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Abstract: The information entropy developed by Shannon is an effective measure of uncertainty in
data, and the rough set theory is a useful tool of computer applications to deal with vagueness and
uncertainty data circumstances. At present, the information entropy has been extensively applied in
the rough set theory, and different information entropy models have also been proposed in rough
sets. In this paper, based on the existing feature selection method by using a fuzzy rough set-based
information entropy, a corresponding fast algorithm is provided to achieve efficient implementation,
in which the fuzzy rough set-based information entropy taking as the evaluation measure for
selecting features is computed by an improved mechanism with lower complexity. The essence
of the acceleration algorithm is to use iterative reduced instances to compute the lambda-conditional
entropy. Numerical experiments are further conducted to show the performance of the proposed
fast algorithm, and the results demonstrate that the algorithm acquires the same feature subset to its
original counterpart, but with significantly less time.

Keywords: information entropy; fuzzy rough set theory; feature selection; fast algorithm

1. Introduction

Rough set theory [1] presented by Pawlak in 1982 is a useful tool to deal with vagueness and
uncertainty information in the field of computer sciences. The research of rough set theory has
mainly focused on both the generalizations of rough set models and the applications in different
data environments, which has already attached much attention in granular computing [2–4], feature
selection [5–8], dynamic data mining [9–11], and big data mining [12,13]. On the other hand, since the
information entropy is powerful to measure information uncertainty, it has been extensively applied in
practical problems, such as decision making [14], time series [15], portfolio selection [16], and so on.

In view of the effectiveness of information entropy to measure uncertainty in formation,
information entropy has been extensively applied in the rough set theory to mine knowledge, which
mainly concentrates on constructing rough set-based entropy in different information systems to
measure the significance of features (or attributes) or the quality of knowledge granules and on
exploring practical applications of rough set-based entropy. Specifically, in the aspect of constructing
rough set-based entropy [17–28], the references [18] and [19] respectively introduced the concepts
of information entropy, rough entropy, and knowledge granulation in complete and incomplete
information systems and provided their important properties. Hu et al. [20] proposed the generalizations
of the entropy to calculate the information of a fuzzy approximation space and a fuzzy probabilistic
approximation space, respectively. Xu et al. [21] introduced the definition of rough entropy of rough
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sets in ordered information systems. Mi et al. [22] formulated the entropy of the generalized fuzzy
approximation space. Dai and Tian [25] provided the concepts of knowledge information entropy
and knowledge rough entropy in set-valued information systems, and investigated their properties.
Dai et al. [26] presented the rough decision entropy to evaluate the uncertainty of interval-valued
decision systems. Chen et al. [27] introduced the neighborhood entropy to evaluate the uncertainty
of neighborhood information systems. Wang et al. [28] put forward a unified form of uncertainty
measures for general binary relations.

In the aspect of exploring practical applications of rough set-based entropy [29–35], Pal et al. [31]
defined the measure “rough entropy of image” for image object extraction in the framework of
rough sets. Tsai et al. [32] provided an entropy-based fuzzy rough classification approach to acquire
classification rules. Chen and Wang [33] presented an improved clustering algorithm based on both
rough set theory and entropy theory. Sen and Pal [34] gave classes of entropy measures based on rough
set theory to quantify the grayness and spatial ambiguity in images. Chen et al. [35] put forward an
entropy-based gene selection method based on the neighborhood rough set model. Furthermore, it is
worth noting that one of the most important applications of rough set-based entropy is feature selection
(attribute reduction) [36–44]. For example, Miao and Hu [36] defined the significance of attributes from
the viewpoint of information and then proposed a heuristic attribute reduction algorithm by using the
mutual information. Wang et al. [37] developed two novel heuristic attribute reduction algorithms
based on the conditional information entropy. Hu et al. [39] introduced a fuzzy entropy to measure
the uncertainty in kernel approximation based on fuzzy rough sets, and thus proposed the feature
evaluation index and a feature selection algorithm. Sun et al. [40] provided the rough entropy-based
uncertainty measures for feature selection in incomplete decision systems. Liang et al. [41] introduced
the incremental mechanisms for three representative information entropies and then developed a
group incremental entropy-based feature selection algorithm based on the rough set theory with
multiple instances being added to a decision system. Chen et al. [43] proposed a neighborhood entropy
to select feature subset based on the neighborhood rough set model. Zhang et al. [44] presented a
feature selection method by using the fuzzy rough set-based information entropy.

Since the computation of the fuzzy rough set-based information entropy in [44] is quite
time-consuming, we propose in this paper a corresponding improved mechanism with lower complexity
to compute the entropy and develop a fast feature selection algorithm that can quickly obtain the same
result to the feature selection algorithm in [44]. In addition, the performance of the fast algorithm is
shown by some numerical experiment.

In the remainder of this paper, we briefly review in Section 2 the feature selection algorithm in [44]
and some related knowledge. In Section 3, the computational properties of the fuzzy rough set-based
information entropy in [44] are presented. A fast feature selection approach with lower complexity has
been developed. Numerical experiments were documented in Section 4 to show the performance of
the proposed fast feature selection algorithm.

2. Preliminaries

As indicated in [45], a fuzzy information system is a pair (U, A) in which U = {x1, x2, . . . , xn}
is the universe of discourse and A = {a1, a2, . . . , am} is the attribute set. For each attribute at ∈ A,
a mapping at : U → Vat holds where Vat is the domain of at, and a fuzzy relation R{at} can be defined.
The fuzzy relation of a subset B ⊆ A is RB =

⋂
at∈B

R{at}.

