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Abstract: This paper proposes a distributed joint source-channel coding (DJSCC) scheme using
polar-like codes. In the proposed scheme, each distributed source encodes source message with
a quasi-uniform systematic polar code (QSPC) or a punctured QSPC, and only transmits parity bits
over its independent channel. These systematic codes play the role of both source compression
and error protection. For the infinite code-length, we show that the proposed scheme approaches
the information-theoretical limit by the technique of joint source-channel polarization with side
information. For the finite code-length, the simulation results verify that the proposed scheme
outperforms the distributed separate source-channel coding (DSSCC) scheme using polar codes and
the DJSCC scheme using classic systematic polar codes.

Keywords: correlated sources; noisy independent channels; distributed joint source-channel coding;
quasi-uniform systematic polar codes

1. Introduction

Polar codes, invented by Arikan [1] using a technique called channel polarization, are capable
of achieving the symmetric capacity of any binary-input discrete memoryless channel (B-DMC)
with low encoding and decoding complexity. Afterwards, the concept of source polarization was
introduced in [2] as the complement of channel polarization. One immediate application of source
polarization is the design of polar codes for source coding. Since the polarization phenomenon
exists on both source and channel sides, it is of natural interest to integrate channel polarization
and source polarization for joint source-channel coding (JSCC). From the perspective of information
theory, this interest is motivated by the fact that the error exponent of JSCC is better than that of
separate source-channel coding (SSCC) [3], which may indicate a performance loss of SSCC under the
finite code-length. From a practical point of view, two main shortcomings of SSCC resulting in an
unsatisfactory performance are summarized as follows:

• With finite code-length, channel decoding error is unavoidable, such error may be disastrous for
the source decoder.

• With finite code-length, in the output of source coding may exist residual redundancy,
such redundancy is not exploited by the channel decoder to further improve the performance.

Therefore, the JSCC scheme, which takes into consideration both source redundancy and channel
error jointly, may have certain advantages over SSCC.
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In recent years, JSCC has attracted an increasing number of attention among researchers. The JSCC
schemes based on turbo codes, LDPC codes, and polar codes can be found in [4–7], and [8–10],
respectively. In particular, the authors of [11] proposed a class of systematic polar codes (SPCs), called
quasi-uniform SPCs (QSPCs), and showed that QSPCs are optimal for the problem of JSCC with side
information and outperform classic SPCs [12].

For the distributed source coding (DSC) problem, the Slepian-Wolf theorem [13] states that for
two or more correlated sources, lossless compression rates of joint encoding can be achieved with
separate encoding if a joint decoder is used at the receiver. This theorem has been known for a long
time, but the practical DSC scheme was only recently proposed by Pradhan and Ramchandran using
syndromes [14]. Inspired by the syndromes approach, a large number of DSC schemes have sprung
up based on powerful channel codes (CCs) such as turbo codes, LDPC codes, polar codes [15–17].
However, to obtain a good performance, these syndromes-based schemes usually need a considerably
long code-length (104∼105) and are sensitive to channel errors. Alternatively, the design of DSC scheme
can be based on parity approach where a systematic code is used to encode the source and the source is
recovered by parity bits. These kinds of schemes can be extended to distributed JSCC (DJSCC) [18,19].
Our work falls into this category. Specifically, we focus on the design of parity-based DJSCC using
polar/polar-like codes, where only parity bits are transmitted over the noisy channels. Each distributed
source has one encoder to encode source message for both compression and error protection.

The main contributions of this paper are summarized as follows. We propose a new class of
polar-like codes, called punctured QSPCs, and show its asymptotic optimality. Then we propose
a DJSCC scheme using two polar-like codes and show that the proposed scheme approaches
achievable rates.

The rest of this paper is organized as follows. The system model is given in Section 2. Section 3
introduces QSPCs and punctured QSPCs. In Section 4, we propose a DJSCC scheme based on two
polar-like codes and analyze its performance limit. Section 5 presents the simulation results to verify
the advantage of the proposed scheme and in Section 6 we conclude this paper.

