

the suffix consisting of the jt+1 binary string of Num(xN).

Example 3. Suppose that the block size N = 4, and the given input sequence is x = (1, 0, 0, 1, 0, 0, 1, 1),
which is the same as all previous examples. After that, the sequence is divided as x = ((1, 0, 0, 1), (0, 0, 1, 1)).
Next, compute Num(xN) following Equation (2):

Num((1, 0, 0, 1)) =

(
4− 1

2

)
+

(
4− 4
2− 1

)
= 3,

Num((0, 0, 1, 1)) =

(
4− 3

2

)
+

(
4− 4
2− 1

)
= 0.

Then, the RM method computes code(1, 0, 0, 1) = (1, 1) and code(0, 0, 1, 1) = (0). Finally, it outputs
y = (1, 1, 0) by concatenating code(1, 0, 0, 1) and code(0, 0, 1, 1).

The time and space complexity of Elias’s extractor with the RM method are O(N log3 N log log N)

and O(N log2 N), respectively (see [10] for details).
Redundancy: Generally, the rate function and redundancy function of Elias’s extractor depend

on block size N. For a given n-bit input sequence, if we take the block size equal to the length of input
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sequence N := n, the rate function (or redundancy) achieve the best value. For simplicity, we assume
that N = n in the following explanation. Then, the rate function rE(p, n) is evaluated by

rE(p, n) ≈ 1
n

n

∑
k=0

(
n
k

)
pk(1− p)n−k log

(
n
k

)
. (3)

Elias’s extractor takes i.i.d. with non-uniform distribution as the input, and it will output i.i.d.
with uniform distribution such that its rate is given by Equation (3). Elias [7] showed that the rate
function rE(p, n) of Elias’s extractor converges to h(p) as n → ∞, or equivalently, the redundancy
function fE(p, n) := h(p)− rE(p, n) converges to zero as n → ∞. More precisely, it was shown that
fE(p, n) = O(1/n) for any fixed p. Therefore, for a given n-bit input sequence, if we set the maximum
block size to be the input size, the non-asymptotic maximum redundancy ΓE(n) converges to zero not
slower than 1/n.

2.3. Peres’s Extractor

Peres’s extractor is another method that improved the rates (or redundancy) of von Neumann’s
extractor. The basic idea behind Peres’s extractor is to reuse the discarded bits in the mapping (1).
In the following, we denote von Neumann’s extractor by Ψ1. For an n-bit sequence (x1, x2, . . . , xn),
we describe von Neumann’s extractor by Ψ1(x1, x2, . . . , xn) = (y1, y2, . . . , y`), where yi = x2mi−1 and
m1 < m2 < · · · < m` are all the indices satisfying x2mi−1 6= x2mi with mi ≤ n/2. In Peres’s extractor,
Ψν (ν ≥ 2) is defined inductively as follows: For an even n,

Ψν(x1, x2, . . . , xn) = Ψ1(x1, x2, . . . , xn) ∗Ψν−1(u1, u2, . . . , u n
2
) ∗Ψν−1(v1, v2, . . . , v n

2−`), (4)

where ∗ is concatenation; uj = x2j−1 ⊕ x2j for 1 ≤ j ≤ n/2; vs = x2is−1 and i1 < i2 < · · · < i n
2−` are

all the indices satisfying x2is−1 = x2is with is ≤ n/2. For an odd input size n, Ψν(x1, x2, . . . , xn) :=
Ψν(x1, x2, . . . , xn−1), i.e., the last bit is discarded and the above case of an even n is utilized.

Note that the number of iterations ν is at most blog nc, since Ψν for every ν ≥ 2 is defined by Ψν−1

having an input sequence whose bit-length is at most n/2, i.e., the bit-length of both (u1, u2, . . . , u n
2
)

and (v1, v2, . . . , v n
2−`) in Equation (4) is at most n/2. Obviously, Peres’s extractor with ν = 1 is the same

as von Neumann’s extractor. In addition, Peres’s extractor with a large ν is considered to be an elegantly
improved version of von Neumann’s extractor by utilizing a recursion mechanism.

