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Abstract: When working with economic accounts it may occur that multiple estimates of a single
datum exist, with different degrees of uncertainty or data quality. This paper addresses the problem
of defining a method that can reconcile conflicting estimates, given best guess and uncertainty
values. We proceeded from first principles, using two different routes. First, under an entropy-based
approach, the data reconciliation problem is addressed as a particular case of a wider data balancing
problem, and an alternative setting is found in which the multiple estimates are replaced by a single
one. Afterwards, under an axiomatic approach, a set of properties is defined, which characterizes the
ideal data reconciliation method. Under both approaches, the conclusion is that the formula for the
reconciliation of best guesses is a weighted arithmetic average, with the inverse of uncertainties as
weights, and that the formula for the reconciliation of uncertainties is a harmonic average.

Keywords: uncertainty modelling; economic accounts; conflicting estimates; entropy-based approach;
axiomatix approach

1. Introduction

With improvements in information technology, the world has become more unified and
interconnected. Information is now typically shared quickly and easily from all over the globe,
such that barriers formed by linguistic and geographic boundaries essentially have been torn down.
This has enabled people from disparate cultures and backgrounds to share ideas and information.
One outcome of this regime change has been a boosting of the perceived benefits of statistical
information. While some benefits of such statistical information have been known since at least
Quetelet’s (1835) tome on so-called “social physics” was published, today’s massive socio-economic
statistical repositories in Europe, North America, and East Asia are enabling a data revolution of sorts.
Indeed, the fields of data mining and data analytics are fast becoming important fields of academic
study. Mirroring the rise of data availability and the nature of some of the data itself, the term “big
data” has been coined [1] to refer to the extremely voluminous and complex data sets that require
specialized processing application software to deal with them.

The most prominent stewards of socio-economic data are government statistical agencies,
which focus on producing and disseminating data products secured via surveys (for example the
American Community Survey), censuses (such as Japan’s 2015 Population Census), and administrative
procedures (like information needed to get an academic promotion in Spain). As a result, data storage
is now ubiquitously electronic, replicated offsite to guard against storage failure, and measured in
petabytes. Electronic storage enables low-cost dissemination of data. It also facilitates the integration
of records across disparate databases—for example, into a system of national accounts, which is what
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countries use to generate their estimates of gross domestic product, as suggested by the United Nations.
Both lead to concerns about confidentiality of data and how it can be protected [2].

Our point in broaching the above is that data producers, disseminators, and users alike can
run into the problem of having access to multiple estimates for a single quantity of interest. In the
particular experience of the authors, which motivated the present study, these multiple estimates are a
consequence of non-disclosure by a statistical office in order to ensure confidentiality. Hence we act as
what Duncan et al. [2] called “data snooper”. For concreteness, in such instances we are interested in
obtaining number of employees at county level from the U.S. Bureau of Statistics’s Quarterly Census
of Employment and Wages (QCEW) data and U.S. Bureau of the Census’s County Business Patterns.
In both datasets these figures are suppressed for selected sectors in some counties and even states.
But information is provided for larger spatial and sectoral units, so it is possible to use this higher-level
information to obtain multiple estimates of the quantities of interest. It is common for official statistical
data to have a hierarchical structure so this problem is quite general. Garfinkel et al. [3] note that the
increasing ability of data snoopers is making ever more data stewards reluctant to provide certain data
products because they are finding it increasingly difficult to ensure confidentiality to the agents from
whom they obtain the data. This is despite some use of noise as a disclosure limitation [4].

In this paper, we focus on the problem of combining such multiple estimates into a single value.
In the case of economic accounts, Miller and Blair [5] (pp. 384–386) have called it “the reconciliation
issue”. The reconciliation issue considered here should not be confused with the more general problem
of data balancing, in which a set of multiple data points need to satisfy a set of constraints: That problem
is addressed in other studies, such as Kruithof [6], Stone et al. [7], Byron [8], Van Der Ploeg [9],
Lahr and Mesnard [10], Chen [11]. General solutions to confidentiality disclosure or data censoring
issues are provided by [12,13]. Herein we set out to assist current and future data snoopers and miners,
by identifying what a data reconciliation method should be from first principles when a fairly general
formulation of the reconciliation constraints is possible.

In particular, we consider that the multiple estimates for a particular datum can be characterized
by a best guess and uncertainty. If we interpret each estimate as a random variable with an underlying
probability distribution, the best guess is the expected value and the uncertainty is standard deviation.
In the case of multiple data sources, the conflict enabling the multiple estimates is self-evident.
When numbers are published with some data censored and for which estimates can be obtained using
partial information [14], the conflict can arise from a higher (or lower) hierarchical spatial or sectoral
level (e.g., average employee number if the number of establishments is available). To the best of
our knowledge no first-principle approach to this problem has yet been published, although more
heuristic approaches can be found in Bourque et al. [15], Miernyk et al. [16], Jensen and McGaurr [17],
Gerking [18], Gerking [19], Weale [20], Boomsma and Oosterhaven [21], Rassier et al. [22]. We tackle
the same problem from two different angles.