It is possible to define the corresponding fuzzy relations for the attributes with different types of
values, and one can refer to [44] for the details. Here, a fuzzy relation R is a fuzzy set that is defined on
the fuzzy power set F(U ×U) to measure the similarity between two objects in the universe U.

By adding an attribute set D = {d} with A ∩ D = ∅ into a fuzzy information system (U, A),
we obtain a fuzzy decision system (U, A ∪ D) where A is the conditional attribute set and D is the
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decision attribute set. It should be pointed out that d is a nominal attribute on which a mapping
d : U → Vd holds and Vd is the domain of d.

By utilizing a fuzzy rough sets-based information entropy, a forward addition feature selection
algorithm is proposed in [44], and it is as follows.

Algorithm 1: Computing an ε-approximate reduct of a fuzzy decision system.

Input : A fuzzy decision system (U, A ∪ D) with U = {x1, x2, . . . , xn}, and a parameter
ε ≥ 0.

Output : An ε-approximate reduct B.
1 Initialize B = ∅, Hλ(D|B) = n/e;
2 for i = 1 to n do
3 compute λi = RA[xi]D(xi);
4 end
5 while Hλ(D|B) ≥ ε do
6 for each ai ∈ A \ B do
7 compute SIGλ(ai, B, D) = Hλ(D|B)− Hλ(D|B ∪ {ai});
8 end
9 choose an attribute ai0 satisfying SIGλ(ai0 , B, D) = max

i
SIGλ(ai, B, D);

10 let Hλ(D|B) = Hλ(D|B ∪ {ai0});
11 if Hλ(D|B) ≥ ε then
12 B = B ∪ {ai0};
13 end
14 end
15 return B;

In Step 3 of Algorithm 1, RA[xi]D is the fuzzy lower approximation of the decision class [xi]D
based on the fuzzy relation RA, which is proposed in the pioneering work of fuzzy approximation
operators [46] and is concretely computed by

RA[xi]D(xi) = inf
xj∈U

max{1− RA(xi, xj), [xi]D(xj)}. (1)

Here, [xi]D is the crisp decision class to which the object xi belongs, and [xi]D = {xj ∈ U :
(xi, xj) ∈ RD} where RD is the equivalence relation generated by the nominal decision attribute d.
Thus, the membership function of the decision class [xi]D is

[xi]D(xj) =

{
1, xj ∈ [xi]D;
0, otherwise

. (2)

In Step 7, SIGλ(ai, B, D) is the significance of the attribute ai (ai ∈ A \ B) for B relative to D,
which is factually the decrease of the λ-conditional entropy in the process of adding one attribute.
Here, the λ-conditional entropy of the decision attribute set D relative to the conditional attribute
subset B, i.e., Hλ(D|B), is defined in [44] as

Hλ(D|B) = − 1
n

n

∑
i=1

∣∣∣[xi]
λi
B ∩ [xi]D

∣∣∣ log

∣∣∣[xi]
λi
B ∩ [xi]D

∣∣∣∣∣∣[xi]
λi
B

∣∣∣
 (3)

where

[xi]
λi
B (xj) =

{
λi, 1− RB(xi, xj) < λi;
0, otherwise

(4)
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is the fuzzy granule of xi with respect to B, and λi = RA[xi]D(xi).
It should be pointed out that |X| is the cardinality of the fuzzy set X, which is defined in [38] as

|X| = ∑n
i=1 X(xi). For example,

∣∣∣[xi]
λi
B

∣∣∣ = ∑n
i=1[xi]

λi
B (xj). Moreover, as indicated in [44], if there exists

an object xi0 ∈ U such that λi0 = RA[xi0 ]D(xi0) = 0, then take

∣∣∣[xi0 ]
0
B ∩ [xi0 ]D

∣∣∣ log

∣∣[xi0 ]
0
B ∩ [xi0 ]D

∣∣∣∣[xi0 ]
0
B

∣∣ = 0. (5)

Generally, the λ-conditional entropy is less than n/e. Thus, the λ-conditional entropy Hλ(D|B) is
initialized to n/e in Step 1 of Algorithm 1. Furthermore, the λ-conditional entropy is of monotonicity,
i.e., Hλ(D|C) ≥ Hλ(D|B) holds for C ⊆ B ⊆ A, which yields SIGλ(ai, B, D) ≥ 0. Therefore, in the
iteration procedure of Algorithm 1, the feature ai0 satisfying SIGλ(ai0 , B, D) = max

i
SIGλ(ai, B, D) is

added in a feature subset.
As indicated in [44], the time complexity of Algorithm 1 is O(|U|2|A|2), in which Step 7 is the

critical step to select features and the complexity of computing SIGλ(ai, B, D) is O(|U|2), as well
as the complexity of running Steps 2–4 is O(|U|2|A|). Here, | · | is the cardinality of one crisp set.
Computing SIGλ(ai, B, D) may require a great amount of time if |U| is large. Therefore, a natural
idea of accelerating Algorithm 1 is that accelerating the computation of SIGλ(ai, B, D) according to
computational properties of the λ-conditional entropy.

3. Accelerated Computation of λ-Conditional Entropy

In the following, we concentrate on the computational characteristic of λ-conditional entropy.
Firstly, we review the following theorem in [44].