2. System Model

Consider the problem of transmitting distributed sources V1, V2, ..., Vs over independent symmetric
B-DMCs W1, W2, ..., Ws to a common destination. The message from source Vi, i = 1, 2, . . . , s, is denoted
by a binary vector vi = [v1

i , v2
i , ..., vK

i ] of length K. We assume that vj = [vj
1, vj

2, ..., vj
s] for different

j ∈ {1, 2, ..., K} are i.i.d. (identically and independently distributed) vectors drawn from {0, 1}s with
a common probability distribution PV1,V2,...Vs .

From the Slepian-Wolf theorem, the compression rate R = (R1, R2, ..., Rs) is achievable if

∑
i∈T

Ri ≥ H(vj
T |v

j
T c) (1)

for any T ⊆ {1, 2, ..., s}, where H(·) is entropy function, T c = {1, 2, ..., s}\T is the complementary set
of T , vj

T and vj
T c denote, respectively, the sub-vectors of vj indexed by T and T c. This achievable

compression region is also known as the Slepian-Wolf regionRSW .
Let R̃i = Ñi/K be the rate, measured in the number of channel-use per source-symbol, where Ñi

is the number of channel uses of source Vi for transmitting vi. Let Ci denote the channel capacity of Wi.
Since the source-channel separation theorem still holds for this problem [20], reliable transmission is
possible if R̃ = (R̃1, R̃2, ..., R̃s) falls into the achievable rate regionRrate, which is defined as

Rrate = {R̃|R̃i ≥ 0,RSW ∩Rc(R̃) 6= ∅}, (2)
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whereRc(R̃) is the set of all points (R1, R2, ..., Rs) satisfying

0 ≤ Ri ≤ R̃iCi (3)

for i = 1, 2, ..., s.
Given R̃1, R̃2 ∈ Rrate and 0 ≤ λ ≤ 1, by the definition of convex sets, we can readily prove

that λR̃1 + (1 − λ)R̃2 ∈ Rrate as follows. There obviously exist R∗1 ∈ RSW ∩ Rc(R̃1) and R∗2 ∈
RSW ∩Rc(R̃2). Due to the convexity ofRSW, λR∗1 + (1− λ)R∗2 ∈ RSW. Besides, it can be observed that

λR∗1 + (1− λ)R∗2 ∈ Rc(λR̃1 + (1− λ)R̃2). (4)

This indicates that a point at least exists in RSW ∩Rc(λR̃1 + (1− λ)R̃2), and RSW ∩Rc(λR̃1 +

(1− λ)R̃2) 6= ∅. Therefore, λR̃1 + (1− λ)R̃2 ∈ Rrate and the achievable rate region ofRrate is convex.
To solve this transmission problem, one option is distributed SSCC (DSSCC) scheme as shown in

Figure 1. The message from each source is first compressed into compressed bits with DSC. Then each
source encodes its compressed bits into channel code bits with CCs and transmit these channel code bits
over its channel. At the destination, the received signals are first decoded by channel decoders, and then
decoded bits are jointly decompressed by a source joint decoder. There is no interaction between the
source layer and the channel layer in the sense of encoding and decoding. Such a DSSCC scheme
is asymptotically optimal when the code-length goes to infinity. However, with finite code-length,
such source-channel separate schemes are generally sensitive to the residual errors of channel decoder,
and thus are ineffective in some scenarios such as wireless sensor networks (WSNs). To address this
problem, in this paper we propose a DJSCC scheme using polar-like codes to achieve the corner point
inRrate, i.e.,

R̃i =
H(vj

i |v
j
1vj

2...vj
i−1)

Ci
(5)

for i = 1, 2, ..., s. As shown in Figure 2, each source is equipped with only one encoder to encode the
source message for both compression and error protection.

Note that the order of the chain rule vj
1vj

2...vj
s in (5) has no effect on the code construction and

overall performance, hence the ascending order is considered in this paper. It is also obvious that
multiple points inRrate can be achieved with time-sharing operations, provided that DJSCC schemes
for corner points have been well constructed.
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Figure 1. Distributed separate source-channel coding (DSSCC) scheme.
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Figure 2. Distributed joint source-channel coding (DJSCC) scheme.

