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Abstract: In this paper, we revisit the q-state clock model for small systems. We present results for
the thermodynamics of the q-state clock model for values from q = 2 to q = 20 for small square
lattices of L× L, with L ranging from L = 3 to L = 64 with free-boundary conditions. Energy, specific
heat, entropy, and magnetization were measured. We found that the Berezinskii–Kosterlitz–Thouless
(BKT)-like transition appears for q > 5, regardless of lattice size, while this transition at q = 5 is lost
for L < 10; for q ≤ 4, the BKT transition is never present. We present the phase diagram in terms
of q that shows the transition from the ferromagnetic (FM) to the paramagnetic (PM) phases at the
critical temperature T1 for small systems, and the transition changes such that it is from the FM to the
BKT phase for larger systems, while a second phase transition between the BKT and the PM phases
occurs at T2. We also show that the magnetic phases are well characterized by the two-dimensional
(2D) distribution of the magnetization values. We made use of this opportunity to carry out an
information theory analysis of the time series obtained from Monte Carlo simulations. In particular,
we calculated the phenomenological mutability and diversity functions. Diversity characterizes the
phase transitions, but the phases are less detectable as q increases. Free boundary conditions were
used to better mimic the reality of small systems (far from any thermodynamic limit). The role of size
is discussed.

Keywords: q-state clock model; entropy; Berezinskii–Kosterlitz–Thouless transition

1. Introduction

The q-state clock model is the discrete version of the famous 2D XY model, which is probably the
most extensively studied example showing the Berezinskii–Kosterlitz–Thouless (BKT) transition [1–4]
in the presence of a frustrated quenched disordered phase [5–8]. The q-state clock model is often
used as a reference model due to its peculiar critical behavior at the transition point and its
universal features [9–13]. Instead of the exclusion of the explicit continuous symmetry essential
for the BKT transition, it can also emerge from a system without explicit continuous symmetry [13].
The Hamiltonian of the q-state clock model can be written in many forms, and one of the simplest forms
is the following expression, where no magnetic anisotropies or external magnetic fields are included:

H = − J
2 ∑

<i,j>
cos(θi − θj) , (1)
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where J > 0 is the ferromagnetic coupling connecting pairs of nearest neighbors i and j; the discrete
angle between the spin orientations is given by θi,j(η, q) = 2πη/q, for η = {0, 1, .., q− 1}. While the
exact XY model is recovered only in the limit of infinite q, it has been found that the BKT characteristics
appear in the clock models when q ≥ 5 [14–19]. The nature of the phase transitions in the general clock
model has been widely studied with different theoretical and numerical approaches. However, these
studies have given mixed results for the characterization of transitions at the lower bound of q (for
instance, see the summary of the related debates in [20]).

In the present work, we want to consider the clock model as a generalization of the Ising model by
establishing the similarities and differences that arise due to the increase of the degrees of freedom due
to the local states at each site. All of the characterizations are aimed at the behavior of small systems:
specifically, we focus on square lattices ranging from 3 × 3 up to 64 × 64. Free boundary conditions
are preferred since they better represent the importance of surface states in small systems. The clock
model systems under scrutiny range from q = 2 (equivalent to the usual Ising model) to q = 20.

There are various scattered results for the thermodynamics and phase transition of the clock
model. Therefore, we report below a consistent compendium of its thermodynamic properties, such
as internal energy, U; specific heat, C; entropy S; and magnetization. We also report the transition
temperatures T1 for transitioning from the ferromagnetic (FM) to the P phase for very small q values,
continuing to the transition from the FM to the BKT phase for larger values of q, as well as T2 for the
transition from the BKT phase to the disordered paramagnetic (P) phase. These series of results are
elaborated into a phase diagram of TC vs. q, where TC is determined from the C(T) curves.

The information content of a sequence was measured by the mutability, called as such for the
first time by Vogel et al. [21] in a relationship with the characterization of the 2D phase transitions
in the Edwards–Anderson spin system as an alternative to the Binder cumulant analysis [22]. Later,
an appropriate information recognizer was proposed (named word length zipper (wlzip)) which
optimizes recognition of digital information associated with properties of the system [23]. The method
was later successfully applied to the reentrant phase diagram in the case of the 3D Edwards–Anderson
model [24]. Successive applications of the information content methods addressed stock markets [25],
pension funds [26], blood pressure [27], seismology [28], nematic transitions [29], and wind energy
production [30].