Using concepts and techniques from Bayesian inference [23] and in particular the minimum
cross-entropy method [24], we first address the problem of data reconciliation as a particular case
of more general data balancing [25]. That is, we consider there are two or more initial estimates
for a particular datum, but this datum is itself embedded in a set of constraints connecting it to
other data that are potentially unbalanced. We look for simplifications of the general setting under
which this original problem can be transformed into another balancing problem where the multiple
estimates are replaced by a single one. We prove that, if the initial uncertainty estimates are close to
one another, the data reconciliation method of best guesses is a weighted arithmetic average and the
data reconciliation method of uncertainties is a harmonic average.

Afterwards we address the same problem from an axiomatic perspective, laying out the desirable
properties of a data reconciliation method. Such an approach has roots in different fields, from table
deflation [26] and supply-use transformations [27] to environmental responsibility [28]. It turns out
that the canonical data reconciliation method, i.e., the one that satisfies all required properties, is none
other than a suitable generalization of the entropy-based method as derived earlier. That generalization
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centers on the introduction of the number of previously combined priors and a ranking of estimates by
their relative quality.

2. Entropy-Based Approach

2.1. Basic Concepts

Bayesian inference was first developed by Laplace [29] and later expanded by others, such as
Jeffreys [30], Jaynes [31] and Jaynes [23]. According to the Bayesian paradigm, a probability is a degree
of belief about the likelihood of an event, and should reflect all relevant available information about
that event. According to Weise and Woger [32], if an empirical quantity is subject to measurement
errors, it must be described by a random variable, whose expectation is the best guess and whose
standard-deviation is the uncertainty estimate.

More formally, a prior datum θi is characterized by a probability distribution π(qi),
which expresses the degree of belief that the datum takes realization qi. The best guess is µi = E[θi] and
the uncertainty is σi =

√
Var[θi]. When multiple data are considered, e.g., θi and θj, it is necessary to

introduce the correlation between them, ρij = Cov[θi, θj]/σiσj. Rodrigues [33] further provides a series
of rules to determine the properties of a strictly positive prior datum, using the maximum-entropy
principle [34].

The type of data we are interested in are connected to one another through accounting identities of
the form:

θ0 =
n

∑
i=1

θi,

where θ0 is an aggregate datum and the θi’s are disaggregate data. If the set of data is arranged in a
vector θ of length nT , the set of nK accounting identities can be defined through a concordance matrix
G, where, for a given accounting identity i, Gij = 1 if θj is a disaggregate datum, Gij = −1 if θj is an
aggregate datum and Gij = 0 otherwise.

If the prior configuration is unbalanced, then Gθ 6= 0, where 0 is a vector of zeros. Rodrigues [25]
derives an analytical solution and a series of approximations that, given a concordance matrix and
prior configuration, provide a posterior configuration, t, such that Gt = 0. The notational convention
used here is that Greek letters refer to priors while Latin cognates will refer to posteriors, i.e., mi, si
and rij are, respectively, the best guess and uncertainty of ti and correlation between ti and tj.

2.2. Problem Formulation

We are now in position to formulate the data reconciliation problem. Given initial priors θ′ and
θ′′ and a system with nT + 1 numerical data {θ1, . . . , θnT−1, θ′, θ′′}, and nK + 1 accounting identities,
where accounting identity nK + 1 takes the form θ′ = θ′′, our goal is to determine the final prior θ, in a
new system with nT numerical data, {θ1, . . . , θnT−1, θ} and the nK first accounting identities of the
original system, in which the posteriors {t1, . . . , tnT−1} are identical in both data balancing problems,
and t = t′ = t′′. Conceptually, we are approaching data reconciliation as a form of preliminary
data balancing, as illustrated in Figure 1. The conflicting estimates are initial priors of the same
datum, and the reconciled value is a final prior. Note the following notational convention: while
other variables (and their properties) are denoted with subscripts, initial priors/posteriors (and their
properties) are denoted with one (′) or two (′′) primes, and the final prior/posterior is denoted with
neither subscripts nor primes.

Three situations emerge: Either the datum to be reconciled is only a disaggregate datum; it is
only an aggregate datum; or it is both a disaggregate and an aggregate datum, in different accounting
identities. We will deal with the three cases separately.
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θ1 · · · θnT−1 θ′ θ′′

t1 · · · tnT−1 t′ t′′

θ1 · · · θnT−1 θ′ θ′′

θ1 · · · θnT−1 θ

t1 · · · tnT−1 t

balancing

reconciliation

balancing

Figure 1. On the left-hand side balancing in a single step, with multiple initial estimates (priors) of
the same datum, θ′ and θ′′, balanced to the same quantity (posterior), t′ = t′′. On the right-hand side
balancing in two steps: First the reconciliation procedures combines the multiple initial estimates
(initial priors), θ′ and θ′′, into a final prior, θ; afterwards the full system is balanced, leading to posterior
t. We impose that the result from both procedures is the same, t = t′ = t′′.

