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Abstract: The partitioning of the alloying elements into the γ” nanoparticles in a Ni2CoFeCrNb0.15

high entropy alloy was studied by the combination of atom probe tomography and first-principles
calculations. The atom probe tomography results show that the Co, Fe, and Cr atoms incorporated
into the Ni3Nb-type γ” nanoparticles but their partitioning behaviors are significantly different.
The Co element is much easier to partition into the γ” nanoparticles than Fe and Cr elements. The
first-principles calculations demonstrated that the different partitioning behaviors of Co, Fe and Cr
elements into the γ” nanoparticles resulted from the differences of their specific chemical potentials
and bonding states in the γ” phase.

Keywords: high entropy alloy; gamma double prime nanoparticles; elemental partitioning; atom
probe tomography; first-principles calculations

1. Introduction

Recently, a new class of structural materials, known as high entropy alloys (HEAs), have attracted
considerable attention due to their excellent properties and potential applications in the aerospace and
energy industries [1–11]. Compared with the conventional alloys, the face-centered cubic (FCC) HEAs
exhibit unique properties such as outstanding ductility [7], exceptional fracture toughness [12] as well
as excellent corrosion resistance [13]. However, the single-phase FCC HEAs are insufficiently strong,
which limits their engineering applications.

The strategy of introducing the dispersed hard D022-structured gamma double prime (γ”) or
L12-structured gamma prime (γ′) nanoparticles into the FCC matrix (γ phase) has been proved to
be one of the most effective approaches to enhance the strength of the FCC HEAs, as it is the case in
many superalloys [10,14–16]. It is known that the alloying elements in the γ” or γ′ phase plays an
important role on the stability and the mechanical properties of the nano-precipitated alloys [17–20].
Therefore, it is critical to clarify the partitioning of the alloying elements into the nanoparticles of
the FCC HEAs. However, this issue still lacks research because the observation of alloying elements
in the nanoparticles which embedded in the FCC matrix is still a challenge. Although the energy
dispersive X-ray spectroscopy (EDS) equipped on scan electron microscope (SEM) or on transmission
electron microscope (TEM) has been widely used to determine the material composition, it is difficult
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to distinguish the composition of the nanoparticles from that of the surrounding matrix. Atom probe
tomography (APT), the only technique which can generate the three-dimensional (3D) atom maps
of materials in the real space with nearly atomic-scale resolution, has been proved to be a powerful
method of characterizing the composition of different kinds of nanoparticles [15,18,21,22]. Recently,
we have successfully clarified the partitioning of the alloying elements into the γ′ nanoparticles in the
NiFeCoCrTi0.2 HEA by APT [22]. In this work, the γ” nanoparticles in a Ni2CoFeCrNb0.15 HEA was
investigated by APT. Different partitioning behaviors of the alloying elements into the γ” nanoparticles
were observed. It was found that the Co element tends to partition into the γ” nanoparticles but Fe
and Cr elements are largely depleted from the γ” nanoparticles. The APT results were confirmed by
the first-principles calculations from the perspective of the electronic states.

2. Materials and Methods

An ingot with a composition Ni2CoFeCrNb0.15 was produced by arc melting Fe, Co, Ni, Cr, and Nb
metals with high purity (>99.9%) in an argon atmosphere. After repeatedly melted five times, the ingot
was then drop-casted into a copper mold to make a slab with a dimension of 5 mm × 10 mm × 50 mm.
Afterwards, the slab was solution-treated at 1473 K for 2 h, followed by water quenching. Then,
the homogenized slab was cold rolled with a total thickness reduction of 70% and subsequently
recrystallized at 1473 K for 4 minutes (min) and water-quenched. At last, aging was performed at
923 K for 40 h and 100 h, respectively, followed by water quenching.

The TEM specimen was prepared by mechanically grinding and followed by ion-milling using
a precision ion polishing system (PIPS, Model 695, Gatan, Pleasanton, CA, USA). The TEM (TEM,
JEOL 2100F, Tokyo, JAPAN) was operated under 200 keV. Needle specimens for APT analysis were
prepared by gallium focused-ion-beam (FIB), with a FIB-SEM dual-beam system (Scios, FEI, Hillsboro,
OR, USA), using a conventional lift-out technique [23]. The APT analysis was performed using a
local electrode atom probe (LEAP5000 XR, CAMECA, Madison, WI, USA). The samples were run in
the voltage mode at a specimen temperature of 50 K, with 200 kHz pulses at a pulse fraction of 20%.
An Integrated Visualization and Analysis Software (IVAS, Version 3.8.2) protocol was employed to
reconstruct the 3D atomic maps [24].