In the present paper, we follow the approach of magnetic transitions [21,23] complemented with
the definitions of mutability and diversity [25], to be elaborated below. The aim is to establish an
alternative method to characterizing and distinguishing the phases present in the q clock model.

In the next section, we present the clock model and the main methods used to characterize it.
A presentation of the results and discussion are given in Section 3, and the last section is devoted
to conclusions.

2. Model and Methods

2.1. General Definitions

Let us begin by considering the q-state clock model on a two-dimensional (2D) square lattice
of dimensions L× L = N, where the local magnetic moment or “spin” Si at site i can point in any
of the q directions in a given plane. Si is then a 2D vector, i.e., Si = (cos( 2π

q k), sin( 2π
q k)), where

k = 0, 1, ..., q− 1, with equal probability for all q values. Si are dimensionless vectors of magnitude one.
The isotropic Hamiltonian for such a system can be written as:

H = − J
2

N

∑
<i,j>

Si · Sj − B ·∑
i

Si , (2)
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where J > 0 is the ferromagnetic exchange interaction to nearest neighbors i and j; the sum extends
to all such pairs through the lattice, which is indicated by the symbol < i, j > under the summation
symbol. B is an external field applied along one direction in the plane.

In this Hamiltonian, J is one unit of energy and B is also measured in energy units. This form is
completely equivalent to the one of Equation (1), when B = 0.

2.2. Exact Theoretical Approach for a Small System

Let us begin by considering the theoretical approach for the q-state clock lattice with L = 3, which
was introduced in the previous section. The partition function can be expressed as:

Z(T, B) =
λ

∑
n=1

cn e−En/T , (3)

where the coefficients cn are the numbers of all of the possible spin configurations compatible with
energy En according to the Hamiltonian of Equation (2); in the case of a magnetic field B, the energies
and the coefficients cn depend upon B; λ is the number of different energy levels. We express energy
and temperature in the same units, so the Boltzmann constant is set to unity, kB = 1.

The coefficients cn = c(En, q) for a small N = L × L = 3× 3 lattice can be straightforwardly
calculated by computing the energies for all q9 spin configurations, which are shown in Table 1 for
q = 4 and q = 6 and in Table 2 for q = 5 as examples. For all even q values (as in the examples
in Table 1), some symmetry rules apply: energy distribution is symmetric around En = 0, and the
majority of the density of states occur for En = 0 and c(−En, q) = c(En, q) holds. There are q9 states to
be spread among all available energies in the energy range En = [−12, 12]. Due to symmetry, the total
number of different energies are λ = 11, 23, 47, 289, and 699 for q = 2, 4, 6, 8, and 10, respectively.

Table 1. Coefficients c(En, q) for a 3× 3 lattice with free boundary conditions and B = 0 for q = 4
and q = 6. The first column enumerates energy levels, n, and the second and third columns give the
corresponding energies E and degeneracies c(E, 4), respectively. The fourth and five columns show
half of the energies and degeneracies for q = 6, respectively. The rest of the energies and degeneracies
can be found using the following symmetry: c(−En, 6) = c(En, 6).

n q = 4 q = 6

En c(En, 4) En c(En, 6)

1 −12 4 −12 6
2 −10 32 −11 48
3 −9 128 −10.5 192
4 −8 248 −10 348
5 −7 896 −9.5 960
6 −6 2336 −9 2448
7 −5 4864 −8.5 2736
8 −4 10,748 −8 5376
9 −3 19,712 −7.5 11,808

10 −2 29,376 −7 14,880
11 −1 39,936 −6.5 22,128
12 0 45,584 −6 54,072
13 1 39,936 −5.5 54,960
14 2 29,376 −5 94,032
15 3 19,712 −4.5 175,968
16 4 10,748 −4 191,514
17 5 4864 −3.5 231,744
18 6 2336 −3 478,752
19 7 896 −2.5 393,360
20 8 248 −2 530,892
21 9 128 −1.5 806,736
22 10 32 −1 707,760
23 12 4 −0.5 701,712
24 0 1,112,830
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For odd q values, the main symmetry of the Hamiltonian of Equation (2) for B = 0 is lost, because
the spin inversion Si → −Si is not possible. This is simply because, for odd q values, if there is
the symmetry Si, then −Si does not exist. Therefore, the energy distribution and the corresponding
degeneracy is not symmetric around En = 0. Thus, the highest possible energy is not the negative
value of the ground state energy. However, as we will see, this lowering of symmetry does not affect
the thermodynamic observables.