3. QSPC and Punctured QSPC

In this section, we briefly review QSPC and propose punctured QSPC. At first, two index sets and
their properties are presented. Consider a binary sequence L of length N = 2n. The coordinates of the
ones in L are quasi-uniformly distributed and denoted by the index set Q(N, K) or Q̄(N, K), which is
defined as

Q(N, K) = {b = 1 +
n−1

∑
i=0

bi2i|1 +
n−1

∑
i=0

bi2n−1−i ∈ {i : N − K + 1 ≤ i ≤ N}, bi ∈ {0, 1}},

Q̄(N, K) = {b = 1 +
n−1

∑
i=0

bi2i|1 +
n−1

∑
i=0

bi2n−1−i ∈ {i : 1 ≤ i ≤ K}, bi ∈ {0, 1}}.
(6)

The property of this sequence is given as Proposition 1.

Proposition 1. The coordinates of the ones in LM = LL...L︸ ︷︷ ︸
M

(M = 2m) are Q(MN, MK) and Q̄(MN, MK)

if the coordinates of the ones in L are Q(N, K) and Q̄(N, K), respectively.

An example for index sets is illustrated in Figures 3 and 4. The coordinates of the ones in
L = 0001 and L̄ = 1000 are Q(4, 1) = {4} and Q̄(4, 1) = {1}, respectively. For L2 = 00010001 and
L̄2 = 10001000, the coordinates of ones are Q(8, 2) = {4, 8} and Q̄(8, 2) = {1, 5}, respectively.

. . .Systematic bit:

Parity bit:

( , )N K ( , )N K ( , )N K

( , )MN MK

Figure 3. The codeword structure of quasi-uniform systematic polar code (QSPCs) with N = 4, K = 1.

. . .
Systematic bit:

Parity bit:

Punctured bit:

( , ) / ( , )N K N P ( , ) / ( , )N K N P( , ) / ( , )N K N P

( , ) / ( , )MN MK MN MP

Figure 4. The codeword structure of punctured QSPCs with N = 4, K = 1, P = 1.
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3.1. QSPC

A class of SPCs, called QSPCs, were introduced for the problem of JSCC with side information.
For a (MN, MK) QSPC (M = 2m, N = 2n, K ≤ N), systematic bits xB are first encoded by

ũÃ =
(
xB − uÃc G̃MN(ÃcB)

) (
G̃MN(ÃB)

)−1

= xB
(
G̃MN(ÃB)

)−1 ,
(7)

where Ã = {i|MN −MK− 1 ≤ i ≤ MN},B = Q(MN, MK), and G̃MN(ÃB) denotes the sub-matrix
of G̃MN with the rows indexed by Ã and the columns indexed by B. Then the codeword is obtained by

x =
(
ũÃG̃MN(Ã)

)
⊕
(
ũÃc G̃MN(Ãc)

)
, (8)

where G̃MN(Ã) and G̃MN(Ãc) denote the rows of G̃MN indexed by Ã and Ãc, respectively.
The generator matrix is given by

G̃MN = DGMN = DBMN

[
1 0
1 1

]⊗(m+n)

, (9)

where BMN is a bit-reversal matrix, and D is an invertible bit-swap coding matrix (refer to Section IV.A
of [11] for details). It can be seen that x = ũG̃MN = uGMN and u = ũD.

For this code, the typical decoder of polar codes attempts to decode u, then the codeword x is
obtained by x = uGMN or x = uD−1G̃MN . The entropies/BERs (bit error rate) of u are determined by
underlying channels and the sources. With the aid of density evolution, we can locate those bits uA
which have low entropies/BERs. However, the reversibility of GAB cannot be guaranteed, i.e., it is
impossible to construct QSPCs via original polar coding. The bit-swap coding D is then proposed
to change the information bits from uA to ũÃ and modify the generator matrix G̃MN = DGMN .
This operation ensures that G̃ÃB is always invertible. The block error rate (BLER) of x under the SC
decoder can be calculated by

PBLER = 1−∏
i∈A

[1− Pe(ui)] , (10)

where Pe(ui) is the BER of ui.
Consider a source message v = [v1, v2, ..., vMK] with side information w = [w1, w2, ..., wMK].