Theorem 1. Let (U, A) be a fuzzy information system with a fuzzy relation RB for each B ⊆ A. For any fuzzy
set X ∈ F(U),

RBX(xi) = sup{λ : [xi]
λ
B ⊆ X}. (6)

Here, [xi]
λ
B with λ ≤ RBX(xi) is a basic fuzzy granule with respect to B to characterize the inner

structure of X. Let X be [xi]D. Then, [xi]
λi
B with λi = RB[xi]D(xi) is the biggest granule contained

in [xi]D.
Let (U, A ∪ D) be a fuzzy decision system with U = {x1, x2, . . . , xn} and B ⊆ A. Denote

U∗B =
{

xi :
∣∣∣[xi]

λi
B ∩ [xi]D

∣∣∣ < ∣∣∣[xi]
λi
B

∣∣∣ , xi ∈ U
}

(7)

as the object set in which each object xi satisfies
∣∣∣[xi]

λi
B ∩ [xi]D

∣∣∣ < ∣∣∣[xi]
λi
B

∣∣∣. It is obvious to have U∗B ⊆ U.
We then have the following property.

Property 1. Let (U, A ∪ D) be a fuzzy decision system with U = {x1, x2, . . . , xn} and B ⊆ A. Then

Hλ(D|B ∪ {a}) = − 1
|U| ∑

xi∈U∗B

∣∣∣[xi]
λi
B∪{a} ∩ [xi]D

∣∣∣ log

∣∣∣[xi]
λi
B∪{a} ∩ [xi]D

∣∣∣∣∣∣[xi]
λi
B∪{a}

∣∣∣
 (8)

holds for any a ∈ A \ B.

Proof. Assume that U \U∗B 6= ∅. Then, for any xi ∈ U \U∗B, we have
∣∣∣∣[xi]

λi0
B ∩ [xi]D

∣∣∣∣ = ∣∣∣[xi]
λi
B

∣∣∣, which

is equivalent to [xi]
λi
B ⊆ [xi]D. Then, according to Theorem 1, it is obtained that RB[xi]D(xi) ≥ λi.
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Because of RB[xi]D(xi) ≤ RA[xi]D(xi) = λi, we have RB[xi]D(xi) = λi, which yields RB∪{a}[xi]D(xi) =

λi and then [xi]
λi
B∪{a} ⊆ [xi]D for any a ∈ A \ B. Therefore,

∣∣∣[xi]
λi
B∪{a} ∩ [xi]D

∣∣∣ = ∣∣∣[xi]
λi
B∪{a}

∣∣∣ and then

− 1
|U|

∣∣∣[xi]
λi
B∪{a} ∩ [xi]D

∣∣∣ log

∣∣∣[xi]
λi
B∪{a} ∩ [xi]D

∣∣∣∣∣∣[xi]
λi
B∪{a}

∣∣∣ = 0,

which yields

Hλ(D|B ∪ {a}) = − 1
|U| ∑

xi∈U

(∣∣∣[xi]
λi
B∪{a} ∩ [xi]D

∣∣∣ log

∣∣∣[xi ]
λi
B∪{a}∩[xi ]D

∣∣∣∣∣∣[xi ]
λi
B∪{a}

∣∣∣
)

= − 1
|U| ∑

xi∈U∗B

(∣∣∣[xi]
λi
B∪{a} ∩ [xi]D

∣∣∣ log

∣∣∣[xi ]
λi
B∪{a}∩[xi ]D

∣∣∣∣∣∣[xi ]
λi
B∪{a}

∣∣∣
)

− 1
|U| ∑

xi∈U\U∗B

(∣∣∣[xi]
λi
B∪{a} ∩ [xi]D

∣∣∣ log

∣∣∣[xi ]
λi
B∪{a}∩[xi ]D

∣∣∣∣∣∣[xi ]
λi
B∪{a}

∣∣∣
)

= − 1
|U| ∑

xi∈U∗B

(∣∣∣[xi]
λi
B∪{a} ∩ [xi]D

∣∣∣ log

∣∣∣[xi ]
λi
B∪{a}∩[xi ]D

∣∣∣∣∣∣[xi ]
λi
B∪{a}

∣∣∣
)

.

Assume that the similarity relation RB(xi, xj) has been computed for any xi ∈ U and xj ∈ U.
Then, according to Property 1, the time complexity of Hλ(D|B∪ {a}) is O(|U∗B||U|), which is generally
less than O(|U|2) since U∗B ⊆ U holds.

Denote
Uxi

B = {xj : [xi]
λi
B (xj) = λi, xj ∈ U} (9)

as the object set in which each object belongs to the fuzzy set [xi]
λi
B with the degree being λi. Since

[xi]
λi
B (xj) =

{
λi, 1− RB(xi, xj) < λi;
0, otherwise,

then, for any xj ∈ U \Uxi
B , it is easily obtained that [xi]

λi
B (xj) = 0. Furthermore, we have the following

property.

Property 2. Let (U, A ∪ D) be a fuzzy decision system with U = {x1, x2, . . . , xn} and B ⊆ A. Then,
for any a ∈ A \ B, we have ∣∣∣[xi]

λi
B∪{a}

∣∣∣ = ∑
xj∈U

xi
B

[xi]
λi
B∪{a}(xj) (10)

and ∣∣∣[xi]
λi
B∪{a} ∩ [xi]D

∣∣∣ = ∑
xj∈
(

U
xi
B ∩[xi ]D

)[xi]
λi
B∪{a}(xj). (11)

Proof. Assume that U \ Uxi
B 6= ∅. Then, for any a ∈ A \ B and any xj ∈ U \ Uxi

B , it is obtained
that the fuzzy similarity relation RB∪{a} = RB ∩ R{a} ⊆ RB and 1− RB(xi, xj) ≥ λi, which yields

