
entropy

Article

How News May Affect Markets’ Complex Structure:
The Case of Cambridge Analytica

Antonio Peruzzi 1, Fabiana Zollo 1,2,3 , Walter Quattrociocchi 1,3 and Antonio Scala 3,4,*
1 The Department of Environmental Sciences, Informatics and Statistics (DAIS),

Ca’ Foscari University of Venice, Venezia 30123, Italy; 847193@stud.unive.it (A.P.);
fabiana.zollo@unive.it (F.Z.); w.quattrociocchi@unive.it (W.Q.)

2 Center for the Humanities and Social Change, Venezia 30123, Italy
3 Istituto dei Sistemi Complessi (ISC)-CNR, UOS Sapienza, Roma 00185, Italy
4 LIMS London Institute of Mathematical Sciences, London W1K 2XF, UK
* Correspondence: antonio.scala@cnr.it; Tel.: +39-06-4991-3432

Received: 31 July 2018; Accepted: 3 October 2018; Published: 6 October 2018
����������
�������

Abstract: The claim of Cambridge Analytica, a political consulting firm, that it was possible to
influence voting behavior by using data mined from the social platform Facebook created a sudden
fear in its users of being manipulated; consequently, even the market price of the social platform
was shocked.We propose a case study analyzing the effect of this data scandal not only on Facebook
stock price, but also on the whole stock market. To such a scope, we consider 15-minutes prices and
returns of the set of the NASDAQ-100 components before and after the Cambridge Analytica case.
We analyze correlations and Mutual Information among components finding that assets become more
correlated and their Mutual Information grows higher. We also observe that correlation and Mutual
Information are mutually increasing and seem to follow a master curve. Hence, the market appears
more fragile after the Cambridge Analytica event. In fact, as it is well-known in finance, an increase
in the average value of correlations augments the systemic risk (i.e., all the market can collapse as a
whole) and decreases the possibility of allocating a safe investment portfolio.
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1. Introduction

Social media platforms like Facebook (FB) have become the main communication medium;
however, the concentration of users’ data in the hands of a few big players like FB and Google has
raised concerns about the possibility of getting a monopolistic control of information.

In this scenario, the Cambridge Analytica (CA) scandal, brought to the fore in 17 March 2018,
has ignited a strong debate. CA was a British political consulting firm that claimed to offer, during
the electoral processes, services of strategic communication based on data mining, data brokerage,
and data analysis techniques. CA’s role in political campaigns has been controversial and it is still a
subject of ongoing criminal investigations; however, the effectiveness of CA’s methods for targeting
voters is strongly questioned by political scientists.

The collection of personally identifiable information of at least 87 million Facebook (FB) users
collected by CA since 2014 brought up a data scandal, since CA held that those data were allegedly
used to attempt to influence voting [1]. Even if FB banned CA and restricted the access to its own data
from external companies, the sudden fear that FB data could be used to influence and manipulate
people created a shock in the FB stock price.

The impact of event-related news on financial markets has always received privileged attention
in academic literature since Eugene Fama conducted his semi-strong tests on the Efficient Market
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Hypothesis [2–6]. Many of those works focused on the market reaction to common public
announcements, such as dividend issues and stock splits. This allowed mitigating the effect of
spurious events, but restricted the investigation to a limited number of cases.

The results of event studies making use of intra-day data seem to suggest that the release of new
information is quickly reflected in stock returns and in their volatility [7,8]. Moreover, higher volatility
seems to persist for several hours following news release [7]. This seems to be true also in the case of
intra-day, fixed-income rates and foreign-exchange future rates [9].

Not only news content, but also media coverage might play a relevant role. What seems to
emerge is that trading activity and volatility in a company’s stock do increase as the company captures
the attention of the media [10–12]. In this sense, stale news also seems to influence the behavior of
investors [13].