Once the partition function is known, the thermodynamic observables can be calculated directly.
Thus, for the cases of internal energy U, specific heat C, and entropy S, they can be obtained
by employing:

U(T) = T2 ∂

∂T
ln Z(T, B) , (4)

C(T) =
∂U
∂T

, (5)

S(T) =
U
T

+ ln Z(T, B) . (6)

The next table shows the results for q = 5, where the energies En and degeneracies for n = 1 to
n = 85 are explicitly given. In this case, for a given energy En, their negative counterpart does not exist.

Table 2. Coefficients c(En, 5) for a 3× 3 lattice with free boundary conditions and B = 0. In this case,
there are no symmetries and, therefore, we present all En values with their respective degenerations,
from n = 1 to n = 85. Here, as explained in the manuscript, the symmetry Si → −Si is not present.

n q = 5

En c(En, 5) n En c(En, 5) n En c(En, 5) n En c(En, 5)

1 −12 5 23 −4.92705 15,760 45 −1.57295 15,760 67 2.30902 89,000
2 −10.618 40 24 −4.76393 290 46 −1.47214 4100 68 2.47214 1340
3 −9.92705 160 25 −4.66312 6720 47 −1.30902 124,320 69 2.73607 58,080
4 −9.23607 290 26 −4.5 8960 48 −1.1459 1680 70 3 30,200
5 −8.54508 800 27 −4.23607 30,360 49 −1.04508 27,920 71 3.16312 6720
6 −8.38197 40 28 −4.07295 680 50 −0.881966 57,000 72 3.42705 64,120
7 −8.11803 320 29 −3.97214 5280 51 −0.618034 117,040 73 3.8541 21,160
8 −7.8541 1680 30 −3.80902 23,080 52 −0.454915 6958 74 4.11803 23,640
9 −7.42705 680 31 −3.7082 410 53 −0.354102 9200 75 4.28115 1440

10 −7.16312 1600 32 −3.54508 29,120 54 −0.190983 124,320 76 4.54508 27,920
11 −7 39,936 33 −3.38197 5800 55 0 2 77 4.97214 5280
12 −6.73607 3040 34 −3.28115 1680 56 0.072949 64,120 78 5.23607 17,720
13 −6.57295 160 35 −3.11803 57,000 57 0.236068 30,360 79 5.66312 9880
14 −6.47214 1340 36 −2.95492 800 58 0.5 147,600 80 6.09017 560
15 −6.30902 1760 37 −2.8541 21,160 59 0.663119 1600 81 6.3541 9200
16 −6.04508 6960 38 −2.69098 23,080 60 0.763932 17,720 82 6.78115 1680
17 −5.88197 320 39 −2.59017 1240 61 0.927051 77,360 83 7.47214 4100
18 −5.78115 1440 40 −2.42705 77,360 62 1.19098 89,000 84 8.59017 1240
19 −5.61803 5800 41 −2.26393 3040 63 1.3541 8440 85 9.70820 410
20 −5.3541 8440 42 −2.16312 9880 64 1.61803 117,040
21 −5.19098 1760 43 −2 67,600 65 1.88197 23,640
22 −5.09017 560 44 −1.73607 58,080 66 2.04508 29,120

We now use numeric simulations to calculate larger sizes for the same system.

2.3. Numerical Simulations

In addition to the theoretical calculations, most of the work presented here deals with numerical
calculations based on Monte Carlo (MC) simulations. A square lattice L× L was chosen; free boundary
conditions were imposed; a site was randomly visited, and the energy cost, ∆, of rotating the
corresponding spin around q possible states was calculated: if the energy is lowered, the change
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of orientation is accepted; otherwise, only when exp(−∆/T) ≤ r is the spin rotation accepted, where
r is a freshly generated random number in the range [0, 1] with equal probability. This is the usual
Metropolis algorithm. A Monte Carlo step (MCS) is reached after N = L× L spin-rotation attempts.
One of the main goals here is to report the sensitive temperatures, T1 and T2, that define the transition
from FM to BKT and from BKT to PM (disordered) phase for different systems.