1− RB∪{a}(xi, xj) ≥ 1− RB(xi, xj) ≥ λi and then [xi]
λi
B∪{a}(xj) = 0. Therefore, we have
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∣∣∣[xi]
λi
B∪{a}

∣∣∣ = ∑
xj∈U

[xi]
λi
B∪{a}(xj)

= ∑
xj∈U

xi
B

[xi]
λi
B∪{a}(xj) + ∑

xj∈U\Uxi
B

[xi]
λi
B∪{a}(xj)

= ∑
xj∈U

xi
B

[xi]
λi
B∪{a}(xj)

and ∣∣∣[xi]
λi
B∪{a} ∩ [xi]D

∣∣∣ = ∑
xj∈[xi ]D

[xi]
λi
B∪{a}(xj)

= ∑
xj∈
(

U
xi
B ∩[xi ]D

)[xi]
λi
B∪{a}(xj) + ∑

xj∈
((

U\Uxi
B

)
∩[xi ]D

)[xi]
λi
B∪{a}(xj)

= ∑
xj∈
(

U
xi
B ∩[xi ]D

)[xi]
λi
B∪{a}(xj).

Substituting Equations (10) and (11) into Equation (8), we then have

Hλ(D|B ∪ {a}) = − 1
|U| ∑

xi∈U∗B


 ∑

xj∈(Uxi
B ∩[xi ]D)

[xi]
λi
B∪{a}(xj)

 log

 ∑
xj∈(Uxi

B ∩[xi ]D)
[xi]

λi
B∪{a}(xj)


 ∑

xj∈Uxi
B

[xi]
λi
B∪{a}(xj)



 . (12)

Corollary 1. Let (U, A ∪ D) be a fuzzy decision system with U = {x1, x2, . . . , xn} and B ⊆ A. Then,
for any a ∈ A \ B, we have

Uxi
B∪{a} ⊆ Uxi

B . (13)

Proof. For any xj ∈ U \Uxi
B , we have [xi]

λi
B (xj) = 0. It can be obtained from the proof process of

Property 2 that [xi]
λi
B∪{a}(xj) = 0 holds for any a ∈ A \ B, which yields xj ∈ U \ Uxi

B∪{a}. Thus,(
U \Uxi

B
)
⊆
(

U \Uxi
B∪{a}

)
. which implies Uxi

B∪{a} ⊆ Uxi
B .

Assume that the similarity relation RB(xi, xj) has been computed for any xi ∈ U and xj ∈ U. Then,
according to Equation (12), the time complexity of Hλ(D|B ∪ {a}) is O(C|U∗B|), which is generally less
than O(|U|2) since both C ≤ |U| and |U∗B| ≤ |U| hold. Here, C = max{|Uxi

B | : xi ∈ U∗B}. Therefore,
according to Properties 1 and 2, we can use Equation (12) to compute Hλ(D|B ∪ {a}) and then obtain
an accelerated algorithm in the following.

Compared with Algorithm 1, there exist three aspects of differences in Algorithm 2. First,
Algorithm 2 needs to set U∗B and Uxi

B (xi ∈ U) to U in Steps 1–4. Second, the evaluation measure
Hλ(D|B ∪ {ai}) is improved to compute according to Equation (12) in Step 10, in which U∗B∪{ai}
can be automatically acquired without additional computation. Here, the complexity of computing
Hλ(D|B ∪ {ai}) is O(C|U∗B|), where C = max{|Uxi

B | : xi ∈ U∗B}. Third, U∗B and Uxi
B (xi ∈ U) are

iteratively updated in Steps 16–20, and Steps 17–20 need O(C|U∗B|). Furthermore, the main procedure
of Algorithm 2 for selecting features, namely Steps 8–22, needs to be run at most |A| times, so the
time complexity is O(C|U∗B||A|2). However, the main process Steps 5–14 in Algorithm 1 for selecting
features requires O(|U|2|A|2). It should be pointed out that both |U∗B| and C may monotonously
decrease in the iteration process of Algorithm 2, which mainly contributes to accelerate computation.
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Algorithm 2: Accelerating computation of an ε-approximate reduct of a fuzzy decision system.

Input : A fuzzy decision system (U, A ∪ D) with U = {x1, x2, . . . , xn}, and a parameter
ε ≥ 0.

Output : An ε-approximate reduct B.
1 Initialize B = ∅, Hλ(D|B) = n/e, and U∗B = U;
2 for i = 1 to n do
3 initialize Uxi

B = U;
4 end
5 for i = 1 to n do
6 compute λi = RA[xi]D(xi);
7 end
8 while Hλ(D|B) ≥ ε do
9 for each ai ∈ A \ B do

10 compute Hλ(D|B ∪ {ai}) according to Equation (12) (%Note: U∗B∪{ai}
can be obtained

in the computation);
11 end
12 choose an attribute ai0 satisfying Hλ(D|B ∪ {ai0}) = min

i
Hλ(D|B ∪ {ai});

13 let Hλ(D|B) = Hλ(D|B ∪ {ai0});
14 if Hλ(D|B) ≥ ε then
15 B = B ∪ {ai0};
16 U∗B = U∗B∪{ai0}

;

17 for each xi ∈ U∗B do
18 compute Uxi

B∪{ai0}
= {xj : [xi]

λi
B (xj) = λi, xj ∈ Uxi

B } (%Note: The equation is due to

Equation (16));
19 Uxi

B = Uxi
B∪{ai0}

;

20 end
21 end
22 end
23 return B;

4. Numerical Experiment

In this section, numerical experiments are conducted to assess the performance of Algorithm 2.
The experiment mainly focuses on showing the computational efficiency of Algorithm 2. In order to
achieve the task, nine data sets are downloaded from UCI Repository of machine learning databases.
The data sets are briefly described in Table 1.