Example 4. Suppose that an input sequence is given as x = (1, 0, 0, 1, 0, 0, 1, 1), which is the same as all
previous examples. The number of iterations satisfies ν ≤ blog 8c = 3. Then, Peres’s extractor is executed
as follows:

Ψ1(x) = (1, 0),

Ψ2(x) = Ψ1(x) ∗Ψ1(1, 1, 0, 0) ∗Ψ1(0, 1) = (1, 0, 0),

Ψ3(x) = Ψ1(x) ∗Ψ2(1, 1, 0, 0) ∗Ψ2(0, 1)

= Ψ1(x) ∗ (Ψ1(1, 1, 0, 0) ∗Ψ1(0, 0) ∗Ψ1(1, 0)) ∗ (Ψ1(0, 1) ∗Ψ1(1))

= (1, 0, 1, 0).

Complexity: We denote the time complexity of Ψν by Tν(n). By Equation (4), we have

Tν(n) = T1(n) + n/2 + Tν−1(n/2) + Tν−1(n/2− `), (5)

and T1(n) = O(n) (see Section 2.1 for the time complexity of von Neumann’s extractor).
From the condition (5), we obtain Tν(n) = O(νn) for Ψν with 1 ≤ ν ≤ blog nc. In particular,
the time complexity of Peres’s extractor with the maximum iterations ν = blog nc is evaluated as
Tν(n) = O(n log n) and the space complexity is O(1).
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Redundancy: The rate function rPν (p) of Peres’s extractor can be computed inductively by
the equation

rPν (p) = pq + 1
2 rPν−1(p2 + q2) + 1

2 (p2 + q2)rPν−1

(
p2

p2+q2

)
(6)

for ν ≥ 2, and rP1 (p) = pq. Note that rP1 (p) is the rate of von Neumann’s extractor. Peres’s extractor
takes i.i.d. with non-uniform distribution as input, and it will output i.i.d. with uniform distribution
such that its rate is given by Equation (6) if n→ ∞. It is shown in [8] that rPν (p) ≤ rPν+1(p) for all ν ∈ N,
p ∈ (0, 1), and lim

ν→∞
rPν (p) = h(p) uniformly in p ∈ (0, 1).

In other words, the above result is described in terms of redundancy as follows:

fPν (p) = h(p)− rPν (p)

=
1
2

fPν−1(p2 + q2) +
1
2
(p2 + q2) fPν−1

(
p2

p2 + q2

)
(7)

for ν ≥ 2 and fP1 (p) = h(p) − p(1− p), where the above Equation (7) follows from Equation (6).
Furthermore, it holds that fPν (p) ≥ fPν+1(p) for all ν ∈ N, p ∈ (0, 1), and lim

ν→∞
fPν (p) = 0 uniformly

in p ∈ (0, 1). Suppose that we take the maximum ν = blog nc and n → ∞, and then, we have
ΓP(n) = o(1).

In Table 1, we summarize the redundancy, time complexity and space complexity (memory size)
for von Neumann’s, Elias’s, and Peres’s extractors.

Table 1. Comparison of extractors.

Redundancy Γ(n) Time Complexity Space Complexity

von Neumann’s extractor 3/4 O(n) O(1)

Elias’s extractor O(1/n) O(n log3 n log log n) O(n log2 n)
(with maximum block-size) (by [7]) (by [10]) (by [10])

Peres’s extractor O(1) O(n log n) O(1)
(with maximum iterations) (by [8]) (by [8]) (by [8])

3. Lower Bound on Redundancy of Peres’s Extractor

Although it is shown that ΓP(n) = o(1) in Peres’s extractor (i.e., ΓP(n) converges to zero as
n → ∞), it is not known whether ΓP(n) converges to zero rapidly or slowly. To investigate
it, we analyze the non-asymptotic redundancy function fPν (p, n) and non-asymptotic maximum
redundancy ΓP(n). In particular, we derive a lower bound on ΓP(n) based on some heuristics.

Let fPν (p) = h(p) − rPν (p) be the redundancy function for Peres’s extractor with ν iterations.
Then, we first show that fPν (p) is not concave in p ∈ (0, 1) for ν ≥ 5 as follows. The proof is given in
Appendix A.