For each lattice size and q value, a sequence of temperatures was defined in the range [0.02, 3]
at steps of 0.02 for each temperature. Also, 5τ MCSs were performed: the first τ MCS was used to
equilibrate at a fixed temperature T, while the next 4τ MCS was used to measure the observables every
20 MCSs, reaching a total of 2× 105 = 200, 000 measurements. Unless otherwise specified, τ = 106

is used in the rest of the paper; this τ value gives stable results and leads to coincidence with the
analytic expressions obtained as described above. The energy U(T) was computed according to the
Hamiltonian given by Equation (2). With the internal energy known as a function of T, Equations
(4)–(6) can be used to generate the thermodynamics. In parallel, the magnetization M(T) for each
temperature can also be instantaneously measured. Alternatively, we can also use direct relationships
based on the thermal treatment of the variables, as presented next.

2.4. Thermal Averages

The lattice average of the spin configuration, equivalent to the magnetization per site M, is given
by the following expression:

M =
1
N

N

∑
j=1

Sj , (7)

where Sj is the value of the spin at site j at a given time t, and N = L× L is the total number of spins.
In this particular case, M is a vector of two components, M = (Mx, My). Normally, the magnitude or

absolute value of this vector is calculated, i.e., |M| =
√

M2
x + M2

y. Then, the thermal average of the

absolute value |M| is < |M| >, and it is given by

< |M| >=
1

Nc

Nc

∑
i=1

√
M2

x + M2
y , (8)

where Nc = 2× 105 is the number of configurations used to perform thermal averages, as explained in
the preceding section.

Energy is the main value used in the Monte Carlo method to reach thermal equilibrium. Therefore,
after τ MCSs, the internal energy U can be obtained by averaging the Nc = 2 values for Ek, where k
runs over the accepted configurations after the Metropolis algorithm, namely:

U =< E >=
1

Nc

Nc

∑
k=1

Ek , (9)

where every spin configuration is separated from the next one by 20 MCs. The energy per site is then
U/N, which is the thermal average of the lattice average of the system energy.

The specific heat is then calculated as proportional to the fluctuations of the energy as follows:

C =
〈E2〉 − 〈E〉2

T2 , (10)

C =
1

T2

( 1
Nc

Nc

∑
k=1

E2
k

)
−
(

1
Nc

Nc

∑
k=1

Ek

)2
 . (11)
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The absolute entropy S can be calculated by calculating ∆S(Tf , Ti) = S(Tf )− S(Ti) by numerical
integration of the specific heat divided by the temperature, as follows:

∆S(Tf , Ti) =
∫ Tf

Ti

C(T)
T

dT . (12)

We know the entropy at zero temperature, because we know the energy degeneration at T = 0.
For the case B 6= 0, only one spin configuration has minimum energy (every spin aligned to B);
therefore, S(0) = 0. On the other hand, when the magnetic field is zero, there are q ferromagnetic spin
configurations with equal energies. Therefore, S(0) = ln q and, hence, S(T) = ln q + ∆S(T, 0).

As we have seen, the thermal average of a physical quantity is a summation over Nc quantities
(normalized to Nc), like energies, magnetic moments, etc. However, the order of the sequence of these
Nc quantities is totally irrelevant to the result of this evaluation. Next, we introduce the mutability,
which is a quantity (defined in terms of information theory) that can be calculated from any temporal
sequence of quantities, like energy, magnetic moment, etc. Mutability is a quantity that depends on the
sequence order, and, therefore, it contains information that differs from a mere average.

2.5. Information Theory, Mutability, and Diversity

Word length zipper (wlzip for short) is a compressor designed to recognize meaningful
information in a data chain. As its name indicates, it recognizes “words” of precise length and
precise location within the data chain. Then, it compresses less than other file compressors which
precisely optimize this function. In the case of wlzip, the optimization is of the recognition of patterns
beginning at a precise location and for a given number of digits. In this way, physical properties
and/or other inherent properties of the system can be recognized.

The recognition of information within a file can render at least two parameters: mutability and
diversity. They were defined a few years ago, including a working example, given in Table 2 of
Reference [23]. Here, we very briefly review these definitions, beginning with the basic rules under
which wlzip operates. Let us assume our data are contained in a vector file (one register per row)
named “data.txt” whose number of rows is λ(data) and whose weight in bytes is w(data). We now
create a map of the previous file in the following way: we go over each row of data.txt and, whenever
this value is new, we add it as a new row to a new file which will be named map.txt. So, the process
begins with the first element of data.txt which is also the first element in map.txt. Then, the second
element of data.txt is considered: if this element is new, we add it as a second row in map.txt; if
this element is the same as the previous one, we just add a digit 1 to the right of this element in
map.txt (here, 1 means one position from last time this element appeared). The process continues
like that so that each time a new record is detected, a new row in map.txt is created. This register is
copied in map.txt at the beginning of a new row, and the first number that is written to its right is its
absolute position in the data.txt file. Each time a register is repeated, its position with respect to its
last appearance in the data.txt file is written to the right of the last annotation on this row in the map
file. At the end of the process, map.txt contains as many rows as there were different values present in
data.txt; the more a value is repeated, the wider the corresponding row is in map.txt. In a sense, this
is like a histogram organized according to the appearance order. The number of rows in map.txt is
λ∗(data), while the weight of this file is w∗(data).