We now present simple systems to illustrate the three possible cases. As a benchmark consider a
tabular system (i.e., with data organized in rows and columns) with no multiple estimates consisting
of a 2× 3 table A with row sums b and columns sums c. Furthermore, consider that the sum of both b
and c is known as d. If i is a vector of ones of appropriate length, all vectors are in column format
by default, and prime (′) adjoined to a matrix or vector denotes transpose, then the previous set of
constraints means that:

Ai = b;

A′i = c;

b′i = d;

c′i = d.

The vectorized form of this system and the concordance table is presented in Table 1. In the
baseline system there is a total of twelve variables (columns of the concordance matrix G) and seven
constraints (rows thereof). The first six variables are disaggregate values (corresponding to the initial A
matrix), the following five are mixed (row and column sums b and c), and the last one is an aggregate
datum (d). The first two constraints (rows of G) are the row sums of A, the following three are its
columns sums, and the last two are the sums of b and c. To understand how G is constructed let us
consider the first constraint, which is the row sum of A. Formally, this is:

A11 + A12 + A13 − b1 = 0,

hence in the first row of G the entries corresponding to the columns of A11, A12 and A13 have 1s,
the entry corresponding to the column of b1 has −1 and all entries are zero.

We are now in position to formalize the three situations of multiple estimates of a single datum as
variants of Table 1 in which an additional row and column has been added to G.

The case of disaggregate datum occurs if the datum for which multiple estimates exist is an
interior point, which for concreteness we consider to be element A23: The set of constraints is shown
in Table 2. As an illustration of the case of there being two estimates of an aggregate datum consider it
to be d: The set of constraints is shown in Table 3. Finally, consider as example of an element that is
both aggregate and disaggregate that of b1: The set of constraints is shown in Table 4.

It is perhaps instructive to describe how the reconciliation problems differ from the features of
the baseline system. The three variants of the baseline are constructed by adding a single variable,
the conflicting estimate, which by convenience is always appended to the original system. It is also
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necessary to add an extra constraint, connecting the two conflicting estimates. Finally, the baseline
system is also changed so that in one of the original occurrences of the datum to be reconciled is the
first conflicting estimate and the second occurrence is the other conflicting estimate.

Table 1. Prior vector and concordance matrix, with no multiple estimates.

θ′ A11 A12 A13 A21 A22 A23 b1 b2 c1 c2 c3 d

G

1 1 1 0 0 0 −1 0 0 0 0 0
0 0 0 1 1 1 0 −1 0 0 0 0
1 0 0 1 0 0 0 0 −1 0 0 0
0 1 0 0 1 0 0 0 0 −1 0 0
0 0 1 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 1 1 0 0 0 −1
0 0 0 0 0 0 0 0 1 1 1 −1

Table 2. Prior vector and concordance matrix, with multiple estimates of A23.

θ′ A11 A12 A13 A21 A22 A′
23 b1 b2 c1 c2 c3 d A′′

23

G

1 1 1 0 0 0 −1 0 0 0 0 0 0
0 0 0 1 1 1 0 −1 0 0 0 0 0
1 0 0 1 0 0 0 0 −1 0 0 0 0
0 1 0 0 1 0 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 1 1 0 0 0 −1 0
0 0 0 0 0 0 0 0 1 1 1 −1 0
0 0 0 0 0 1 0 0 0 0 0 0 −1

Table 3. Prior vector and concordance matrix, with multiple estimates of d.

θ′ A11 A12 A13 A21 A22 A23 b1 b2 c1 c2 c3 d′ d′′

G

1 1 1 0 0 0 −1 0 0 0 0 0 0
0 0 0 1 1 1 0 −1 0 0 0 0 0
1 0 0 1 0 0 0 0 −1 0 0 0 0
0 1 0 0 1 0 0 0 0 −1 0 0 0
0 0 1 0 0 1 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 1 0 0 0 −1 0
0 0 0 0 0 0 0 0 1 1 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 1 −1

Table 4. Prior vector and concordance matrix, with multiple estimates of b1.

θ′ A11 A12 A13 A21 A22 A23 b′1 b2 c1 c2 c3 d b′′1

G

1 1 1 0 0 0 −1 0 0 0 0 0 0
0 0 0 1 1 1 0 −1 0 0 0 0 0
1 0 0 1 0 0 0 0 −1 0 0 0 0
0 1 0 0 1 0 0 0 0 −1 0 0 0
0 0 1 0 0 1 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 0 0 0 −1 1
0 0 0 0 0 0 0 0 1 1 1 −1 0
0 0 0 0 0 0 1 0 0 0 0 0 −1

Note that in this simple example there are only two constraints affecting each datum, but that
naturally is not generally the case. The number of constraints per datum is arbitrary and can be either
one or larger than two. An example of what this system might represent is employment count by
region and sector, with an extra dimension being type of ownership (private or local, state, or federal
government), as reported in the QCEW database.
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2.3. From Balancing to Reconciliation

Rodrigues [25] shows that if the posterior configuration is balanced, then its first- and
second-moment constraints are:

0 = Gm; (1)

0 = diag
(
GS|G|′

)
, (2)

where m and S are the posterior best-guess vector and covariance matrix, and the latter is defined as
S = ŝRŝ, where s is the vector of posterior uncertainties and R is the vector of posterior correlations,
and ˆ denotes diagonal matrix. Likewise µ and Σ are the prior best guess vector and covariance matrix,
and the latter is defined as Σ = σ̂Pσ̂.