Proposition 1. The redundancy function fPν (p) in Peres’s extractor with ν iterations is not concave in
p ∈ (0, 1) if ν ≥ 5. More generally, for Peres’s extractor with ν iterations, the redundancy function
fPν (p) satisfies

d2 fPν ( 1
2 )

dp2 = 8− 4
ln 2
− 6

(
3
4

)ν−1
. (8)

In particular, d2 fPν
dp2

(
1
2

)
< 0 for 1 ≤ ν ≤ 4 and d2 fPν

dp2

(
1
2

)
> 0 for ν ≥ 5.
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Here, we assume that the following proposition, Proposition 2, holds true. Although it is
not easy to provide proof, it seems to be true from our experimental results that are provided in
Appendix B. In Figure A1 in Appendix B, we depict the difference values fPν (p, n)− fPν (p) with input
bit-length n = 80, 100, ..., 200 and iterations 1 ≤ ν ≤ blog nc. We note that Proposition 2 states that
fPblog nc(p, n)− fPblog nc(p) ≥ 0 for p ∈ (0, 1), and we can observe that it holds true for input bit-length
n = 80, 100, ..., 200 by our experimental results given in Figure A1.

Proposition 2 (Heuristics). Suppose ν = blog nc. Then, we have fPν (p, n) ≥ fPν (p), or equivalently
rPν (p, n) ≤ rPν (p), for a sufficiently large n and any p ∈ (0, 1).

The following theorem shows a lower bound on ΓP(n) that is derived based on Proposition 2.

Theorem 1. Suppose that Proposition 2 holds true. Then, in Peres’s extractor with the maximum iterations
ν = blog nc, we have ΓP(n) > 1/n2−log 3. In particular, ΓP(n) = ω(1/n).

Proof. Let n be a large natural number. For a natural number ν ∈ N with 1 ≤ ν ≤ log n, we define
aν := rν(1/2). Then, by Equation (6) we have

a1 =
1
4

, aν =
1
4
+

3
4

aν−1 for ν ≥ 2.

By solving the above equation, we have

aν = 1−
(

3
4

)ν

for ν ≥ 1. (9)

Thus, for ν = blog nc, we obtain

fPν (1/2, n) ≥ fPν (1/2) (10)

= (3/4)ν (11)

≥ (3/4)log n

=
1

n2−log 3 ,

where the inequality (10) follows from Proposition 2, and the equality (11) follows from (9).
Therefore, we have

ΓP(n) = sup
p∈(0,1)

fPblog nc(p, n)

> fPblog nc(
1
2

, n) (12)

≥ 1
n2−log 3 ,

where the inequality (12) follows from Proposition 1.

Theorem 1 shows that the non-asymptotic maximum redundancy ΓP(n) does converge to
zero slower than 1/n. This means that Peres’s extractor is worse than Elias’s extractor in terms
of the maximum redundancy, since ΓE(n) = O(1/n) if block size is set to be n. However, this result
does not always mean that Peres’s extractor is worse than Elias’s extractor, since the time complexity
and space complexity of Peres’s extractor are better than those of Elias’s extractor, as shown in Table 1.
In this sense, it is not easy to conclude which extractor is superior. In the next section, from a viewpoint
of practicality including running time, we compare both extractors and show that Peres’s extractor is
better than Elias’s extractor by numerical analysis with various parameters.
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4. Implementation and Numerical Analysis

In this section, we describe our experimental results of Peres’s extractor and Elias’s extractor
with the RM method. We used Java language version 1.8 to implement both extractors and evaluated
the performance on a desktop PC with Intel Core i3 3.70 GHz and 4 GB of RAM. Our experiments could
also be performed on a general PC and do not require any special resources, libraries, or frameworks
for computation. In fact, we can use other languages instead of Java language, but Java language
can evaluate it on every platform without any support software. Thereby, we used Java language for
implementation. To compare Peres’s extractor and Elias’s extractor with the RM method with finite
input sequences in terms of non-asymptotic viewpoints, we consider the following four questions.

(1) Is theoretical redundancy the same as experimental redundancy in both extractors?
(2) Is the experimental redundancy of Elias’s extractor with the RM method better than

the experimental redundancy of Peres’s extractor?
(3) What is the exact running time of both extractors?
(4) Which extractor achieves better redundancy (or rate) under the very similar running time?