The mutability µ(data) of the entire file data.txt is simply given by

µ(data) =
w∗(data)
w(data)

. (13)

Similarly, the diversity of the file data.txt is also a ratio, namely,

δ(data) =
λ∗(data)
λ(data)

. (14)
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The previous definitions can also be dynamic at time t and given with respect to the ν records in
data.txt counted from that one at time t. Then, we can define the dynamic parameters for data.txt:

µ(t, ν) =
w∗(t, ν)

w(t, ν)
(15)

and

δ(t, ν) =
λ∗(t, ν)

λ(t, ν)
. (16)

As shown in the discussion accompanying Figure 1 of Reference [25], referred to the Ising model,
mutability can be more appropriate for discussing the variability of a parameter with changing
conditions (like an increase in temperature), while diversity is more appropriate for discussing critical
phenomena, such as phase transitions. This is one of the issues discussed below in light of the results
obtained from the clock model.

3. Results and Discussions

Let us begin by considering the theoretical approach to the q-state clock model according
to Equation (2) for B = 0, considering an L = 3 lattice, as presented in the previous section.
We successfully calculated the partition functions from q = 2 (Ising) to q = 10. From here, all the
thermodynamic quantities of the system can be analytically obtained as a function of the temperature T.

Figure 1 shows the results obtained for internal energy U(T), specific heat C(T), and entropy
S(T).

Figure 1. Internal energy U (left), specific heat C (middle), and entropy S (right) of the q-state clock
model as a function of temperature T for a 3× 3 lattice without a magnetic field for different values of
q. From q = 2 (blue) to q = 10 (red).

For the specific heat, C vs. T (center of Figure 1), we see that the two peaks appear for q ≥ 6.
At q = 5, we see only one peak, but it is notoriously more skewed to the right. We will see that this is
due to the small size of the lattice. Therefore, for small systems, the BKT phase appears only for q ≥ 6.

We can see here (Figure 1, right) the basic features of entropy for the low- and high-temperature
limits. When no external field is applied, the energy ground state of the ferromagnetic q-state clock
model has a degeneracy equal to q, independent of the total number of spins N; therefore, S(0) = ln q.
On the other hand, at very high temperatures, the exchange interaction is overridden, and every spin
has q degrees of freedom with equal probabilities: hence, the system degeneracy is equal to qN , and,
therefore, Figure 2 shows the same observables in the presence of magnetic field B, namely, U(T, B),
C(T, B), and S(T, B), for the case where q = 7, as an example. The shift of the transition temperatures
due to the variations in the magnetic field is clearly visible. This is also an exact analytical result
obtained by calculating straightforwardly the partition function of Equation (3). The magnetic field
was applied along the (1, 0) direction, along which a spin orientation is always possible, regardless of
the q value.
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Figure 2. Internal energy U(T, B) (left), specific heat C(T, B) (middle), and entropy S(T, B) (right) of
the q-state clock model (q = 7) as a function of temperature T and magnetic field B for a 3× 3 lattice.
Different magnetic fields B are indicated by lines of different colors, from B = 0 (blue) to B = 2 (red).

For B > 0, the Zeeman term is added to the energy (see Equation (2)); therefore, the FM ground
state energy is lowered by the external field. As an example for B = 2, the Zeeman energy is −18, and
this is added to the ground state energy (−12) at zero field; therefore, the new ground state energy is
−30 (red curve in the left of Figure 2).

We also observe that the shapes of specific heat curves, C vs. T, maintain the two peaks, but they
shift to higher temperatures as the external field goes from B = 0 to B = 2. This behavior is easily
explained by the external field favoring ordered phases (FM and BKT) over disordered ones, and,
therefore, the transition temperatures increase with the strength of the external field.