It is also worth noting that particularly relevant and resonating events might trigger periods of
market turmoil [14]. In those periods, the correlation of all the stocks in the market seems to increase
and, thus, achieving diversification might become difficult [15–17]. To this respect, Zheng et al. find
that the first Principal Component of assets’ cross-correlation might be used as an effective measure of
systemic risk [18].

Eventually, assets’ cross-correlation is not the only dependency measure affected in periods of
financial distress. Wang and Hui show, for worldwide market indexes, how their Mutual Information,
measuring non-linear dependency, reached a peak in the middle of the 2008–2009 financial crisis [19].

The contribution of this work is to present a case study concerning the impact of a media
resonating data scandal (CA) not only on the asset directly involved in the scandal (FB), but also on
the whole market. In order to do so, we consider a dataset containing the time series of 15-minute
intraday prices of the NASDAQ-100 components spanning from 1 March to 12 April 2018. In Section 2,
we analyze volatility, cross-correlations, and Mutual Information of the NASDAQ-100 components.
We show how the market becomes more interconnected, and hence more fragile, after the CA event.
We discuss the limits and mark the perspectives of our findings in Section 3, considering also possible
future developments. Finally, in Section 4, we describe the dataset in detail and recap the methods and
models applied in the analysis.

2. Results

To explore the impact of the CA event on the market, we first analyze the effect of the event on
the most involved stock, i.e., Facebook. In Figure 1, we show both price and log-returns of the FB stock
in a period centered on the CA event.

(a)

Figure 1. Cont.
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(b)

Figure 1. Bloomberg intraday time series for the Facebook (FB) stock. (a) Time series for the price.
(b) Time series for the log-returns. The Cambridge Analytica (CA) event happens at time 313 (the first
observation on March 19th, 2018 in the price chart); notice that after the CA event, the price of the stock
decreases and its volatility increases.

It is clear that not only FB’s price drops down on a lower level, but also that its volatility (i.e., the
size of the fluctuations of the log-returns) increases. After the CA scandal, we observe a ∼ 165%
increase in FB volatility and a ∼ 15% increase in the average volatility for all the assets considered.

We also consider the 10 stocks showing the highest values of volatility before and after CA.
In Table 1, we notice the presence of FB among the 10 stocks showing the highest volatility after CA.
There seems to be also an increase in the number of technology-related stocks, from 3 to 6. This may
suggest that the shock had an impact not only on FB, but also on technology-related stocks.

Table 1. The table reports a ranking of the 10 highest-volatility stocks in the NASDAQ-100 before and
after Cambridge Analytica (CA). Volatility has been computed on two samples of 15-minute intraday
returns consisting of 311 observations each.

Top-10 Highest Volatility Stocks
Before CA After CA

Stock Industry SD(x) Stock Industry SD(x)
DLTR Consumer Services 0.01031 SHPG Health Care 0.01013
ESRX Health Care 0.00757 TSLA Capital Goods 0.00857

JD Consumer Services 0.00732 MU Technology 0.00721
ADSK Technology 0.00724 NFLX Consumer Services 0.00704

MU Technology 0.00703 NVDA Technology 0.00684
ALXN Health Care 0.00671 FB Technology 0.00668
ROST Consumer Services 0.00576 AMZN Consumer Services 0.00640

WYNN Consumer Services 0.00533 LRCX Technology 0.00623
ULTA Consumer Services 0.00496 AMAT Technology 0.00564
LRCX Technology 0.00477 INTC Technology 0.00563

Volatility could be detrimental for investors since it increases risks and associated costs; a powerful
tool to reduce risks in fluctuating markets is the application of portfolio techniques [20] that rely on
correlation to reduce the volatility of investments associated with a set of stocks, i.e., the portfolio.
However, if the whole market becomes more correlated, the possibility of systemic failures appears [21]
as the market becomes more fragile.
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2.1. Correlations