The analytical solution of the data-balancing problem is:

S̃−1 = Σ̃
−1

+ G′ β̂|G|; (3)

S̃−1m̃ = Σ̃
−1

µ̃ + G′α. (4)

Notice that Equations (3) and (4) contain symbols adjoined with ˜ (which we refer to as Gaussian
parameters) while Equations (1) and (2) do not. The connection between the Gaussian parameters and
the corresponding observable quantities is described in Rodrigues [25]: When relative uncertainty,
σj/µj or sj/mj, is low, then the Gaussian parameter and the observable are identical. When relative
uncertainty is high, the best guess Gaussian parameter tends to −∞ and the uncertainty Gaussian
parameter tends to ∞, in such a way that if relative uncertainty is unitary, −µ̃j/σ̃2

j = 1/µj = 1/σj

and −m̃j/s̃2
j = 1/mj = 1/sj. There is no closed-form expression between observables and Gaussian

parameters in the multivariate case.
If both the prior uncertainty of aggregate data and initial prior correlations are high, we obtain a

simplified weighted least-squares (WLS) method in which the weights are prior uncertainties:

m = µ + σ̂G′α, (5)

and posterior correlations are set by considering that relative uncertainty is constant, s = m� σ � µ,
where � and � are Hadamard (or entrywise) product and division, and the update takes place in
small steps.

This WLS method is a generalization of the standard biproportional balancing method (RAS)
for arbitrary structure and uncertainty data [25]. However, it is in a way too simple for the data
reconciliation problem, because it keeps relative uncertainty constant. In the data reconciliation
problem this assumption is untenable, whenever the relative uncertainty of the initial priors differs.

Thus, we now look for a simplification of the general solution (Equations (3) and (4)) that is
still feasible and that allows both for best guess and uncertainty reconciliation. Let us consider
that correlations change little from prior to posterior, so that only uncertainties are adjusted.
Equations (3) and (4) become:

ŝ−1R−1s−1 = σ̂−1P−1σ−1 + G′β;

ŝ−1R−1ŝ−1m = σ̂−1P−1σ̂−1µ + G′α,

where we dropped the ,̃ meaning that all variables are observables. If correlations are not adjusted,
then R = P, and if variances change little s ' σ The previous expressions become:

s−1 = σ−1 + Pσ̂G′β;

ŝ−1m = σ̂−1µ + Pσ̂G′α.
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For convenience, consider now that a datum corresponding to entry (i, j) in the tabular matrix is
tij, while the sums of row or column i is ti, and the Lagrange parameters of a row sum or column sum
are adjoined with superscript R or C. For a particular entry, the previous matrix equation reads:

1
sij

=
1

σij
+ σR

i βR
i + σC

j βC
j + ∑

k 6=i,j

(
σikβC

k + σkjβ
R
k

)
;

1
si

=
1
σi

+ σi

(
βR

i + βC
i

)
,

where σR
i = ∑j σij and σC

i = ∑j σji. If the adjustment from prior to posterior is small, then σR
i ' σC

i '
σi. If β∗i = σiβ

R
i , σi � σij and σi � σji, then the previous expression matrix expressions simplify to:

s−1 = σ−1 + G′β∗; (6)

ŝ−1m = σ̂−1µ + G′α∗, (7)

where the derivation of Equation (7) follows along identical lines to that of Equation (6). We now use
these expressions to obtain a tentative solution of the data reconciliation problem, even though they
were derived under rather strict assumptions.

2.4. A Tentative Solution

We now examine the implications of applying Equations (6) and (7) to different data reconciliation
configurations as described in Section 2.2: multiple estimates of (a) an aggregate datum; (b) a
disaggregate datum; and (c) a datum that is both aggregate and disaggregate. We shall see that
the same expression applies to all these problems.

For clarity, the analysis is carried out using scalar expressions, and, for brevity, only to the case
of two constraints per datum. The strategy of the proof is the same for all configurations: to derive
constraints connecting prior and posterior in the original problem and in a modified problem in which
there is only a single datum where originally there were the conflicting estimates.