To answer the above questions, we design our experiments as follows.
To answer the Questions (1) and (2), we evaluate the theoretical and experimental redundancy

of Peres’s extractor and Elias’s extractor by using a pseudorandom number generation program
rand() in MATLAB [23] to obtain biased input sequences while controlling the probability
(See Sections 4.1 and 4.2). This experiment used rand() to generate input sequences because we can
control the probability p for each input sequence. Therefore, we vary the probability p = 0.1, 0.2, . . . , 0.9.
We show the results for a finite input sequence with 180 bits that would be used in various
cryptographic algorithms. In fact, we implemented various bit-lengths of input sequences such
as n = 80, 100, . . . , 200 bit-length, and obtained very similar results to the case of 180-bit length
(In the primary version [21], we implemented only the case of 180-bit length, and in this paper we
further investigated n = 80, 100, . . . , 200 bit-length.). Hence, we will describe only the input length
with 180 bits, and we omit the cases of other bit-length in this paper. In addition, to investigate
the efficiency of Elias’s extractor, the input size should be divided by a reasonable block size. Therefore,
the 180 bit-length is also suitable, because it can be divided by many simple block-sizes 10, 20, 30, 60,
90, 180. To compute (N

k ) in Elias’s extractor with the RM method, we consider the following:

• The Schönhage–Strassen multiplication algorithm requires O(N1+ε) which is asymptotically faster
than the normal multiplication requiring O(N2);

• To avoid multiplication, we use only the addition operation because it is simple and makes
the basic operation lighter so that it can be used in various applications and environments.

Additionally, we use the recursive formula (N
k ) = (N−1

k−1 ) + (N−1
k ) for 10 ≤ N ≤ 180 in order

to compute (N
k ) only by additions and also by dynamic programming. To compute experimental

redundancy with finite input sequences, we use 180 bit-length of inputs and generate 100 times
for each probability p. The rand() will produce different sequences in every time under the same
probability, thus we repeat the process to generate input sequences 100 times and calculate the average
experimental redundancy. In fact, we repeated the process to generate input sequences 100, 1000,
and 2000 times, but all the results on the average of experimental redundancy are almost the same,
and hence, we focus on generating input sequences 100 times only (In the primary version [21], we
repeated the process to generate input sequences only 100 times, and in this paper we conducted
further investigations when repeating the process 1000 and 2000 times.). Next, we note that the number
of iterations satisfies ν ≤ blog 180c = 7 for Peres’s extractor in Section 4.1, and we take the block size
N = 10, 20, 30, 60, 90, 180 for Elias’s extractor with the RM method in Section 4.2. Then, we calculate
the average on the redundancy function fPν (p) of Peres’s extractor by using (7) and the redundancy
function fE(p, N) = h(p)− rE(p, N) of Elias’s extractor with the RM method by using (3) for each
probability p.
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To answer the Question (3), we investigate running time to extract uniformly random sequences
for both extractors (See Section 4.3). Time complexity depends on the length of input sequences,
and thus the probability is not a parameter in this investigation. Thereby, this experiment changes
the random number generator for input sequences to RANDOM.ORG [24] to generate input sequences.
This random number generator can produce a sequence that is very close to a true random number with
unknown probability p by using the randomness of atmospheric noises. In addition, it can produce
131,072 random bits in each time. This experiment takes n = 100, 200, 400, 600, 800, 1000, 2000, 3000,
4000, 5000 as the bit-length of input sequences (In the primary version [21], we took only n = 100,
200, 400, 600, 800, 1000, and we further investigated longer bit-length 2000, 3000, 4000, 5000 in this
paper.). For reliability of our experiment, we repeated the process to extract unbiased random
sequences 100 times for each n, and then calculated their average running time.

By analyzing all the results of the experiments above, we can answer the Question (4): we can
compare the redundancy of both extractors under the very similar running time (see Section 4.4).

4.1. Analysis of the Redundancy of Peres’s Extractor

In Figure 1a, we show the redundancy of Peres’s extractor from theoretical aspects, that is,
we calculated the redundancy fPν (p) of Peres’s extractor by using (7) with the iterations ν = 1, 2, . . . , 7
and the probability p = 0.1, 0.2, . . . , 0.9. We depicted the graphs of redundancy fPν (p), where the x-axis
means probability p and the y-axis means redundancy. It can be easily seen that the redundancy
becomes smaller as the number of iterations becomes bigger, for all p ∈ (0, 1). Furthermore, we showed
the experimental redundancy of Peres’s extractor with 180 bit-length of input sequences in Figure 1b.
As a result, the theoretical redundancy in Figure 1a is almost the same as the experimental redundancy
in Figure 1b.

(a) (b)

Figure 1. Redundancy of Peres’s extractor. (a) Asymptotic and theoretical estimate of redundancy by
Equation (7); (b)Non-asymptotic and experimental estimate of redundancy with 180-bit input sequences.