3. Results and Discussion

To confirm the formation of D022-structured γ” nanoparticles, the TEM analysis was performed
before the APT measurement. Figure 1 shows a bright-field (BF) and a dark-field (DF) TEM images
of the sample aged for 40 h. The DF-TEM image recorded from the spot marked with a yellow circle
in the inset selected area diffraction pattern (SADP). The nanoparticles can be clearly observed in both
the BF-TEM and the DF-TEM images. From the SADP it can be confirmed that the matrix has an FCC
structure (γ phase), whilst the nanoparticles have a D022 structure (γ” phase) which is revealed by the
additional faint spots. Figure 1c shows the size distribution of the nanoparticles with an average size of
13.5 ± 2.9 nm. The size of the nanoparticles was measured from the length of the nanoparticle along their
long axis.

Figure 2 shows the APT results of the sample aged for 40 h. In the three-dimensional (3D) atom
map, the γ” nanoparticles are delineated by 50 at.% Ni iso-concentration surfaces in red. It can
be observed that the γ” nanoparticles are disk-like. From the sliced atom maps, it can be found
that the γ” nanoparticles mainly consist of Ni and Nb. In addition, Co element shows a strong
tendency to partition into the γ” nanoparticles, but Fe and Cr elements are largely depleted from
the γ” nanoparticles. To clarify the accurate composition of these γ” nanoparticles, the proximity
histogram, which is calculated over the iso-concentration surfaces, is plotted (Figure 2b). Therein,
the chemical elements are displayed as a function of the distance from the iso-concentration surfaces.
The proximity histogram shows that the average concentration of Co is up to 8.2 ± 0.3 at.%, but the
average concentrations of Fe and Cr are only 1.3 ± 0.4 and 1.6 ± 0.1 at.% in the γ” nanoparticles,
respectively. To investigate the composition stability of γ” nanoparticles, the sample aged for 100 h
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was also analyzed by APT. The composition of the γ” nanoparticles are summarized in Table 1. It was
found that the composition of γ” nanoparticles in the sample aged for 100 h is almost the same as that
in the sample aged for 40 h, which indicates that the composition of γ” nanoparticles have reached
the steady state after 40 h aging. The APT results demonstrate that the Co element is much easier
to partition into the γ” nanoparticles than Fe and Cr elements. In addition, Co, Fe, and Cr prefer Ni
sublattice sites in the Ni3Nb-type γ” nanoparticles because the Ni composition in the γ” nanoparticles
are only 65 at.%. It should be noted that a small part of Co, Fe, or Cr atoms may also occupy Nb
sublattice sites as the Nb composition in the γ” nanoparticles is about 24%. However, it is difficult to
determine which kind of elements occupied Nb sublattice sites only from APT results. Some similar
results are also found in the Ni-based superalloys [25–27]. For example, Lawitzki et al. reported
that the alloying elements such as Cr occupied both the Ni and Nb sublattice sites of γ” phase in the
718 alloy [25].
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Figure 2. (a) The 3D atom map (62 × 64 × 80 nm3) and the 4 nm-thick sliced atom maps of Co,
Fe, Cr, Ni, and Nb of the 40 h aged sample. In the 3D map, the nanoparticles are delineated by
50 at.% Ni iso-concentration surfaces in red for better illustration. (b) The proximity histogram of
the iso-concentration surfaces illustrated in the 3D atom map. The alloying elements are shown as a
function of the distance from the iso-concentration surface (vertical dashed line).
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Table 1. Chemical composition of γ” nanoparticles (at.%).