2.4.1. Aggregate Datum

Consider that there are two initial priors of a datum, θ′0 and θ′′0 and that the datum is involved
in two accounting identities, the first summing over elements 1 to n′ and the second summing over
n′ + 1 to n′′:

t′0 =
n′

∑
i=1

ti;

t′′0 =
n′+n′′

∑
i=n′+1

ti;

t′0 = t′′0 ,

where each ti, for i > 0, can be affected by other accounting identities. The Lagrange parameters
associated with these three expressions in Equation (6) are denoted, respectively, by β′0, β′′0 and β0.
We wish to determine a final prior θ0, such that:

t0 =
n′

∑
i=1

ti;

t0 =
n′+n′′

∑
i=n′+1

ti.
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Equation (6) reads, for the original problem:

1
si

=
1
σi

+ β′0 + . . . if 1 ≤ i ≤ n′;

1
si

=
1
σi

+ β′′0 + . . . if n′ + 1 ≤ i ≤ n′′;

1
s′0

=
1
σ′0
− β′0 + β0;

1
s′′0

=
1

σ′′0
− β′′0 − β0,

where . . . refers to other Lagrange parameters. And in the modified problem:

1
si

=
1
σi

+ β′0 + . . . if 1 ≤ i ≤ n′;

1
si

=
1
σi

+ β′′0 + . . . if n′ + 1 ≤ i ≤ n′′;

1
s0

=
1
σ0
− β′0 − β′′0 .

Notice that for every datum i > 0 the original and modified problem are identical. Because the
posteriors of the aggregate datum are all identical, s′0 = s′′0 = s0, we can write:

2
1
s0

= 2
(

1
σ0
− β′0 − β′′0

)
=

1
σ′0

+
1

σ′′0
− β′0 − β′′0 + β0 − β0.

A similar expression can be obtained from Equation (7) for the final prior best guess, leading to
the solution:

1
σ0

=
1
2

(
1
σ′0

+
1

σ′′0

)
;

µ0

σ0
=

1
2

(
µ′0
σ′0

+
µ′′0
σ′′0

)
.

Thus, both the final prior of the absolute uncertainty, σ, and the relative uncertainty, σ/µ,
are obtained as the harmonic average of the initial prior absolute and relative uncertainties.

2.4.2. Disaggregate Datum

Consider now that there are two initial priors of an interior point, θ′1 and θ′′1 , which is affected by
two accounting identities, such that the posteriors satisfy:

t′0 = t′1 +
n′

∑
i=2

ti;

t′′0 = t′′1 +
n′+n′′

∑
i=n′+1

ti;

t′1 = t′′1 .

The Lagrange parameters associated with these three expressions are, as before, β′0, β′′0 and β0.
We wish to determine a final prior θ1, such that:
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t′0 = t1 +
n′

∑
i=2

ti;

t′′0 = t1 +
n′+n′′

∑
i=n′+1

ti.

Equation (6) reads, for the original problem:

1
si

=
1
σi

+ β′0 + . . . if 2 ≤ i ≤ n′;

1
si

=
1
σi

+ β′′0 + . . . if n′ + 1 ≤ i ≤ n′′;

1
s′0

=
1
σ′0
− β′0 + . . . ;

1
s′′0

=
1

σ′′0
− β′′0 + . . . ;

1
s′1

=
1
σ′1

+ β′0 + β1;

1
s′′1

=
1

σ′′1
+ β′′0 − β1,

and in the modified problem:

1
si

=
1
σi

+ β′0 + . . . if 2 ≤ i ≤ n′;

1
si

=
1
σi

+ β′′0 + . . . if n′ + 1 ≤ i ≤ n′′;

1
s′0

=
1
σ′0
− β′0 + . . . ;

1
s′′0

=
1

σ′′0
− β′′0 + . . . ;

1
s1

=
1
σ1

+ β′0 + β′′0 .

As before, the data for which there are no conflicting estimates (t′0, t′′0 and ti with i > 1) are subject
to the same set of constraints in the original and in the modified problem. Because the posteriors of the
disaggregate datum are all identical, s′1 = s′′1 = s1, we can write:

2
1
s1

= 2
(

1
σ1

+ β′0 + β′′0

)
=

1
σ′1

+
1

σ′′1
+ β′0 + β′′0 + β1 − β1.

At this stage it becomes clear that we will encounter exactly the same solution as in the case of an
aggregate datum:

1
σ1

=
1
2

(
1
σ′1

+
1

σ′′1

)
;

µ1

σ1
=

1
2

(
µ′1
σ′1

+
µ′′1
σ′′1

)
.
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2.4.3. Mixed Datum

Consider now that there are two initial priors, θ′1 and θ′′1 , of a datum that is both aggregate and
disaggregate, in different accounting identities, and whose posteriors satisfy:

t0 = t′1 +
n′

∑
i=2

ti;

t′′1 =
n′′

∑
i=n′+1

ti;

t′1 = t′′1 .

As before the Lagrange parameters are denoted as β′0, β′′0 and β1. We wish to determine a final
prior θ1, such that:

t0 = t1 +
n′

∑
i=2

ti;

t1 =
n′′

∑
i=n′+1

ti.