Table 1. Description of the data sets.

Data Set Abbreviation Number of Number of Conditional Attributes Number of
of Data Set Objects All Nominal Real-Valued Classes

Horse Colic Horse 368 22 15 7 2
Credit Approval Credit 690 15 9 6 2
German Credit Data German 1000 20 13 7 2
Wisconsin Diagnostic Breast Cancer WDBC 569 30 0 30 2
Libras Movement Libras 360 90 0 90 15
Musk (Version 1) Musk1 476 166 0 166 2
Hill-Valley HV 606 100 0 100 2
Wall-Following Robot Navigation Data Robot 5456 24 0 24 4
Waveform Database Generator (Version 2) WDG2 5000 40 0 40 3
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4.1. Pretreatment of the Data Sets and Design of the Experiment

For each data set, the object set, conditional attribute set and decision attribute set are denoted
by U, A, and D, respectively. If there are some real-valued conditional attributes in A, then, for each
real-valued attribute a ∈ A, the attribute value of each object is normalized according to the method
in [44] as

ã(xi) =

a(xi)−min
j

a(xj)

max
j

a(xj)−min
j

a(xj)
, xi ∈ U, (14)

so that ã(xi) ∈ [0, 1] for each xi ∈ U. Here, a is still used to denote the corresponding normalized
conditional attribute for notational simplicity.

The experiment was designed as follows. Given one of the pretreated data sets, the objects were
randomly divided into 20 approximately equal parts. The first part was taken as the 1st data set,
the combination of both the first and the second parts was regarded as the 2nd data set, the combination
of the anterior three parts was regarded as the 3rd data set, ···, and the combination of all twenty
parts was taken as the 20th data set. For each of the generated 20 data sets, a fuzzy relation for each
normalized conditional attribute a is defined as

R{a}(xi, xj) = 1− |a(xi)− a(xj)|, xi, xj ∈ Uk. (15)

On the other hand, a special fuzzy relation, namely an equivalence relation, is defined for each
nominal attribute a ∈ A by

R{a}(xi, xj) =

{
1, a(xi) = a(xj);
0, otherwise

, (16)

where xi, xj ∈ Uk. Here, Uk is the universe determined by the k-th data set. In this way, a fuzzy decision
system (Uk, A ∪ D) is formed for the k-th data set. Then, Algorithms 1 and 2 were used to obtain the
computation time of these fuzzy decision systems, respectively. Furthermore, the “ten-fold approach”
was also used to access the efficiency of the fast algorithm proposed in this paper. Specifically, for each
of the pretreated data sets, the instances were randomly divided into 10 approximately equal parts.
The k-th part was removed and the remainder was taken as the k-th data set, which generates the
ten data sets called the ten-fold data sets. Then, the fuzzy relations for real-valued attributes and
nominal attributes were defined according to Equations (18) and (19), respectively, which then formed
a fuzzy decision system for each of the ten-fold data sets. Algorithms 1 and 2 were used to obtain the
computation time of the fuzzy decision systems, respectively. Moreover, it should be pointed out that
the output results obtained by both Algorithms 1 and 2 are the same for the same threshold values
ε. The parameter ε determines the number of the selected features. The smaller the threshold value
ε is, the more selected features there are and thus the more computation time is needed. Therefore,
the parameter ε in both Algorithms 1 and 2 was set to 0. The experiment was performed by MATLAB
R2016a on a personal computer with Intel(R) Core(TM) i7-4510U CPU @2.00 GHz configuration,
8 G Memory, and the 64-bit Windows 7 system.

4.2. Comparison of Computation Time of Algorithms 1 and 2

4.2.1. Comparison of Computation Time on 20 Data Sets Generated by Each Data Set

The computation time on 20 data sets generated by each data set respectively obtained by
Algorithms 1 and 2 is depicted in Figure 1. For each of the sub-figures in Figure 1, the x-coordinate
indicates the generated data sets and the number k expresses the k-th data set. In other words,
the x-coordinate expresses the size of each data set and the number k is factually (5 ∗ k)% data of
original data sets. On the other hand, the y-coordinate shows the running time (in seconds).
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Figure 1. Computation time of Algorithms 1 and 2 with the increase of the size of each data set.

It is seen from Figure 1 that, for each data set, with the increase in data size, both
Algorithms 1 and 2 require more time. At the beginning, the two algorithms cost an almost equivalent
amount of time. Algorithm 2 needs a little more time relative to Algorithm 1 since the advantage of
Algorithm 2 is limited by a smaller data set size. Algorithm 2 may need more time to run Steps 17–20.
However, with the increase in data set size, Algorithm 2 obviously requires less running time than
Algorithm 1. Therefore, the proposed Algorithm 2 is efficient and can be regarded as an accelerated
version of Algorithm 1.

