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Abstract: In order to improve the wear and corrosion resistance of an AZ91D magnesium alloy
substrate, an Al0.5CoCrCuFeNi high-entropy alloy coating was successfully prepared on an AZ91D
magnesium alloy surface by laser cladding using mixed elemental powders. Optical microscopy
(OM), scanning electron microscopy (SEM), and X-ray diffraction were used to characterize the
microstructure of the coating. The wear resistance and corrosion resistance of the coating were
evaluated by dry sliding wear and potentiodynamic polarization curve test methods, respectively.
The results show that the coating was composed of a simple FCC solid solution phase with a
microhardness about 3.7 times higher than that of the AZ91D matrix and even higher than that
of the same high-entropy alloy prepared by an arc melting method. The coating had better wear
resistance than the AZ91D matrix, and the wear rate was about 2.5 times lower than that of the
AZ91D matrix. Moreover, the main wear mechanisms of the coating and the AZ91D matrix were
different. The former was abrasive wear and the latter was adhesive wear. The corrosion resistance
of the coating was also better than that of the AZ91D matrix because the corrosion potential of the
former was more positive and the corrosion current was smaller.

Keywords: laser cladding; high-entropy alloy coating; AZ91D magnesium alloy; wear; corrosion

1. Introduction

High-entropy alloys are a new kind of alloy with excellent properties such as good wear resistance,
excellent corrosion resistance, excellent oxidation resistance, low electrical conductivity, low thermal
conductivity, and low coefficient of thermal expansion; they were invented by Yeh in 1995 [1–7].
They are composed of five or more elements in the same or an approximately equal molar ratio and
have simple BCC and/or FCC solid solution phases. Their microstructure and properties are different
from those of traditional alloys such as Fe- and Ni-based alloys or intermetallic compounds such as
Ti–Al, Ni–Al, and Fe–Al compounds; this is because of the high entropy effect, severe lattice distortion
effect, sluggish diffusion effect, and cocktail effect of the former [5,7].

So far, many methods such as arc melting [8], Tungsten Inert Gas Arc Welding (TIG) [9],
Gas Tungsten Arc Welding (GTAW) [10], mechanical alloying [11], DC sputtering [12], thermal spay
technology [13], and laser cladding [14–32] have been adopted to prepare different high-entropy alloys
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or coatings. Among them, the laser cladding method has attracted special attention because of its
advantages of rapid heating, rapid cooling, compact coating, and low dilution rate, etc. [19]. At present,
the preparation of high-entropy alloy coatings by laser cladding mainly focuses on the microstructure
and properties of different matrix materials such as Ti-6Al-4V [14,15], carbon steel [16–21], stainless
steel [22–24], tool steel [25], die steel [26], aluminum [27], magnesium [28–30], and magnesium
alloys [31,32], and different high-entropy coatings [14–32]. It should be noted that the study of the
preparation of high-entropy alloy coatings on magnesium and magnesium alloys by laser cladding
was mainly carried out by a few researchers: Yue [28,29,31], Huang [32], and Meng [30]. The possible
reason for this is that good-quality laser-clad coatings on magnesium and its alloys are very difficult to
obtain because of its low melting point (922K) and low boiling point (1363K).

It is well known that magnesium and its alloys have been widely used in many fields such as
the automotive, communication, and aerospace industries, but their poor wear resistance and
corrosion resistance hinder their application in those situations where these properties are required.
To solve this problem, a method called laser cladding has been developed to improve the wear and
corrosion resistance of magnesium and its alloys, and numerous literature reports have confirmed
this result [33,34]. Based on the excellent wear resistance and corrosion resistance of high-entropy
alloys [1–7] and on the basis of an author’s previous research [32], we decided to continue the
preparation of new wear-resistant and corrosion-resistant high-entropy alloy coatings by laser cladding
on an AZ91D magnesium alloy substrate, which is widely used. To our best knowledge, no studies
have reported an Al0.5CoCrCuFeNi high-entropy alloy coating fabricated by laser cladding on an
AZ91D magnesium alloy substrate. The reason for studying the Al0.5CoCrCuFeNi alloy is that it has a
simple FCC solid solution phase and exhibits excellent wear resistance due to its large work-hardening
capacity [35].

In this paper, mixed powders of Cu, Ni, Al, Co, Cr, and Fe were used to fabricate an
Al0.5CoCrCuFeNi high-entropy alloy coating on AZ91D magnesium alloys by laser cladding.
The microstructure, wear behavior, and corrosion behavior of the coating are shown in detail.