Equation (6) reads, for the original problem:

1
si

=
1
σi

+ β′0 + . . . if 2 ≤ i ≤ n′;

1
si

=
1
σi

+ β′′0 + . . . if n′ + 1 ≤ i ≤ n′′;

1
s0

=
1
σ0
− β′0 + . . . ;

1
s′1

=
1
σ′1

+ β′0 + β1;

1
s′′1

=
1

σ′′1
− β′′0 − β1,

and in the modified problem:

1
si

=
1
σi

+ β′0 + . . . if 2 ≤ i ≤ n′;

1
si

=
1
σi

+ β′′0 + . . . if n′ + 1 ≤ i ≤ n′′;

1
s0

=
1
σ0
− β′0 + . . . ;

1
s1

=
1
σ1

+ β′0 − β′′0 .

As has become routine, for datum 0 and for every datum i > 1 the original and modified problem
are identical. Because s′1 = s′′1 = s1, we can write:

2
1
s1

= 2
(

1
σ1

+ β′0 − β′′0

)
=

1
σ′1

+
1

σ′′1
+ β′0 − β′′0 + β1 − β1.

Thus, it is clear that the solution is again identical.
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3. Axiomatic Approach

3.1. Axiomatic Formulation

In Section 2 we obtained a data reconciliation algorithm from first principles, as an operation of
data balancing under a particular structure. However, we can also reason about the data reconciliation
algorithm in terms of its properties, i.e., we will not determine what it is, but what it ought to be.

If θ′ and θ′′ are two initial priors, the data reconciliation algorithm is a function f (·) that generates
a final prior θ = f (θ′, θ′′), where each prior θ is characterized by a best guess, µ, an absolute uncertainty,
σ, and a relative uncertainty, u = σ/µ, which can take values in the range 0 ≤ u ≤ 1. Let xmin =

min{x′, x′′} and xmax = max{x′, x′′}, where x can be µ, σ or u.
We now propose a series of properties that define the data reconciliation method.

Property 1 (Lower and upper bounds). The parameters of the final prior lie within the range set by the
parameters of the initial priors, µmin ≤ µ ≤ µmax, σmin ≤ σ ≤ σmax and umin ≤ u ≤ umax.

Property 2 (Commutativity). The order in which the initial priors are combined does not matter, f (θ′, θ′′) =
f (θ′′, θ′).

Property 3 (Associativity). Several initial priors can be combined and the resulting final prior is invariant to
the order of reconciliation, f (θ′, f (θ′′, θ′′′)) = f ( f (θ′, θ′′), θ′′′).

Property 4 (Identity). If the initial prior best guesses are identical, µ′ = µ′′ then the final prior best guess is
identical, µ = µ′ = µ′′. If the initial prior uncertainties are identical, σ′ = σ′′ then the final prior uncertainty
is identical, σ = σ′ = σ′′.

Property 5 (Monotonicity). The relative adjustment from initial to final prior increases with the relative
magnitude of initial uncertainty:

µ− µ′

µ′′ − µ
= g

(
σ′

σ′′

)
; (8)

σ− σ′

σ′′ − σ
= h

(
σ′

σ′′

)
. (9)

where dg(x)/dx > 0 and dh(x)/dx > 0.

Property 6 (Absorption). If initial prior θ′ is known with minimal uncertainty, u′ = 0, and θ′′ is not,
u′′ > 0, then the final prior is identical to the first initial prior, f (θ′, θ′′) = θ′. If initial prior θ′ is known with
maximal uncertainty, u′ = 1, and θ′′ is not, u′′ < 1, then the final prior is identical to the second initial prior,
f (θ′, θ′′) = θ′′.

We believe that these six properties are uncontroversial and self-explanatory. However, it turns
out that the problem as formulated here has no solution, i.e., no formula can satisfy all of the above
properties. We later overcome this hurdle by generalizing the problem formulation, to include two
additional concepts: A hierarchy of data quality and the number of combined priors.

3.2. The Canonical Data Reconciliation Method

The properties outlined in Section 3.1 constrain the range of data reconciliation algorithms but
do not define a unique solution. However, Equations (8) and (9) suggests how it may be possible to
obtain a solution. Let us consider that g(x) and h(x) take the simple yet flexible form of g(x) = axb

and h(x) = cxd.
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The condition of identity (Property 4), in the case of µ′ = µ′′ and σ′ = σ′′ leads to
the indeterminacy:

µ− µ′

µ′′ − µ
=

0
0

.

But if the limit is approached as µ′ = µ− δ and µ′′ = µ + δ, when δ→ 0, then:

µ− µ′

µ′′ − µ
=

δ

δ
= 1.

Thus, under the condition of identity, Equations (8) and (9) imply that:

1 = a1b;

1 = c1d,

so a = c = 1. Let us further consider the simplest possible case b = d = 1, so that g(·) and h(·) are the
identity lines. Applying g(x) = x and h(x) = x to Equations (8) and (9) leads to:

µ− µ′

σ′
=

µ′′ − µ

σ′′
;

σ− σ′

σ′
=

σ′′ − σ

σ′′
.