Aging Time Co Fe Cr Ni Nb

40 h 8.2 ± 0.3 1.3 ± 0.1 1.6 ± 0.1 64.3 ± 0.4 24.6 ± 0.2
100 h 8.1 ± 0.1 1.2 ± 0.1 1.4 ± 0.1 65.2 ± 0.3 24.0 ± 0.2

First-principles calculations were performed to confirm the site substitution preferences in the γ”
nanoparticles and to investigate the origin of the different partitioning behaviors of the Co, Fe, and
Cr elements into the γ” nanoparticles. The calculations employed the plane-wave pseudopotential
approximations with the generalized gradient approximations, as implemented in the Vienna ab initio
simulation package (VASP) [28]. A plane wave cutoff energy of 500 eV and 9 × 9 × 9 Monkhorst–Pack
k-point grids were used in the calculation. A 3D periodic supercell with D022-structured Ni24Nb8 was
employed to determine the total energies of the cells. The D022-structured Ni3Nb was fully relaxed,
and the lattice parameters were determined to be a = b = 3.643 Å and c = 7.484 Å, which is in good
agreement with both the previous reported experimental and theoretical results [27,29].

The formation energies for an element X (X = Co, Fe, and Cr) to substitute a Ni site and a Nb site
of the D022-structured Ni3Nb were defined as [30]

EX→Ni =
(

Etot
Ni23XNb8

+ µNi

)
−

(
Etot

Ni24 Nb8
+ µX

)
(1)

EX→Nb =
(

Etot
Ni24 Nb7X + µNb

)
−

(
Etot

Ni24 Nb8
+ µX

)
(2)

where Etot is the total energy and µ is the chemical potential. The chemical potential is defined as the
energy per atom of the element in its stable pure phase. Our calculations show that the total energy of
Ni24Nb8 (Etot

Ni24 Nb8
) is −222.84 eV and the chemical potentials of Ni and Nb are −5.47 and −10.20 eV,

respectively. Table 2 summarized the total energies, the chemical potentials, and the formation energies.
The calculation results demonstrate that Co and Fe atoms prefer to occupy the Ni sublattice sites rather
than Nb sublattice sites, as the formation energies, ECo/Fe→Ni, are significantly lower than ECo/Fe→Nb.
However, the formation energies for Cr to occupy Ni and Nb sublattice sites are almost same, which
indicates that Cr atoms occupy both the Ni and Nb sublattice sites. In addition, the formation energy
of Co that occupies the Ni sublattice site is nearly zero, which is much lower than that of Fe and Cr,
indicating that Co is more stable in the D022-structured Ni3Nb than Fe and Cr. Similar results were also
reported in the L12-structured Ni3Ti phase [31]. The calculation results confirmed the APT observation
that the concentration of Co in the γ” nanoparticles are much higher than that of Fe and Cr.

Table 2. The Calculated chemical potentials, total energies and formation energies with the unit of eV.

µ Etot
Ni23XNb8

Etot
Ni24Nb7X EX→Ni EX→Nb

Co −7.01 −224.16 −217.74 0.08 1.71
Fe −8.23 −225.00 −218.79 0.19 1.61
Cr −9.50 −225.55 220.65 1.38 1.50

To further clarify the origin of the formation energy differences of Co, Fe, and Cr in the
D022-structured Ni3Nb, the total energy, and the chemical potential of the solute atoms are carefully
checked, as the formation energy is determined by these two parts. It is found that the formation
energy difference between Fe and Cr is mainly caused by the difference of their chemical potentials
because the total energies of Etot

Ni23FeNb8
and Etot

Ni23CrNb8
are almost the same. However, both the chemical

potential and the total energy of Co (Etot
Ni23CoNb8

) are higher than that of Fe and Cr, which indicates
that the formation energy differences between Co and Fe/Cr not only result from their chemical
potential differences, but also come from their total energy differences. As the total energy originates
from the charge distribution of the system, we calculated the charge density difference of Ni23CoNb8,
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Ni23FeNb8, and Ni23CrNb8 systems with reference to Ni24Nb8 system, respectively. From the charge
density difference, we can find that the charge accumulation appears between Co and Nb atoms
(Figure 3a) but does not appear between Fe and Nb (Figure 3b), or Cr and Nb (Figure 3c). The charge
distribution results indicate that the bonding for Co and Nb is much stronger than that of Fe and Cr.
The strong Co-Nb bond stabilizes Co atoms in the D022-structured Ni3Nb, which demonstrates that
the bonding state of Co plays an important role in lowering the formation energy compared with that
of Fe and Cr.
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