To understand whether the CA event has impacted the whole NASDAQ-100, we analyze
correlations among the stocks. To this respect, related methodologies are presented in Section 4.2.1.
In Figure 2, we show the histograms for stocks’ correlations before and after the CA event. We observe
that while the qualitative shape and the standard deviation of the probability distribution function
remain the same, the whole market becomes more correlated since it experiences a ∼ 50% increase in
the average value of cross-correlations. To confirm such observation, we perform a moving average
analysis of the cross-correlations. In Figure 3, we show that average cross-correlations are stationary
before and after the CA event, shifting from correlations 〈ρxy〉 ∼ 0.3 before to 〈ρxy〉 ∼ 0.5 after the
CA event.

Figure 2. Distribution of cross-correlation among the time series of the NASDAQ-100 components.
Left panel: Cross-correlation of the time series before the CA event. Right panel: Cross-correlation of
the time series after the CA event. Cross-correlations have been computed on two samples of 15-minute
intraday stock returns consisting of 311 observations each. Notice that the average correlation of the
stock market experiences a ∼ 50% increase.

Figure 3. Average cross-correlation among the time series of the NASDAQ-100 components calculated
with a moving window of 150 intraday observations. The dashed vertical red lines indicate a window
centered around the CA event. Notice the sharp rise of correlations experienced by the stock market
around the CA event.

2.1.1. Correlation Network

To highlight the structure of the stocks’ cross-correlations, we represent the correlation matrices
as weighted networks. To this respect, related methodologies are presented in Section 4.2.2. In such
networks, nodes represent stocks while edges represent significant correlations. In Figure 4, we show
the NASDAQ-100 components network subdivided per industry according to a taxonomy, proposed
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by the NASDAQ, stemming from the Industry Classification Benchmark (ICB) system (Components’
list with classification available here: https://www.nasdaq.com/screening/company-list.aspx (July 30,
2018 5:35 pm)).

In Figure 5, we show the correlation network among the NASDAQ-100 components before and
after the CA event. We observe that the graph hints some structure of cross-industry correlation among
specific assets before the CA scandal, whereas after the events of CA, correlations are denser among all
the stocks and no clear cross-industry correlation structure appears.

Figure 4. Graph displaying the NASDAQ-100 components grouped by industry. The list of industries
is reported here below:

Technology• Consumer Services• Health Care• C. Non-Durables•
Miscellaneous• Capital Goods• Transportation• Public Utilities•

In the graph, components are connected by an edge if their absolute cross-correlation over the whole
time lapse is greater than 0.55. Colors follow the industry classification proposed by the NASDAQ
according to the ICB system.

https://www.nasdaq.com/screening/company-list.aspx
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Figure 5. Correlation graphs with threshold, c = 0.55. Left panel: Correlation graph before the CA
event. Right panel: Correlation graph after the CA event. Nodes are ordered anticlockwise by industry
(color) and node’s degree (size). Edge thickness varies according to absolute correlation. However,
edge-thickness scales differ in the two panels to improve readability. Notice the increase in the number
of edges, i.e., an increase in correlation, after CA.

Associated with a graph, there are several structural quantities, like edge density (measuring the
fraction of edges of a graph respect all the possible edges) and clustering coefficient (measuring the
local cliquishness [22]. In Figure 6 we show how, similarly to the cross-correlations of Figure 3, edge
density and clustering coefficient also have a sharp rise corresponding to the CA event.

(a)

Figure 6. Cont.
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(b)

Figure 6. Edge density (a) and clustering coefficient (b) calculated with a moving window of
150 intraday observations. The dashed vertical red lines indicate respectively when CA enters and is
fully within the moving window. Notice the sharp rise in both edge density and clustering coefficient.

2.1.2. Correlation Threshold Sensitivity

The sensitivity of the correlation network to different values of the correlation threshold c has
been checked to look at the variation of the Giant Component for different values of c before and after
the CA scandal. Figure 7 shows how the Giant Component consistently grows after CA for all the
values of c between ∼ 0.35 and ∼ 0.80.