Rearranging terms:

µ

(
1
σ′

+
1

σ′′

)
=

µ′

σ′
+

µ′′

σ′′
;

σ

(
1
σ′

+
1

σ′′

)
=

σ′

σ′
+

σ′′

σ′′
.

Recalling that u = σ/µ we obtain the canonical data reconciliation method as:

µ =

(
1/σ′

1/σ′ + 1/σ′′

)
µ′ +

(
1/σ′′

1/σ′ + 1/σ′′

)
µ′′; (10)

1
σ
=

1
2

(
1
σ′

+
1

σ′′

)
. (11)

Equation (10) can be be expressed in two other ways:

µ =
σ

2

(
µ′

σ′
+

µ′′

σ′′

)
; (12)

1
u
=

1
2

(
1
u′

+
1

u′′

)
. (13)

Thus, if the ratio of relative adjustment of best guesses and uncertainties is identical to the ratio
of absolute uncertainties of the initial priors, the best-guess data reconciliation method is a weighted
average, where the weights are proportional to the inverse of absolute uncertainty, and the absolute
and relative uncertainty data reconciliation methods are harmonic averages.

Does this data reconciliation method satisfy the properties of Section 3.1? It is trivial to check that
Properties 1, 2, 4 and 5 are satisfied. But this is not the case for Properties 3 and 6. In the following
subsections we present suitable extensions of the canonical data reconciliation method to address
these problems.
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3.3. The Number of Combined Priors

The canonical data reconciliation method is not associative. The properties of f (θ′, f (θ′′, θ′′′)) are:

1
u
=

1
2

(
1
u′

+
1
2

(
1

u′′
+

1
u′′′

))
=

1
2u′

+
1

4u′′
+

1
4u′′′

1
σ
=

1
2

(
1
σ′

+
1
2

(
1

σ′′
+

1
σ′′′

))
=

1
2σ′

+
1

4σ′′
+

1
4σ′′′

.

While the properties of f ((θ′, θ′′), θ′′′) are:

1
u
=

1
2

(
1
2

(
1
u′

+
1

u′′

)
+

1
u′′′

)
=

1
4u′

+
1

4u′′
+

1
2u′′′

1
σ
=

1
2

(
1
2

(
1
σ′

+
1

σ′′

)
+

1
σ′′′

)
=

1
4σ′

+
1

4σ′′
+

1
2σ′′′

.

Thus, f (θ′, f (θ′′, θ′′′)) 6= f ((θ′, θ′′), θ′′′). But upon some reflection, this result is in fact reasonable.
The final prior is the combination of two initial priors with equal weights. If some of these initial priors
are themselves a combination of other initial priors, this information has to be considered explicitly.

Let us introduce a new quantity, n, as the number of combined priors, so that now a prior θ is defined
by a best guess, µ, an absolute uncertainty, σ, and n. Consider the following data reconciliation rule:

µ =

(
n′/σ′

n′/σ′ + n′′/σ′′

)
µ′ +

(
n′′/σ′′

n′/σ′ + n′′/σ′′

)
µ′′; (14)

1
σ
=

1
n

(
n′

σ′
+

n′′

σ′′

)
; (15)

n = n′ + n′′. (16)

As before, Equation (14) can be be expressed in two other ways:

µ =
σ

n

(
n′

σ′
µ′ +

n′′

σ′′
µ′′
)

; (17)

1
u
=

1
n

(
n′

u′
+

n′′

u′′

)
. (18)

This data reconcilation rule satisfies the first five properties of Section 3.1.

3.4. Ranking of Data Quality

The canonical data reconciliation method satisfies the absorption property of minimal uncertainty.
If σ′ = 0 and σ′′ > 0, then:

1
σ′

+
1

σ′′
' 1

σ′
,

and Equations (10) and (11) become:

µ '
(

1/σ′

1/σ′

)
µ′ +

(
1/σ′′

1/σ′

)
µ′′ = (1)µ′ + (0)µ′′;

σ ' 2σ′ = 0,

so µ = µ′ and σ = σ′. However, it does not satisfy the absorption property of maximal uncertainty.
If σ′ = µ′ and σ′′ < µ′′, then u′ = 0 and Equations (10), (11) and (13) become:
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µ =
(
µ′′ + σ′′

) µ′

µ′ + σ′′
;

σ = 2σ′′
µ′

µ′ + σ′′
;

u = 2
u′′

1 + u′′
,

and thus µ 6= µ′′ and σ 6= σ′′.
In order to ensure that the absorption of maximal uncertainty is satisfied, we use the concept of data

quality, introduced in Rodrigues [25]. The idea is that, besides an uncertainty estimate, which formalizes
quantitatively a degree of confidence in the accuracy of the best guess of a datum, it is also possible to
formalize qualitatively a degree of confidence in the accuracy of a datum relative to others.

For the purpose of data balancing, Rodrigues [25] suggests that a datum that is considered to be
of higher quality should be kept fixed while lower quality data are adjusted. The natural corollary,
in the problem of data reconciliation, is to consider that when one wishes to combine two initial priors
of differing levels of data quality, the prior of lower quality should be disregarded.