4.2.2. Comparison of Computation Time on Ten-Folds Data Sets Produced by Each Data Set

The computation time of ten-fold data sets generated by each data set is depicted in Figure 2.
For each of the sub-figures in Figure 2, the x-coordinate indicates the generated data sets and the
number i expresses the i-th data set, and the y-coordinate shows the running time (in second).
Furthermore, the average computation time is listed in Table 2. In addition, the average cardinalities
of the selected feature subset, which is expressed by | · |, are also listed in the 3rd and 5th columns
of Table 2. Moreover, in order to illustrate the variation tendency of |U∗B| in the iteration process of
the proposed Algorithm 2, the relevant result obtained by one of the ten-fold data sets is depicted in
Figure 3. For each of the sub-figures in Figure 3, the x-coordinate indicates the number of iterations in
Algorithm 2 and the y-coordinate expresses the cardinality of U∗B.
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Figure 2. Computation time of Algorithms 1 and 2 on ten-fold data sets generated by each data set.

Table 2. Average results of Algorithms 1 and 2 obtained from the ten-fold data sets.

Data Set Algorithm 2 Algorithm 1 [44]
Average Running Time (s) | · | Average Running Time (s) | · |

Horse 0.38 12.7 0.69 12.7
Credit 0.70 13.9 1.16 13.9
German 1.65 12.9 3.79 12.9
WDBC 3.20 30.0 3.85 30.0
Libras 7.94 71.4 11.48 71.4
Musk1 30.69 112.4 54.69 112.4
HV 17.12 90.0 37.11 90.0
Robot 259.00 24.0 428.85 24.0
WDG2 771.46 40.0 894.15 40.0

It can be clearly seen in Figure 2 and Table 2 that, for each of the data sets, Algorithm 2 requires
less time than Algorithm 1 for the ten-fold data sets. Especially for data sets German, Musk1, HV,
and Robot, Algorithm 2 requires much less time and needs approximately no greater than 60% of the
running time of Algorithm 1. Thus, it seems that Algorithm 2 requires significantly less running time
for the data sets with a larger size or with more features. Moreover, the results of the 3rd and the 5th
columns in Table 2 verify that the selected features respectively obtained by Algorithms 1 and 2 are the
same. In addition, it can be seen from Figure 3 that |U∗B| does monotonously decrease with the increase
of the iteration number. In fact, the decrease of |U∗B| contributes to the accelerating computation of
Algorithm 2. Therefore, Algorithm 2 is validated to be effective again on the ten-fold data sets.
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Figure 3. Variation of |U∗B| with the increase of iteration number in Algorithm 2.

5. Conclusions

Based on the existing feature selection algorithm, by utilizing a fuzzy rough set-based information
entropy, an accelerated feature selection algorithm according to the computational properties of fuzzy
rough set-based information entropy, in which the entropy is computed by a lower time complexity,
is presented in this paper. The numerical experiment results demonstrate that the algorithm can
effectively decrease computation time and thus is efficient and effective. In future work, the proposed
fast feature selection algorithm will be considered to deal with a dynamic data environment in which
new instances or new features are added.

Author Contributions: “Conceptualization, X.Z.; Data curation, X.Z. and Y.Y.; Formal analysis, X.L.; Funding
acquisition, X.Z.; Methodology, X.Z.; Project administration, X.Z., X.L. and Y.Y.; Software, X.Z. and Y.Y.; Validation,
X.L.; Writing—Original draft, X.Z.” All authors have read and approved the final manuscript.

Acknowledgments: The authors thank the reviewers for their valuable comments and suggestions. This work
was supported by the National Natural Science Foundation of China (Nos. 61602372, 61806162 and 61806108),
the PhD Research Startup Foundation of Xi’an University of Technology (No. 109-256081504) and the China
Postdoctoral Science Foundation (No. 2018M631475).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [CrossRef]
2. Lin, T.Y.; Yao, Y.Y.; Zadeh, L.A. Data Mining, Rough Sets and Granular Computing; Physica-Verlag: Heidelberg,

Germany, 2002.
3. Qian, Y.H.; Zhang, H.; Sang, Y.L.; Liang, J.Y. Multigranulation decision-theoretic rough sets. Int. J. Approx. Reason.

2014, 55, 225–237. [CrossRef]
4. Luo, C.; Li, T.R.; Yi, Z.; Fujita, H. Matrix approach to decision-theoretic rough sets for evolving data.

Knowl.-Based Syst. 2016, 99, 123–134. [CrossRef]
5. Zhao, S.Y.; Tsang, E.; Chen, D.G. The model of fuzzy variable precision rough sets. IEEE Trans. Fuzzy Syst.

2009, 17, 451–467. [CrossRef]

http://dx.doi.org/10.1007/BF01001956
http://dx.doi.org/10.1016/j.ijar.2013.03.004
http://dx.doi.org/10.1016/j.knosys.2016.01.042
http://dx.doi.org/10.1109/TFUZZ.2009.2013204


Entropy 2018, 20, 788 12 of 13

6. Qian, Y.H.; Liang, J.Y.; Pedrycz, W.; Dang, C.Y. Positive approximation: An accelerator for attribute reduction
in rough set theory. Artif. Intell. 2010, 174, 597–618. [CrossRef]

7. Wang, C.Z.; Qi, Y.L.; Shao, M.W.; Hu, Q.H.; Chen, D.G.; Qian, Y.H.; Lin, Y.J. A fitting model for feature
selection with fuzzy rough sets. IEEE Trans. Fuzzy Syst. 2017, 25, 741–753. [CrossRef]

8. Zhang, X.; Mei, C.L.; Chen, D.G.; Yang, Y.Y. A fuzzy rough set-based feature selection method using
representative instances. Knowl.-Based Syst. 2018, 151, 216–229. [CrossRef]

9. Ananthanarayana, V.; Murty, M.N.; Subramanian, D. Tree structure for efficient data mining using rough
sets. Pattern Recognit. Lett. 2003, 24, 851–862. [CrossRef]