Figure 2 depicts the graphs of theoretical redundancy fPν (p) with ν = 5, 6 around p = 1/2,
namely, 0.450 ≤ p ≤ 0.550. Both graphs support Proposition 1 from a geometric viewpoint. In addition,
our experiment shows that fP5 (p) would approximately take the maximum 0.2373467 at p ≈ 0.476 and
p ≈ 0.524, and fP6 (p) would approximately take the maximum 0.1781326 at p ≈ 0.459 and p ≈ 0.541.

Figure 3 is provided to observe the difference or similarity between fPν (p) and fPν (p, n) (ν ≥ 5)
for a large fixed n. Figure 3 shows experimental redundancy with probability 0.450 ≤ p ≤ 0.550
at the x-axis as in Figure 2. When we observe fPν (p) and fPν (p, n) by a rough scale, those graphs
are very similar as shown in Figure 1; however, when we observe fPν (p) and fPν (p, n) with n = 180
and ν = 5, 6 by a fine scale, we can see the difference between those graphs. Actually, the graphical
forms of fP5 (p, 180) and fP6 (p, 180) are quite different from fP5 (p) and fP6 (p), respectively, as shown
in Figures 2 and 3, although there is the fluctuation in Figure 3 depending on our experiments.
This implies that we need to analyze a non-asymptotic function fPν (p, n) much more from a theoretical
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aspect in the future, and this analysis is also important to validate the assumption given in
Proposition 2.

(a) (b)

Figure 2. Asymptotic and theoretical estimate of the redundancy of Peres’s extractor with ν = 5, 6 and
0.450 ≤ p ≤ 0.550. (a) Graph of fP5 (p); (b) Graph of fP6 (p).

(a) (b)

Figure 3. Non-asymptotic and experimental estimates on the redundancy of Peres’s extractor for
180-bit input sequences with ν = 5, 6 and 0.450 ≤ p ≤ 0.550. (a) Graph of fP5 (p, 180); (b) Graph of
fP6 (p, 180).

4.2. Analysis of the Redundancy of Elias’s Extractor with the RM Method

In Figure 4a, we show the redundancy of Elias’s extractor with the RM method from theoretical
aspects, that is, we calculated the theoretical redundancy fE(p, N) = h(p) − rE(p, N) of Elias’s
extractor with the RM method by using (3) with probability p = 0.1, 0.2, . . . , 0.9 and the block size
N = 10, 20, 30, 60, 90, 180. It can be seen that the redundancy becomes smaller as block size becomes
larger, for all p ∈ (0, 1). In spite of the fact that there is a slight difference between theoretical
redundancy in Figure 4b and experimental redundancy in Figure 4a, we can say that most of them
are similar.
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(a) (b)

Figure 4. Redundancy of Elias’s extractor with the RM method. (a) Asymptotic and theoretical estimate
of redundancy by Equation (3) and fE(p, n) := h(p)− rE(p, n); (b) Non-asymptotic and experimental
estimate of redundancy with 180-bit input sequences.

As a result, the redundancy of Elias’s extractor with large block size is better than that of Peres’s
extractor, which is an answer to our second question. Moreover, we can observe that the theoretical
redundancy is almost the same as the experimental redundancy in both extractors, which is an
answer to our first question. Therefore, we can rely on our implementation, and we will use this
implementation for analyzing the running time in the next section.

4.3. Analysis of the Time Complexity of Both Extractors

This section will answer the third question. In Figure 5a, we show the running time of Peres’s
extractor with iterations ν = 1, 2, . . . , 7 and bit-length of input sequences n = 100, 200, 400, 600,
800, 1000, 2000, 3000, 4000, 5000. We depicted the graphs of the running time, where the x-axis is
the bit-length of input sequences and the y-axis is the running time in the second unit. It is clearly seen
that an increase in the number of iterations leads to a large running time. The running time increases
almost linearly but the slope depends on the iterations ν, as supported by a theoretical estimate of
time complexity O(νn). Additionally, the running time of iterations ν = 7 and the bit-length of input
sequences n = 5000 leads to the largest running time (1.425 milliseconds), which means that it can be
used in real-world applications.

(a) (b)

Figure 5. Running time. (a) Peres’s extractor; (b) Elias’s extractor with the RM method.