2. Experimental

Laser cladding of mixed powders of Cu, Ni, Al, Co, Cr, and Fe was undertaken on an AZ91D
magnesium alloy (Guangdong Dongguan Jubao Magnesium Alloy Material Co., Ltd, Dongguan,
China). The sample size used in the laser cladding was 100 mm× 50 mm× 10 mm. The powders (Hebei
Xingtai Nangong Zhongzhou Alloy Material Co., Ltd, Xingtai, China) had particle sizes of 48–75 µm
and purity of 99 wt %. The different element powders were mixed by ball milling (DECO-PBM-V-0.4L,
Hunan Changsha Deco Instrument Equipment Co., Ltd, Changsha, China) according to the nominal
composition of the Al0.5CoCrCuFeNi high-entropy alloy. The mixed powder from the ball milling was
preset on the surface of the AZ91D magnesium alloy using 4 vol % PVA solution. The thickness of the
preset layer was about 0.6 mm. The laser cladding experiment was completed under the protection of
99.999% high-purity argon by using a TR050 type CO2 high-power laser. The optimized laser cladding
parameters were as follows: laser power was 3000 W, laser scanning speed was 10 mm/s, laser spot
diameter was 4 mm, and laser spot overlap rate was 25%.

The phase structure and microstructure of the coating after laser cladding were identified and
observed using an X-ray diffractometer (X’ Pert PRO), an optical microscope (Axiovert 200MAT), and a
scanning microscope (Quanta 400) with an energy spectrum, respectively. The microhardness of the
coating cross section was measured using a microhardness tester (MICROMET 3). The loading force
was 100 grams and the loading time was 15 s.

The wear resistance of the coating was evaluated by the dry sliding wear method, in which the
size of the sample used for testing was 10 mm × 10 mm × 10 mm, and the friction pair used for
matching was bearing steel (AISI52100, HV0.1700). Figure 1 shows a schematic illustration of the
block-on-ring sliding wear tester. The parameters for the dry sliding wear were as follows: the applied
load was 98 N, the dry sliding speed was 0.4187 m/s, the dry sliding wear time was 75 mins, and the
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dry sliding wear distance was 1884 m. The AZ91D magnesium alloy was selected as the experimental
material for the dry sliding wear comparison. For each experimental datapoint, the average value
of three experimental results was taken as the final data. Wear weight loss was measured using an
electronic analytical balance (Bartorius BS110) with an accuracy of 0.1 mg.

The corrosion resistance of the coating was evaluated by testing the corrosion potential
polarization curve of a 3.5 wt % sodium chloride solution. A saturated calomel electrode (SCE)
was used as the reference electrode and platinum was used as the counter electrode. The test was
performed from −2.5 V to 1.5 V with a scanning speed of 1 mV/s.

The surface morphologies of the worn and corroded specimens were observed using a scanning
microscope (Quanta 400) with an energy spectrum.
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Figure 1. Schematic illustration of the block-on-ring sliding wear tester.

3. Results and Discussion

3.1. Microstructure and Microhardness

Figure 2a shows an optical image of the cross section of the coating/AZ91D substrate sample after
laser cladding. It can be seen from Figure 2a that there were basically no defects such as microcracks
or pores in the coating. The interface between coating and substrate indicates that they were well
combined. In addition, small pieces of AZ91D magnesium alloy substrate were also found in the
coating (Figure 2a). This is believed to be due to some partially melted Mg being detached from the
substrate and becoming trapped within the rapidly solidifying coating. Figure 2b shows the scanning
electron microscopy morphology of position A in Figure 2a. It can be seen from Figure 2b that the
coating has typical dendrite microstructure characteristics, and the chemical compositions of the
dendrite (DR) and inter-dendrite (ID) are given in Table 1. As shown in Table 1, copper segregates
significantly in the inter-dendrite region. In other words, local segregation of copper occurred in the
Al0.5CoCrCuFeNi high-entropy alloy coating prepared by laser cladding. These results are similar to
the microstructure characteristics of Al0.5CoCrCuFeNi high-entropy alloys prepared by arc melting in
the literature [35–38]. The difference is that the dendrite microstructure of the laser cladding coating is
fine due to the rapid heating, melting, and rapid solidification of the preset layer during laser cladding.

Table 1. EDS results of the laser-clad high-entropy alloy coating (atom %).