10. Chen, H.M.; Li, T.R.; Luo, C.; Horng, S.J.; Wang, G.Y. A decision-theoretic rough set approach for dynamic
data mining. IEEE Trans. Fuzzy Syst. 2015, 23, 1958–1970. [CrossRef]

11. Yang, Y.Y.; Chen, D.G.; Wang, H. Active sample selection based incremental algorithm for attribute reduction
with rough sets. IEEE Trans. Fuzzy Syst. 2017, 25, 825–838. [CrossRef]

12. Hu, Q.H.; Zhang, L.J.; Zhou, Y.C.; Pedrycz, W. Large-scale multimodality attribute reduction with
multi-kernel fuzzy rough sets. IEEE Trans. Fuzzy Syst. 2018, 26, 226–238. [CrossRef]

13. Qian, J.; Xia, M.; Yue, X.D. Parallel knowledge acquisition algorithms for big data using MapReduce. Int. J.
Mach. Learn. Cybern. 2018, 9, 1007–1021. [CrossRef]

14. Ye, J.; Cui, W.H. Exponential entropy for simplified neutrosophic sets and its application in decision making.
Entropy 2018, 20, 357. [CrossRef]

15. Girault, J.M.; Humeau-Heurtier, A. Centered and averaged fuzzy entropy to improve fuzzy entropy precision.
Entropy 2018, 20, 287. [CrossRef]

16. Zhou, R.X.; Liu, X.; Yu, M.; Huang, K. Properties of risk measures of generalized entropy in portfolio
selection. Entropy 2017, 19, 657. [CrossRef]

17. Düntsch, I.; Gediga, G. Uncertainty measures of rough set prediction. Artif. Intell. 1998, 106, 109–137. [CrossRef]
18. Liang, J.Y.; Shi, Z.Z. The information entropy, rough entropy and knowledge granulation in rough set theory.

Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2004, 12, 37–46. [CrossRef]
19. Liang, J.Y.; Shi, Z.Z.; Li, D.Y.; Wierman, M.J. Information entropy, rough entropy and knowledge granulation

in incomplete information systems. Int. J. Gen. Syst. 2006, 35, 641–654. [CrossRef]
20. Hu, Q.H.; Yu, D.R.; Xie, Z.X.; Liu, J.F. Fuzzy probabilistic approximation spaces and their information

measures. IEEE Trans. Fuzzy Syst. 2006, 14, 191–201. [CrossRef]
21. Xu, W.H.; Zhang, X.Y.; Zhang, W.X. Knowledge granulation, knowledge entropy and knowledge uncertainty

measure in ordered information systems. Appl. Soft Comput. 2009, 9, 1244–1251. [CrossRef]
22. Mi, J.S.; Leung, Y.; Zhao, H.Y.; Feng, T. Generalized fuzzy rough sets determined by a triangular norm.

Inf. Sci. 2008, 178, 3203–3213. [CrossRef]
23. Qian, Y.H.; Liang, J.Y. Combination entropy and combination granulation in rough set theory. Int. J. Uncertain.

Fuzz. Knowl.-Based Syst. 2008, 16, 179–193. [CrossRef]
24. Ma, W.M.; Sun, B.Z. Probabilistic rough set over two universes and rough entropy. Int. J. Approx. Reason.

2012, 53, 608–619. [CrossRef]
25. Dai, J.H.; Tian, H.W. Entropy measures and granularity measures for set-valued information systems. Inf. Sci.

2013, 240, 72–82. [CrossRef]
26. Dai, J.H.; Wang, W.T.; Xu, Q.; Tian, H.W. Uncertainty measurement for interval-valued decision systems based

on extended conditional entropy. Knowl.-Based Syst. 2012, 27, 443–450. [CrossRef]
27. Chen, Y.M.; Wu, K.S.; Chen, X.H.; Tang, C.H.; Zhu, Q.X. An entropy-based uncertainty measurement

approach in neighborhood systems. Inf. Sci. 2014, 279, 239–250. [CrossRef]
28. Wang, C.Z.; He, Q.; Shao, M.W.; Xu, Y.Y.; Hu, Q.H. A unified information measure for general binary

relations. Knowl.-Based Syst. 2017, 135, 18–28. [CrossRef]
29. Beaubouef, T.; Petry, F.E.; Arora, G. Information-theoretic measures of uncertainty for rough sets and rough

relational databases. Inf. Sci. 1998, 109, 185–195. [CrossRef]
30. Jiang, F.; Sui, Y.F.; Cao, C.G. An information entropy-based approach to outlier detection in rough sets.

Expert Syst. Appl. 2010, 37, 6338–6344. [CrossRef]
31. Pal, S.K.; Shankar, B.U.; Mitra, P. Granular computing, rough entropy and object extraction. Pattern Recognit. Lett.