Figure 7. The sensitivity of the number of nodes belonging to the Giant Component before (red squares)
and after (blue dots) CA. Notice that the size of the Giant Component grows after CA for all the
meaningful correlation thresholds.

2.2. Mutual Information

Mutual Information (MI) is a measure of dependency for nonlinear time series [23]. It has been
widely used in bio-informatics to cluster data while also taking into account finite size effect [24].
Generally measured in bits, it is a dimensionless quantity that can be interpreted as the reduction in
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uncertainty about one random variable given a perfect knowledge of the other. On the one hand, high
MI reveals a large reduction in uncertainty. On the other hand, low MI indicates a great uncertainty on
a random variable given the knowledge of the other; in particular, zero MI means that two random
variables are independent.

Notice that it is possible to have non-zero MI even in presence of zero correlation: In fact, while MI
is a distance between two probability distributions, correlation measures linear relationships between
two random variables.

In Figure 8, we show how the histogram of the MI values varies across the stocks of the
NASDAQ-100 before and after the CA event. After the CA event MI grows on average, i.e., the market
becomes more predictable from the knowledge of a limited subset of stocks. Related methodologies
are presented in Section 4.2.3.

Figure 8. Distribution of the Mutual Information among the time series of the NASDAQ-100 stock
market index. Left panel: Mutual Information among the time series before the CA event. Right panel:
Mutual Information among the time series after the CA event. Mutual Information for each pair
of stocks has been computed on two samples of 15-minute intraday stock returns consisting in 311
observations each. Notice that the average Mutual Information among the assets of the stock market
experiences a ∼ 10% increase.

It is also interesting to check the relation between MI and correlation, since it may allow us
to spot possible methodological inconsistencies. Figure 9 shows the values of MI versus linear
correlation before and after the CA event. MI is non-zero for zero correlations and increases for
positive correlations; notice that the points of the scatter plot seem to follow a master curve. This is
compatible with findings in similar cases [25]. However, we are not able to fully appreciate the
characteristic U-shaped curve, given the absence of strongly negative correlations across the time series
of the NASDAQ-100 components. In fact, the assets chosen by the NASDAQ are subject to common
risk factors which mitigate the effect of possible sources of negative correlation.

Figure 9. Scatter plot coupling Correlation and MI for every pair of stocks before (red pluses) and after
(blue crosses) the events of CA. Notice that the all the points seem to follow a master curve.
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3. Discussion

This work should be seen in the light of what has been done concerning the impact of news on
financial markets. We have seen how studying a limited set of predictable announcements is frequent
in the finance literature, while, in our opinion, taking into account a specific event is less common.
In this paper, we have presented a case study concerning the impact of the notorious CA scandal not
only on the FB stock, which directly suffered from a serious loss of reputation, but also on the whole
market. In particular, we observe a sudden fall of the FB stock price and an increase in its volatility
after the shock.

We observe that, in correspondence of the above-mentioned scandal, not only does the volatility of
all the stocks increases on average, but both cross-correlation among the stocks and Mutual Information
among their time series also increase. Hence, the system starts behaving like a whole, leading to an
increase of the systemic risk due to possible cascading failures. In this situation, not only is it difficult
to select low-risk investment portfolios, but the number of possible portfolios also decreases: In fact,
many investors can unknowingly share the same investment strategy and they can all fail together
in case of rare, unfavorable events. In such a situation, it is clear that an increase in cross-correlation
leads to an underestimate of the risks and hence to a more fragile stock market.

It is worth highlighting that this case study presents at least two limitations. In the first place, the
use of 15-minutes intraday data might be a source of bias [26]. However, we checked the consistency
of our results using also daily data and they seem to confirm our findings, despite the poor number
of observations within the time span considered. The second limitation is common to all the studies
focusing on a single specific event in a quickly adapting environment. Unfortunately, it is not possible
to rule out the presence of spurious events. For this reason, we decided to keep the time window as
close as possible to the event considered.