If a datum has unitary relative uncertainty, then it is maximally uninformative, and it is reasonable
to disregard it. After all, a maximally uninformative prior should only be used if no better alternative
is available. We therefore suggest that, if σ′ = µ′ and σ′′ < µ′′, then θ = θ′′ directly, without using
Equations (10) and (11).

3.5. Summary

We now present the expressions for the combination of n initial priors, θi, with i = 1, . . . , n into a
single final prior θ. Addressing this problem requires the specification, for each prior, θi, of its best
guess, µi, its absolute uncertainty, σi, and the number of previously combined priors, ni.

If all relative uncertainties, ui = σi/µi, are in the range 0 < ui < 1, then the final prior properties
are defined as:

µ =
n

∑
i=1

(
ni/σi
n/σ

)
µi; (19)

1
σ
=

1
n

(
n

∑
i=1

ni
σi

)
; (20)

n =
n

∑
i=1

ni. (21)

Equation (19) can be expressed as:

1
u
=

1
n

n

∑
i=1

ni
ui

. (22)

If some initial priors have zero relative uncertainty, ui = 0, then all other initial priors should
be disregarded. If some initial priors have unitary relative uncertainty, ui = 1, then it is they which
should be disregarded.

In Figure 2 we illustrate the behaviour of Equation (19), when n = 2 and n1 = n2 = µ2 = 1.
The plot shows different curves of the combined posterior best guess µ as a function of the prior
best guess µ1, where each curve corresponds to a different ratio of uncertainties, σ1/σ2. When both
uncertainties are identical, the posteriod best guess is the arithmetic average of the two prior best
guesses. When the uncertainties differ, the best guess prior with the largest uncertainty contributes
the least to combined best guess: in the limit case in which σ1 � σ2 the prior µ1 is ignored and the
posterior is similar to µ2; when σ1 � σ2 the reverse occurs and µ ' µ1.
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Figure 2. Best guess of the combined prior as a function of initial prior best guess, µ1, when µ2 = 1,
for diferent values of σ1/σ2: Solid line (–) when σ1/σ2 = 1, solid line with circle markers (–◦–) when
σ1/σ2 = 0, and solid line with triangle markers (–M–) when σ1/σ2 = ∞.

In turn, Figure 3 we illustrate the behaviour of Equation (20). We still consider that n = 2 and
n1 = n2 but now no explicit assumption about best guesses is necessary. Instead, the uncertainty of the
second variable is fixed, σ2 = 1, and the curve shows the value of the combined posterior as a function
of prior uncertainty σ1. The figure describes an arc slightly above the diagonal line. When both prior
uncertainties are identical (σ1 = 1), then the posterior equals the priors, as expected. As σ1 becomes
smaller than σ2 the combined prior becomes closer to σ1 than to σ2, but always larger, σ > σ1, except in
the limit case σ1 → 0, in which case σ→ σ1.

0
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0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

σ

σ
1

Figure 3. Solid line (–) and relative uncertainty, uncertainty of the final prior, σ, as a function of initial
prior uncertainty, σ1, when σ2 = 1. Dashed line (- -) is the identity line.
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4. Conclusions and Discussion

Herein we investigated using two distinct pathways the problem of reconciling multiple
conflicting estimates in the course of database development. We assume that the developer (data
snooper) is tooled with a best guess and uncertainty for each of those conflicting estimates.

First, we apply a maximum-entropy Bayesian inference method, under the limiting condition
that the adjustment from prior to posterior uncertainties is small. Second, we obtain a canonical
data reconciliation method through an axiomatic approach that is as simple as possible but satisfied
important qualitative properties. Each approach verifies the other.

The resulting formula for the best guess, Equation (19), is a weighted average showing that,
as the count of conflicting priors underlying a particular prior rises, the value of that prior increases in
importance in terms of obtaining a solution. We get a similar result with the inverse of the uncertainty,
that is, the narrower the uncertainty of an estimate the more it contributes to the final solution.
The resulting formula for the uncertainty, Equation (20), is a harmonic average where the same factors
are present: As the count of conflicting priors underlying a particular prior rises, the value of that prior
increases in importance; and the narrower the uncertainty of a prior, the more it contributes to the
final solution.

Of course, limitations to our approach must be mentioned. And the key limitation is certainly
that, in some practical applications, the data snooper will lack information on, either or both, best
guess and uncertainty. It may be that instead, one only has upper and lower bounds for the datum of
interest to inform its best guess and uncertainty. This is certainly the case in some instances when data
are censored, e.g., the anti-suppression problem of Gerking et al. [13] and Isserman and Westervelt [12].
Future work using variable ranges with externally informed priors would be a natural extension of
what is presented here. Indeed, some initial forays into this line of investigation are already underway,
see, e.g., Makarkina and Lahr [35].

It should be mentioned that although the focus of attention here was on conflicting estimates
arising from economic accounts there are other circumstances in which a formally identical problem
arises, for example in expert elicitation [36].
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