When v is encoded by a (MN, MK) QSPC for JSCC, only parity bits xBc are transmitted over the
noisy channel W(y|x). Due to B = Q(MN, MK), the codeword structure can be depicted in Figure 3,
and Theorem 1 can be obtained as follows.

Theorem 1 ([11]). For any 0 ≤ ε < 1
2 ,

lim
M→∞

1
MN

|{i : H(ui|yu1:i−1) ∈ [0, ε)}| = lim
M→∞

1
MN
|{i : Z(ui|yu1:i−1) ∈ [0, ε)}|

= 1− KH(v|w) + (N − K)H(x|y)
N

,

lim
M→∞

1
MN
|{i : H(ui|yu1:i−1) ∈ (1− ε, 1]}| = lim

M→∞

1
MN
|{i : Z(ui|yu1:i−1) ∈ (1− ε, 1]}|

=
KH(v|w) + (N − K)H(x|y)

N
,

(11)

where | · | denotes the cardinality of set, Z(·|·) is the source Bhattacharyya parameter [2], yB = w and yBc are
channel outputs of W(y|x), and 1 : i− 1 denotes the set of {1, 2, ..., i− 1}.
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Note that the theorem shows that PBLER tends to 0 as M goes to infinity, if H(v|w)/(1−H(x|y)) =
H(v|w)/C ≤ (N − K)/K, because Z(ui|yu1:i−1) is an upper-bound of Pe(ui). Further, if the
supermartingale is established for Z(ui|yu1:i−1), we have PBLER ≤ 2−Mβ → 0, for any β ∈ (0, 1

2 ) [21].

3.2. Punctured QSPC

By puncturing MP parity bits from a (MN, MK) QSPC code, we can construct a punctured QSPC
code with a lower rate R̃i (in channel-use per source-symbol). This punctured QSPC is dominated
by the parameter (MN, MK, MP). As depicted in Figure 4, there are three kinds of bits (systematic
bits, parity bits, and punctured bits) in the codeword, and the coordinates of punctured bits are
Q̄(MN, MP). At the stage of code construction, punctured bits are regarded as the inputs of the
zero-capacity channel to calculate BERs of u and bit-swap coding. When this punctured QSPC is used
to encode source message v = [v1, v2, ..., vMK] with side information w = [w1, w2, ..., wMK], Theorem 2
is obtained similarly as follows.

Theorem 2. For any 0 ≤ ε < 1
2 ,

lim
M→∞

1
MN
|{i : H(ui|yu1:i−1) ∈ [0, ε)}| = lim

M→∞

1
MN
|{i : Z(ui|yu1:i−1) ∈ [0, ε)}|

= 1− KH(v|w) + (N − K− P)H(x|y) + P
N

,

lim
M→∞

1
MN
|{i : H(ui|yu1:i−1) ∈ (1− ε, 1]}| = lim

M→∞

1
MN
|{i : Z(ui|yu1:i−1) ∈ (1− ε, 1]}|

=
KH(v|w) + (N − K− P)H(x|y) + P

N
,

(12)

where yQ̄(MN,MP) = ∅ because of puncturing.

Proof of Theorem 2. The codeword structure of Figure 4 ensures that Z(ui|yu1:i−1) and H(ui|yu1:i−1)

converge to either 0 or 1, as M goes to infinity, which is similar to QSPC. The total entropy can be
calculated by

MN

∑
i=1

H(ui|yu1:i−1) =
MN

∑
i=1

H(xi|yi) = M(N − K− P)H(x|y) + MKH(v|w) + MP. (13)

Therefore, the fraction of the high entropy part (H ≈ 1) is

1
MN

(M(N − P− K)H(x|y) + MKH(v|w) + MP) =
1
N
(N− P−K)H(x|y)+ 1

N
KH(v|w)+

P
N

, (14)

and the fraction of the low entropy part (H ≈ 0) is 1− 1
N (N − P− K)H(x|y)− 1

N KH(v|w)− P
N .