In Figure 5a, we show the running time of Elias’s extractor with the RM method with block size
N = 2, 4, 6, 8, 10, 12, 16, 20. It can be seen that an increase in the block size leads to a large running
time. The running time increases linearly, but the slope depends on the block size N, as supported
by a theoretical estimate of time complexity O(N log3 N log log N). In addition, the running time
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with block size N = 20 and bit-length of input sequences n = 5000 leads to the largest running time
(33.155 milliseconds), which is much larger than that of Peres’s extractor.

By comparing the running time of both extractors, the running time of Peres’s extractor is better
than that of Elias’s extractor with the RM method at the same bit-length of input sequences. In the case
of a long bit-length of input sequences, the difference between running time of both extractors can be
seen more clearly. Therefore, we can conclude that Peres’s extractor is faster than Elias’s extractor with
the RM method at the same bit-length of input sequences. On the other hand, according to the results
in Sections 4.1 and 4.2, we have seen that the redundancy of Elias’s extractor with the RM method is
better than that of Peres’s extractor. Thus, we analyze the comparison of redundancy (or rate) under
the very similar running time in the next section.

4.4. Comparison under the Very Similar Running Time

In all previous experiments, we have observed that the redundancy of Elias’s extractor with
the RM method is better than that of Peres’s extractor; however, the time complexity of Peres’s
extractor is better than that of Elias’s extractor with the RM method. Therefore, we will answer
the fourth question by comparing the running time in Figure 6a and redundancy under the very
similar running time in Figure 6b.

(a) (b)

Figure 6. Comparison of Peres’s and Elias’s extractors. (a) Comparison of running time; (b) Comparison
of redundancy for 180-bit inputs.

In Figure 6a, we show the comparison of the running time of Peres’s extractor with iterations
ν = 4, 5, 6 and the running time of Elias’s extractor with the RM method with block size N = 2, 10, 20.
The running time of Peres’s extractor with iterations ν = 6 (the yellow line) is almost the same as
the running time of Elias’s extractor with the RM method having block size N = 2 (the black dashed
line). Thereby, we can compare the experimental redundancy of Peres’s extractor and that of Elias’s
extractor with the RM method under the very similar running time, that is, fP6 (p, 180) and fE(p, 2)
in Figure 6b. It is clearly seen that fP6 (p, 180) (the yellow line) is much better than fE(p, 2) (the black
dashed line), and fP6 (p, 180) is close to fE(p, 20) (the green dashed line). However, the running time
of Elias’s extractor with the RM method with block size N = 20 is much larger than the running
time of Peres’s extractor with iterations ν = 6, as seen in Figure 6a. In addition, we can observe
that the redundancy fP4 (p, 180) of Peres’s extractor with iterations ν = 4 (the red line) is close to
the redundancy fE(p, 10) of Elias’s extractor with the RM method with block size N = 10 (the blue
dashed line), but the running time of Elias’s extractor with the RM method with block size N = 10 is
approximately 16 times larger than that of Peres’s extractor with iterations ν = 4, as seen in Figure 6a
(i.e., the blue dashed line and the red line). As a result, we can conclude that Peres’s extractor achieves
a better rate (or redundancy) than Elias’s extractor with the RM method under the very similar
running time.
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5. Conclusions

It is known that Elias’s extractor achieves the optimal rate if the block size tends to infinity.
We considered an improved version of Elias’s extractor from Ryabko and Matchikina [10] to reduce
both the time complexity and space complexity. Peres’s extractor achieves the optimal rate if the length
of the input and the number of iterations tend to infinity. These are the results of asymptotic analysis,
but it is important and interesting to non-asymptotically analyze and compare both extractors for finite
input sequences, since the resulting information will be useful in applications (e.g., cryptography)
in practice.