Moreover, this case study leaves ample space for further research. First of all, the use of
sophisticated econometric models might cast a light on the timing required by FB and by the market to
react to the shock caused by the CA scandal. The way in which the increase in correlation and in MI
spread across different sectors might also deserve a closer look. Eventually, a broader investigation
might be performed considering the common reaction of different assets to a sufficiently large number
of data scandals.

4. Materials and Methods

4.1. Data

For our analysis, we considered the list of equity securities included in the well-known stock
market index NASDAQ-100. Our initial dataset contained 103 stock-price high-frequency time series of
the NASDAQ-100 components. We removed three time series, namely BKNG, MELI, and FISV, because
of issues related to data collection. The resulting dataset contains 100 time series and 779 observations,
ranging from 1 March to 12 April 2018, with a 15-minute frequency. The aforementioned time span has
been chosen in order to include CA-scandal early events. Data have been collected from Bloomberg.

4.2. Methods

We begin transforming stock-price time series into log-return time series. Let pi(t) be the price of
a stock i at time t, the log-return, ri(t), of the stock i at time t, is defined as follows [27–29]:

ri(t) = ln
( pi(t)

pi(t− 1)

)
(1)

From the original sample of log-returns, we extract two subsamples consisting of 311 observations
each. The first subsample, starting on 1 March 2018, contains the available observations before the
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break out of CA scandal, whereas the second subsample, starting on 19 March 2018, fully contains the
early effects of CA scandal.

4.2.1. Correlations

We proceed computing Pearson correlation pairwise for all the time series in our two subsamples.
Pearson correlation, ρx,y, for a pair of time series, x(t) and y(t), is defined as [27,30]:

ρx,y =
〈xy〉 − 〈x〉〈y〉

(〈x2〉 − 〈x〉2)(〈y2〉 − 〈y〉2) (2)

where 〈 〉 indicates the average over a fixed time window, i.e for a given time window [t, t + N] the
average of a quantity x is 〈x〉 = N−1 ∑N

i=1 xt+i.
We originate two correlation matrices with our log-return time series before and after the CA

event. Non-diagonal elements of each matrix may assume values between −1, maximum negative
linear correlation, and 1, maximum positive linear correlation, whereas a value equal to 0 signals the
absence of any linear correlation. In our case, non-diagonal elements report the correlation coefficient
for every pair of stocks. Obviously, diagonal elements report the correlation of each stock with itself,
thus their value is always equal to +1.

4.2.2. Correlation Network

A further step is the creation of a weighted network. A weighted network is a triplet G = (V, E, w)

where V is the set of vertexes (or nodes), E ⊆ V ×V is the set of edges (or links), and the function w
associates to each edge e its weight w(e). Given a correlation threshold c, we represent a correlation
matrix C as a weighted network by identifying the NASDAQ-100 stocks as the set of nodes and
associating to each element |Cij| > c and edge e = (i, j) with weight w(e) = |Cij|. We call such a
network associated with the correlation matrix C with threshold c the correlation network Gc(C).
This slightly differs from [28,29,31] with the intention of also considering large negative correlations.

4.2.3. Mutual Information

Eventually, we also take into account MI. MI between two discrete random variables, X and Y,
can be defined as follows [32,33]:

I(X; Y) = ∑y∈Y ∑x∈X p(x, y) log
( p(x, y)

p(x)p(y)

)
(3)

where p(x, y), p(x), and p(y) are respectively the joint and marginal probability distributions of X and Y.
In order to compute MI pairwise, we proceed with the discretization of our time series. We opted

for a number of bins equal to
√

N, i.e.,
√

311 ≈ 18 bins for each of the two subsamples.
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Abbreviations

The following abbreviations are used in this manuscript:
FB: Facebook
CA: Cambridge Analytica
MI: Mutual Information
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