This theorem also shows that PBLER of punctured QSPC tends to 0 as M goes to infinity,
if H(v|w)/(1 − H(x|y)) = H(v|w)/C ≤ (N − K − P)/K. Since punctured bits contributes zero
channel-use, punctured QSPC has no performance loss. After the establishment of supermartingale for
Z(ui|yu1:i−1), we also have PBLER ≤ 2−Mβ → 0, for any β ∈ (0, 1

2 ).

4. Proposed DJSCC Scheme and Performance Limit

In this section, we propose a DJSCC scheme based on the previous construction of two polar-like
codes, and prove its asymptotic optimality.
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4.1. Proposed DJSCC Scheme

To achieve the corner point (5), we turn this problem into the problem of JSCC with side
information at the receiver, and solve it with QSPC and punctured QSPC. The proposed DJSCC
scheme consists of s encoders and one joint decoder, as shown in Figure 2.

Define
R̃max = max

i∈{1,2,...,s}
R̃i (15)

and
imax = argmax

i∈{1,2,...,s}
R̃i. (16)

For source Vi, the previous sources V1, V2, ..., Vi−1 are completely regarded as side information to
construct QSPC and punctured QSPC. For the source Vimax , its message vimax is encoded by a (MN, MK)
QSPC. For sources Vi, i 6= imax, the message vi is encoded by a (MN, MK, MPi) punctured QSPC to
adapt a lower rate R̃i. At the destination, a joint decoder is used to recover the sources, as shown in
Figure 5. The joint decoder consists of s conventional polar decoders working successively. The hard
decisions v̂1, v̂2, ..., v̂i−1 from decoder 1, 2, . . . , i− 1 are fed to i-th decoder for calculating log likelihood
ratios (LLRs) of systematic bits. For parity bits, the LLRs are calculated with channel observations.

...

Decoder 1

Decoder 2

Decoder s

Joint decoder

1 2

1 1 1
ˆ ˆ ˆ, ,..., Kv v v

1 2

2 2 2
ˆ ˆ ˆ, ,..., Kv v v

1 2ˆ ˆ ˆ, ,..., K

s s sv v v

...

Figure 5. Joint decoder.

4.2. Performance Limit

Based on the analysis in Section 3, both QSPC and punctured QSPC can achieve the
information-theoretical limit H/C in channel-use per source-symbol. Therefore, the proposed scheme
is asymptotically optimal, as long as the rates can be arbitrarily approached. The following lemma
shows that the QSPC and punctured QSPC can approach the rate limits.

Lemma 1. The (MN, MK) QSPC asymptotically approaches the rate R̃imax and the (MN, MK, MPi)

punctured QSPC asymptotically approaches arbitrary rate R̃i ≤ R̃imax .

Proof of Lemma 1. Let K be the integer part of N/(R̃i + 1), then we have

N = K(R̃i + 1) + ε, 0 ≤ ε < R̃i + 1 (17)
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and

R̃peak =
N − K

K
=

K(R̃i + 1) + ε− K
K

= R̃i +
ε

K
. (18)

Since lim
K(N)→∞

R̃peak = R̃i + lim
K(N)→∞

ε
K = R̃i, the gap between R̃peak and R̃i can be arbitrarily small

when N is sufficiently large. Besides, the minimum step of adjustable rate by puncturing ∆ = 1
K

is getting smaller with increasing N. This indicates that the punctured QSPC can also arbitrarily
approach a rate less than R̃peak when N is large enough.

5. Simulation Results

In the previous section, we have proposed a DJSCC scheme and shown its asymptotic optimality.
In this section, we present the simulation results to verify the performance of the proposed scheme
under finite code-length.

In the simulation, two sources V1, V2 are considered and Pr{vj
2|v

j
1} is modeled as binary symmetric

channel (BSC) with a crossover probability q = 0.11, and Pr{vj
1 = 0} = 0.5. The transmission channels

W1, W2 are BI-AWGN channels with the same signal-to-noise ratio (SNR). The (64 · 32, 64 · 10) QSPC and
the (64 · 32, 64 · 10, 64 · 11) punctured QSPC are constructed with density evolution. The QSPC and the
punctured QSPC are respectively used to encode v1 and v2 for DJSCC. For this DJSCC scheme, the rates
are R̃ = (R̃1, R̃2) = (2.2, 1.1) in channel-use/source-symbol. The Shannon limits for both two sources
are approximately -0.4 dB, which are respectively obtained by MK · H(vj

1) ≤ M(N − K) · C(SNR) and

MK · H(vj
2|v

j
1) ≤ M(N − K− P) · C(SNR), where C(SNR) is the capacity of BI-AWGN channels.