In this paper, we evaluated the numerical performance of Peres’s extractor and Elias’s extractor
with the RM method in terms of practical aspects. Firstly, we derived a lower bound on the maximum
redundancy of Peres’s extractor based on some heuristics, and we showed that the maximum
redundancy of Elias’s extractor (with the RM method) was superior to that of Peres’s extractor
in general, if we do not pay attention to the time complexity or space complexity. We also found
that fPν (p) is not concave in p ∈ (0, 1) for every ν ≥ 5. Afterwards, we evaluated the numerical
performance of Peres’s extractor and Elias’s extractor with the RM method for finite input sequences.
Our implementation evaluated it on a general PC and did not require any special resources, libraries,
or frameworks for computation. Our empirical results showed that Peres’s extractor is much better than
Elias’s extractor for given finite input sequences under a very similar running time. As a consequence,
Peres’s extractor would be more suitable to generate uniformly random sequences in practice in
applications such as cryptographic systems.
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Appendix A. Proof of Proposition 1

First, we note that, for ν ≥ 1,

fPν (1/2) = h(1/2)− rPν (1/2) =
(

3
4

)ν

, (A1)

where the last equality follows from (9).
For p ∈ (0, 1), we define p̃ := p2 + (1− p)2 and p̂ := p2/ p̃. Then, it holds that

dp̃
dp

= 2(2p− 1),
dp̂
dp

=
2p(1− p)

p̃2 . (A2)

Next, for the first-order derivative of fPν (p), we have

d fP1 (p)
dp

=
1

ln 2
ln

1− p
p

+ 2p− 1, (A3)

d fPν (p)
dp

= (2p− 1)

(
fPν−1( p̂) +

d fPν−1( p̃)
dp

)
+

p(1− p)
p̃

d fPν−1( p̂)
dp

for ν ≥ 2. (A4)
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Then, by setting p = 1/2 in (A4), for ν ≥ 2, we have

d fPν (1/2)
dp

=
1
2

d fPν−1(1/2)
dp

(A5)

=

(
1
2

)ν−1 d fP1 (1/2)
dp

= 0, (A6)

where (A5) follows from (A4), and (A6) follows from (A3).
Moreover, for the second-order derivative of fPν (p), we obtain

d2 fP1 (p)
dp2 = − 1

ln 2
1

p(1− p)
+ 2, (A7)

d2 fPν (p)
dp2 = 2 fPν−1( p̂) + 2

d fPν−1( p̃)
dp

+
1− 2p

p̃
d fPν−1( p̂)

dp

+2(2p− 1)2 d2 fPν−1( p̃)
dp2 + (A8)

2p2(1− p)2

p̃3

d2 fPν−1( p̂)
dp2 for ν ≥ 2.

Furthermore, by setting p = 1/2 in (A9), for ν ≥ 2, we have

d2 fPν (1/2)
dp2 = 2 fPν−1(1/2) + 2

d fPν−1(1/2)
dp +

d2 fPν−1(1/2)
dp2

= 2
( 3

4
)ν−1

+
d2 fPν−1(1/2)

dp2 ,
(A9)

where the first equality follows from (A9), and the second equality (A9) follows from (A1) and (A6).

Then, by solving Equation (A9) (ν ≥ 2) and d2 fP1 (1/2)
dp2 = 2− 4/ ln 2, we obtain

d2 fPν (1/2)
dp2 =

d2 fP1 (1/2)
dp2 + 2

ν−1

∑
k=1

(
3
4

)k

= 2− 4
ln 2

+ 6

{
1−

(
3
4

)ν−1
}

(A10)

= 8− 4
ln 2
− 6

(
3
4

)ν−1
.

From Equation (A11), it follows that

d2 fPν (1/2)
dp2 < 0 for 1 ≤ ν ≤ 4,

d2 fPν (1/2)
dp2 > 0 for ν ≥ 5.

Appendix B. Experimental Results for Proposition 2

In this appendix, we show experimental results for Proposition 2, which support that Proposition 2
holds true. In Figure A1, we depict the difference values fPν (p, n) − fPν (p) with input bit-length
n = 80, 100, . . . , 200 and iterations 1 ≤ ν ≤ blog nc. The x-axis is the probability p = 0.1, 0.2, . . . , 0.9
and the y-axis is the difference values defined by fPν (p, n)− fPν (p).
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Proposition 2 states that fPblog nc(p, n)− fPblog nc(p) ≥ 0 for p ∈ (0, 1), and we can observe that it
holds true for input bit-length n = 80, 100, . . . , 200 by our experimental results given in Figure A1.

(a) 80-bit input sequences. (b) 100-bit input sequences.

(c) 120-bit input sequences. (d) 140-bit input sequences.

(e) 160-bit input sequences. (f) 180-bit input sequences.

Figure A1. Cont.
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(g) 200-bit input sequences.

Figure A1. Difference values fPν (p, n)− fPν (p) with n = 80, 100, ..., 200 and 1 ≤ ν ≤ blog nc.
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