2005, 26, 2509–2517. [CrossRef]
32. Tsai, Y.C.; Cheng, C.H.; Chang, J.R. Entropy-based fuzzy rough classification approach for extracting

classification rules. Expert Syst. Appl. 2006, 31, 436–443. [CrossRef]

http://dx.doi.org/10.1016/j.artint.2010.04.018
http://dx.doi.org/10.1109/TFUZZ.2016.2574918
http://dx.doi.org/10.1016/j.knosys.2018.03.031
http://dx.doi.org/10.1016/S0167-8655(02)00197-6
http://dx.doi.org/10.1109/TFUZZ.2014.2387877
http://dx.doi.org/10.1109/TFUZZ.2016.2581186
http://dx.doi.org/10.1109/TFUZZ.2017.2647966
http://dx.doi.org/10.1007/s13042-016-0624-x
http://dx.doi.org/10.3390/e20050357
http://dx.doi.org/10.3390/e20040287
http://dx.doi.org/10.3390/e19120657
http://dx.doi.org/10.1016/S0004-3702(98)00091-5
http://dx.doi.org/10.1142/S0218488504002631
http://dx.doi.org/10.1080/03081070600687668
http://dx.doi.org/10.1109/tfuzz.2005.864086
http://dx.doi.org/10.1016/j.asoc.2009.03.007
http://dx.doi.org/10.1016/j.ins.2008.03.013
http://dx.doi.org/10.1142/S0218488508005121
http://dx.doi.org/10.1016/j.ijar.2011.12.010
http://dx.doi.org/10.1016/j.ins.2013.03.045
http://dx.doi.org/10.1016/j.knosys.2011.10.013
http://dx.doi.org/10.1016/j.ins.2014.03.117
http://dx.doi.org/10.1016/j.knosys.2017.07.017
http://dx.doi.org/10.1016/S0020-0255(98)00019-X
http://dx.doi.org/10.1016/j.eswa.2010.02.087
http://dx.doi.org/10.1016/j.patrec.2005.05.007
http://dx.doi.org/10.1016/j.eswa.2005.09.038


Entropy 2018, 20, 788 13 of 13

33. Chen, C.B.; Wang, L.Y. Rough set-based clustering with refinement using Shannon’s entropy theory.
Comput. Math. Appl. 2006, 52, 1563–1576. [CrossRef]

34. Sen, D.; Pal, S.K. Generalized rough sets, entropy, and image ambiguity measures. IEEE Trans. Syst. Man
Cybern. B 2009, 39, 117–128. [CrossRef] [PubMed]

35. Chen, Y.; Zhang, Z.; Zheng, J.; Ma, Y.; Xue, Y. Gene selection for tumor classification using neighborhood
rough sets and entropy measures. J. Biomed. Inform. 2017, 67, 59–68. [CrossRef] [PubMed]

36. Miao, D.Q.; Hu, G.R. A heuristic algorithm for reduction of knowledge. J. Comput. Res. Dev. 1999, 36, 681–684.
37. Wang, G.Y.; Yu, H.; Yang, D.C. Decision table reduction based on conditional information entropy. Chin. J. Comput.

2002, 25, 759–766.
38. Hu, Q.H.; Yu, D.R.; Xie, Z.X. Information-preserving hybrid data reduction based on fuzzy-rough techniques.

Pattern Recognit. Lett. 2006, 27, 414–423. [CrossRef]
39. Hu, Q.H.; Zhang, L.; Chen, D.G.; Pedrycz, W.; Yu, D.R. Gaussian kernel based fuzzy rough sets: Model,

uncertainty measures and applications. Int. J. Approx. Reason. 2010, 51, 453–471. [CrossRef]
40. Sun, L.; Xu, J.C.; Tian, Y. Feature selection using rough entropy-based uncertainty measures in incomplete

decision systems. Knowl.-Based Syst. 2012, 36, 206–216. [CrossRef]
41. Liang, J.Y.; Wang, F.; Dang, C.Y.; Qian, Y.H. A group incremental approach to feature selection applying

rough set technique. IEEE Trans. Knowl. Data Eng. 2014, 26, 294–308. [CrossRef]
42. Foithong, S.; Pinngern, O.; Attachoo, B. Feature subset selection wrapper based on mutual information and

rough sets. Expert Syst. Appl. 2012, 39, 574–584. [CrossRef]
43. Chen, Y.M.; Xue, Y.; Ma, Y.; Xu, F.F. Measures of uncertainty for neighborhood rough sets. Knowl.-Based Syst.

2017, 120, 226–235. [CrossRef]
44. Zhang, X.; Mei, C.L.; Chen, D.G.; Li, J.H. Feature selection in mixed data: A method using a novel fuzzy

rough set-based information entropy. Pattern Recognit. 2016, 56, 1–15. [CrossRef]
45. Chen, D.G. Theory and Methods of Fuzzy Rough Sets; Science Press: Beijing, China, 2013.
46. Dubois, D.; Prade, H. Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 1990, 17, 191–209. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.camwa.2006.03.033
http://dx.doi.org/10.1109/TSMCB.2008.2005527
http://www.ncbi.nlm.nih.gov/pubmed/19150762
http://dx.doi.org/10.1016/j.jbi.2017.02.007
http://www.ncbi.nlm.nih.gov/pubmed/28215562
http://dx.doi.org/10.1016/j.patrec.2005.09.004
http://dx.doi.org/10.1016/j.ijar.2010.01.004
http://dx.doi.org/10.1016/j.knosys.2012.06.010
http://dx.doi.org/10.1109/TKDE.2012.146
http://dx.doi.org/10.1016/j.eswa.2011.07.048
http://dx.doi.org/10.1016/j.knosys.2017.01.008
http://dx.doi.org/10.1016/j.patcog.2016.02.013
http://dx.doi.org/10.1080/03081079008935107
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Accelerated Computation of -Conditional Entropy
	Numerical Experiment
	Pretreatment of the Data Sets and Design of the Experiment
	Comparison of Computation Time of Algorithms 1 and 2
	Comparison of Computation Time on 20 Data Sets Generated by Each Data Set
	Comparison of Computation Time on Ten-Folds Data Sets Produced by Each Data Set


	Conclusions
	References