As a reference, we consider a DSSCC scheme where both DSC and CC are designed using polar
codes of length Ns = Nc = 1024. The source compression rate (in bit/source-symbol) of DSC Rsi,
and the channel code rate (in bit/channel-use) of CC Rci for source Vi, i = 1, 2 are illustrated in Table 1.
The rate of this DSSCC scheme can be calculated by

R̃i =
Rsi
Rci

, i = 1, 2 (19)

in channel-use/source-symbol. In the source layer, each Ns bits of source message are divided
into a block for DSC and the polar code based DSC is designed as follows. After polar transform
u = [v1

1 ⊕ v1
2, v2

1 ⊕ v2
2, ..., vNs

1 ⊕ vNs
2 ]GN , the BERs Pe(ui) of u are calculated with density evolution.

As shown in Figure 6, both u1 = v1GN and u2 = v2GN are sorted in a descend order according to
Pe(ui), and the bits represented by black boxes are compressed bits that will be fed into the buffer
for CC. At the receiver, the decoder firstly tries to recover u1 ⊕ u2 with LLRs log 1−q

q , then the bits
represented by gray boxes are reconstructed with some modulo-2 additions. Finally, the sources are
obtained by v̂1 = û1GN and v̂2 = û2GN . In the channel layer, each NcRci compressed bits in the buffer
are divided into a block for (Nc, NcRci) CC based on polar codes.

Table 1. Distributed separate source-channel coding (DSSCC) schemes with different Rsi, Rci.

Rs1 Rs2 Rc1 Rc2 R̃

DSSCC 1 1024/1024 650/1024 465/1024 591/1024 (2.2, 1.1)
DSSCC 2 900/1024 900/1024 409/1024 818/1024 (2.2, 1.1)
DSSCC 3 1024/1024 900/1024 465/1024 818/1024 (2.2, 1.1)
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 Sort by BERs

…

…

…

…1 1= Nu v G

2 2= Nu v G …

…

1 2( 1)s s sN R R 
2(1 )s sN R 1(1 )s sN Rbits bits bits

Figure 6. Bit selection of distributed source coding (DSC) based on polar codes.

Besides, we consider the DJSCC based on classic SPCs as a reference. For source V1,
the (64 · 32, 64 · 10) SPC is constructed via Gaussian approximation where the underlying channel
is BI-AWGN channels with the equivalent capacity Cequ1 = K

N · (1 − H(vj
1)) +

N−K
N C1 = N−K

N C1.
For source V2, the (64 · 32, 64 · 10) SPC is constructed via Gaussian approximation where the underlying
channel is BI-AWGN channels with equivalent capacity Cequ2 = K

N · (1− H(vj
2|v

j
1)) +

N−K−P
N C2 =

K
2N + N−K−P

N C2. Since the conventional puncturing scheme is not applicable in this situation, 64 · 11
parity bits of source V2 are randomly punctured.

5.1. Performance under SC Decoders

First, we investigate the performance of the proposed scheme, DSSCC schemes, and the DJSCC
scheme with classic SPCs under the SC decoder. Figure 7 shows the BER performance versus the
SNR of transmission channels. In this figure, lines labeled by “Proposed...” represent BERs for the
proposed scheme, lines labeled by “DSSCC...” represent BERs for DSSCC schemes with different
values of Rsi, Rci shown in Table 1, and lines labeled by “Classic SPC...” represent the DJSCC scheme
with classic SPCs. From these simulation results, we can see that the proposed scheme outperforms
DSSCC schemes and the DJSCC scheme with classic SPCs by approximately 0.2∼2 dB. It can be
observed that an “error-floor” of “DSSCC 1” starts from 3.5 dB, which is completely caused by the
source joint decoder (channel decoders get almost error-free codewords from 3.5 dB to 5 dB). To avoid
this error, the higher compressed rate Rsi is required. Therefore, we do not observe the “error-floor”
for “DSSCC 2” and “DSSCC 3”.