Elements Al Co Cr Cu Fe Ni Results

DR 9.9 18.7 20.1 12.1 22.0 17.2 poor in Cu element
ID 12.7 5.7 3.5 60.7 3.1 14.3 rich in Cu element

Raw powders 9.0 18.2 18.2 18.2 18.2 18.2

The copper segregation in the Al0.5CoCrCuFeNi high-entropy alloy can be explained by the
mixing enthalpies [39] of different atomic pairs in Table 2. As shown in Table 2, all of the mixing
enthalpies of copper with iron, chromium, cobalt, and nickel are positive. This means that copper has
a low affinity for these atoms and is easily repelled by them. In the process of laser cladding, different
elements in the Al0.5CoCrCuFeNi high-entropy alloy were mixed evenly due to the convection and
agitation of the laser cladding pool. However, during the cooling and solidification stage, copper
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was excluded from the dendrites due to the low affinity of copper atoms with iron, chromium, cobalt,
and nickel; thus, copper segregation occurred at the inter-dendrites.
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Figure 2. Morphology of a laser-clad Al0.5CoCrCuFeNi high-entropy alloy coating: (a) optical
microscope (OM) image; (b) SEM image in position A.

Table 2. Values of ∆Hij
mix (kJ/mol) for atomic pairs of elements [39].

Mixing Enthalpy Al Co Cr Cu Fe Ni

Al - −19 −10 −1 −11 −22
Co - −4 6 −1 0
Cr - 12 −1 −7
Cu - 13 4
Fe - −2
Ni -

Figure 3 presents the XRD patterns of the Al0.5CoCrCuFeNi high-entropy alloy coating prepared
by laser cladding. The analytical result confirmed that the phase was a simple FCC solid solution in
the laser-clad coating. This result proved that the Al0.5CoCrCuFeNi high-entropy alloy coating was
successfully fabricated by laser cladding on the AZ91D magnesium alloy based on the mixed powders
of Cu, Ni, Al, Co, Cr, and Fe of Al0.5CoCrCuFeNi and the optimized laser cladding parameters.
This result is consistent with the results reported in the literature [35–38]. Thus, for the laser-clad
Al0.5CoCrCuFeNi high-entropy alloy coating, both the dendrites and Cu-rich inter-dendrites were
of one simple FCC phase (Figure 1b). The formation of a simple solid solution phase rather than
intermetallic compounds is mainly attributed to the significant lowering of free energy by the high
enthalpy of mixing [40].
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Figure 4 shows the microhardness of the laser-clad Al0.5CoCrCuFeNi high-entropy alloy coating.
As can be seen from Figure 4, the microhardness of the coating was HV0.1365—about 3.7 times of the
AZ91D matrix (HV0.198) and higher than that of the Al0.5CoCrCuFeNi high-entropy alloy (HV5233)
prepared by arc melting [35–37]. The high microhardness of the laser-clad coating was attributed to
the solid solution strengthening of different alloy elements and fine grain strengthening of the fine
dendritic structure during the cooling process. Obviously, the high microhardness of the coating is
more beneficial to increasing the wear resistance of the coating.
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Figure 4. Microhardness of a laser-clad Al0.5CoCrCuFeNi high-entropy alloy coating.

3.2. Wear Properties

Figure 5 shows the dry sliding wear weight loss of different samples. According to Figure 5,
the wear resistance of the coating was better than that of the AZ91D matrix, and the wear weight
loss was about 2.5 times smaller than that of the AZ91D matrix. This is in accordance with their
corresponding microhardness values (Figure 4). In other words, the hardness is higher and the
wearability is better. Figure 6 shows the surface morphologies of different samples after dry sliding
wear. In Figure 6, both of them present obvious groove characteristics. However, the wear mechanisms
of the two samples were also significantly different. The coating showed obvious abrasive wear
characteristics, and the AZ91D matrix showed obvious adhesive wear characteristics. Some elongated
pockmarks and microcracks (Figure 6a) can be found on the worn surface of the AZ91D matrix. Table 3
shows the EDS results of different positions of different worn samples. It can be seen from Table 3 that
AZ91D matrix position 1 and coating position 1 are each matrix materials, although each has a small
amount of oxidation due to friction heating. Both AZ91D matrix position 2 and coating position 2 are
iron oxide particles, but there are a lot of fine particles on the worn surface of the coating, while the
worn surface of the AZ91D matrix is much cleaner.
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Table 3. EDS results of worn surfaces of the AZ91D matrix and the laser-clad specimen (wt %).