-1 0 1 2 3 4 5 6 7

SNR(dB)

10-6
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10-2

10-1

100

B
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2
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1
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2
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1
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2

DSSCC 3, source V
1

DSSCC 3, source V
2

Classic SPC, source V
1

Classic SPC, source V
2

Shannon limit

Figure 7. The bit error rate (BER) performance under the SC decoder.
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5.2. Performance under CA-SCL Decoders

For the short or moderate code-length, the performance of polar codes under SC decoder is
dissatisfied. To improve the performance, Tal and Vardy proposed CRC-aid SC list (CA-SCL) decoder
for polar codes [22]. Next, we investigate the BER performance of the proposed scheme together with
two referenced schemes under the CA-SCL decoder. For QSPCs and punctured QSPCs, systematic
bits contain 16 bits CRC, i.e., the length of source message is MK− 16. At the decoding stage, LLRs of
these 16 bits are initialized as 0 and the list size is set as 32. Taking CRC into consideration, the rates
of the DJSCC scheme become R̃ = (2.256, 1.128) in channel-use/source-symbol. In DSSCC schemes,
information bits of both DSC and CC contain 16 bits CRC and the list size is also set as 32.

Figure 8 shows the BER performance under the CA-SCL decoder. We can see that compared with
the SC decoder, the performances of all schemes are improved significantly. Due to the reasonable
rate allocation, the performance of “DSSCC 1” is the best and very close the performance of the
proposed scheme. However, the performances of other two DSSCC schemes are dissatisfied. It can be
observed that the proposed scheme outperforms “DSSCC 1” and the DJSCC scheme with classic SPCs
by approximately 0.2∼1 dB.
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Figure 8. The BER performance under the CRC-aid SC list (CA-SCL) decoder.

5.3. Complexity

For each distributed source, the encoding complexities of both two referenced schemes
are O(N log N). The encoding complexity of the proposed scheme is slightly larger, which is
O(N + N log N). Due to low encoding complexity, these schemes are well-suited for WSNs.

To investigate decoding complexity, we consider adaptive CA-SCL decoders [23] where the list
size is expanded if decoding error is detected by CRC. These kinds of decoders have O(L̄N log N)

complexity, where L̄ is average list size. In the simulations, the allowable maximum list size is set
as Lmax = 32 and the average list size L̄ for decoding both two sources is recorded. The complexity
(per source-symbol) can be approximated as O( 1

MK · L̄N log N) for the proposed scheme and DJSCC
scheme with classic SPCs, and O( 1

Ns
· L̄N log N) for DSSCC schemes. As shown in Figure 9, for the

high SNR region and the low SNR region, the DSSCC1 has lower decoding complexity while the
proposed scheme has lower decoding complexity for the middle SNR region. In general, three schemes
have similar decoding complexity under adaptive CA-SCL decoders.



Entropy 2018, 20, 806 11 of 12

0 0.5 1 1.5 2 2.5 3 3.5

SNR(dB)

101

102

103

104

C
om

pl
ex

ity

DSSCC 1

Proposed

Classic SPC

Figure 9. The decoding complexity (per source-symbol) under adaptive CA-SCL decoders.

6. Conclusions

In this paper, we construct two kinds of polar-like codes (QSPCs and punctured QSPCs), which
can be used for JSCC with side information. We then proposed a DJSCC scheme based on QSPC
and punctured QSPC. In this scheme, we have transformed the optimization transmission problem
into a problem of optimizing JSCC with side information at the receiver, which can be solved by
QSPCs and punctured QSPCs. For the infinite code-length, we have proved that the proposed scheme
is asymptotically optimal. For the finite code-length, the simulation results have verified that the
proposed scheme outperforms the DSSCC scheme with polar codes and the DJSCC scheme with
classic SPCs.
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