Samples Position C O Mg Al Zn Fe Ni Cu Cr Co Mn

AZ91D 1 2.2 6.5 83.8 6.8 0.7 - - - - - -
AZ91D 2 1.8 44.5 1.3 1.3 0.3 50.8 - - - - -
Coating 1 1.1 8.9 - 4.7 - 18.7 19.9 12.4 17.3 17.0 -
Coating 2 1.2 33.7 - 3.4 - 34.8 5.3 7.2 7.1 7.3 -
AZ91D Raw - - 90.2 8.9 0.6 - - - - - 0.3

The causes of the above phenomena should be related to the hardness of the respective matrix
materials. Figure 4 shows that the microhardness of the coating was about HV0.1365, while the
microhardness of the AZ91D matrix was only HV0.198. In addition, the coating is composed
of Al0.5CoCrCuFeNi high-entropy alloy, and Al0.5CoCrCuFeNi high-entropy alloy has superior
work-hardening characteristics [35], but the AZ91D matrix does not have the same excellent
work-hardening capability. As a result, the microhardness of the coating continued to increase when
dry sliding wear was applied to the bearing steel friction pair and may even approach or exceed the
hardness of the bearing steel friction pair; it would then shear off the steel ring material, and iron
wear debris would be smeared over the coating surface. With the extension of the dry sliding wear
time, the iron wear debris would be oxidized due to heat generated by friction. Therefore, iron oxide
abrasive particles will be used as an abrasive cutting the Al0.5CoCrCuFeNi high-entropy alloy coating.
In contrast, the AZ91D matrix did not have this process and only the soft AZ91D matrix was transferred
to the hard bearing steel surface, so its wear rate (30.38 µg/s) was much higher than that (11.93 µg/s)
of the coating.

3.3. Corrosion Properties

Figure 7 and Table 4 show the potentiodynamic polarization curves and corrosion properties,
respectively, of different samples in 3.5 wt % sodium chloride solution. According to the corrosion
electrochemical behavior of the two samples and the lack of a passivating region in Figure 7, both
the AZ91D matrix and the coating are active dissolved materials. Therefore, using the principle of
“the smaller the corrosion current and the higher the corrosion potential, the better the corrosion
resistance of the material” to evaluate the corrosion resistance of the active dissolved material, it can
be seen that the corrosion resistance of the Al0.5CoCrCuFeNi high-entropy alloy coating prepared by
laser cladding was better than that of the AZ91D matrix. This is reflected by the fact that the former
had a significantly higher corrosion potential (Ecorr = −0.998 V) than did the latter (Ecorr = −1.46 V),
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and the former also exhibited a lower corrosion current (icorr = 1.60 × 10−4 A/cm2) than did the latter
(icorr = 6.20 × 10−4 A/cm2).
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Mg(s) + H2O→Mg(OH)2(s) + H2(g),
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Therefore, the corrosion of the AZ91D matrix was severe (Table 4 and Figure 8a).
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On the other hand, the corrosion attack on the Al0.5CoCrCuFeNi high-entropy alloy coating
specimen was much less acute. Figure 8b reveals that the corroded surface has a grainy appearance,
indicating that corrosion attacks may mainly occur on dendrite boundaries. It is considered that
the presence of Cr, Al, and Ni in the Al0.5CoCrCuFeNi high-entropy alloy coating prepared by laser
cladding could form dense chromium oxides, aluminum oxides, and nickel oxides at the surface,
and this could be an important factor that contributes to the relatively high corrosion resistance of the
Al0.5CoCrCuFeNi high-entropy alloy coating specimen.

It should be pointed out that the composition of the high-entropy Al0.5CoCrCuFeNi selected in
this paper is not superior to that of other high-entropy compositions (for example, the one studied in
Reference [32]). In this paper, only the high-entropy Al0.5CoCrCuFeNi composition is chosen because
of its good corrosion resistance.

As for how to choose the composition of the coating to obtain high corrosion resistance,
we think that the composition of the high-entropy alloy should be based mainly on whether the
same high-entropy alloy prepared by the arc melting method has excellent corrosion performance.
If so, it can be selected as a candidate material for laser cladding to prepare a high-entropy alloy
coating; otherwise, it should not be selected.

4. Conclusions

(1). An Al0.5CoCrCuFeNi high-entropy alloy coating was successfully fabricated on an AZ91D matrix
by laser cladding using mixed powders of Cu, Ni, Al, Co, Cr, and Fe. The Al0.5CoCrCuFeNi
high-entropy alloy coating consisted of fine dendrites with a simple FCC phase.

(2). The dry sliding wear resistance of the Al0.5CoCrCuFeNi high-entropy alloy coating prepared by
laser cladding was better than that of the AZ91D matrix, and the wear mechanisms of the two
materials were different.

(3). The Al0.5CoCrCuFeNi high-entropy alloy coating prepared by laser cladding had better corrosion
resistance than did the AZ91D matrix in 3.5 wt % sodium chloride solution.
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