The magnetic field breaks the degeneracy of the ground state so that S(0) = 0 for B 6= 0 instead
of S(0) = ln q. However, at high temperatures, the Zeeman term in Equation (2) is overridden, and
we are back to the same situation as in previous analysis for B = 0, namely, every spin has q degrees
of freedom with equal probabilities: hence, the system degeneracy is equal to qN , and, therefore, the
entropy S(T >> J) = N ln q, as observed in the right of Figure 2.

3.1. Monte Carlo Simulations

Next, we present and discuss the output from Monte Carlo simulations made for the q-state clock
model in lattices of up to 64× 64 with free boundary conditions. We began by simulating a 3× 3
lattice for different q values and comparing these numerical results to the analytic ones presented
in the previous section. We did not find a single difference, which is expected of course, but which
also serves as a check for the computer programs used extensively in the simulations reported next.
Thus, thermodynamic observables for lattices 10× 10, 16× 16, 32× 32, and 64× 64 are presented in
Figures 3–6, respectively.

Figure 3. Internal energy U/N (left), specific heat C/N (middle), and entropy S/N (right) of the q-state
clock model as a function of temperature T for an N = 10× 10 lattice without a magnetic field for
q = 2 (blue) to q = 10 (red).



Entropy 2018, 20, 933 9 of 16

Figure 4. Internal energy U/N (left), specific heat C/N (middle), and entropy S/N (right) of the q-state
clock model as a function of temperature T for an N = 16× 16 lattice without magnetic field for q = 2
(blue) to q = 10 (red).

Figure 5. Internal energy U/N (left), specific heat C/N (middle), and entropy S/N (right) of the q-state
clock model as a function of temperature T for a N = 32× 32 lattice without magnetic field for q = 2
(blue) to q = 10 (red).

Figure 6. Internal energy U/N (left), specific heat C/N (middle), and entropy S/N (right) of the q-state
clock model as a function of temperature T for a N = 64× 64 lattice without magnetic field for q = 2
(blue) to q = 10 (red).

We observe an overall self-agreement in the shape of energy U, specific heat C, and entropy S as
functions of temperature for the different lattices. For a given size, the peak of the specific heat occurs
at a lower temperature as q increases, and then it splits in two peaks. As q continues to increase, the
high-temperature peak remains at the same temperature, whereas the low-temperature peak tends
toward lower temperatures (eventually to a temperature of zero) as q increases tending to infinity.
This low-temperature peak, T1, is the transition from the FM phase to the BKT-like phase, which is
characterized by vortex spin configurations and FM spin–spin correlated configurations, like waves.
Both the vortex and spin waves are low-energy excitation that occurs as q increases. Therefore, for
q→ ∞, we expect that T1 → 0. We would like to stress the size-dependence of the peak heights at fixed
q. Indeed, for q = 2, 3, and 4, the unique peak corresponds to a second-order phase transition, hence,
the specific heat C/N is expected to diverge with N at T = T1. However, for q ≥ 5, the two peaks
should correspond to two BKT transitions, which are infinite-order; that is, there is no divergence in
C/N at T1 and T2. Both features are observed in Figures 3–6, and, furthermore, the constant height
of the peak at T = T2 for q = 5 could represent further evidence of a BKT-like transition. To be
more specific on the characterization of the clock model, we discuss next a phase diagram including
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the three possible magnetic phases: FM (long-range order), BKT (short-range correlations), and PM
(total disorder).

3.2. Phase Diagram

In this section, we show the phase diagram for the clock model as extracted from the specific
heat. We collected the analytic results for the 3× 3 lattice and the numerical results for the 10× 10 and
the 64× 64 lattices. This is shown in Figure 7 for q ranging from 2 to 20 using squares, triangles, and
circles, respectively. The texture and color underneath illustrate the instantaneous magnetic phases for
the larger lattice and q = 9 just as examples for the kind of magnetic ordering present in each phase.

Figure 7. Phase diagram for the q-state clock model for a 3× 3 lattice (squares), a 10× 10 lattice
(triangles), and a 64× 64 lattice (circles) with free boundary conditions. For temperatures under T1, the
ferromagnetic (FM) ordered phase dominates. For q < 5, the transition from this FM ordered phase is
to the disordered PM phase. For large enough lattices and q ≥ 5, the transition from the FM phase is
to the partially ordered Berezinskii–Kosterlitz–Thouless (BKT) phase. Then, a transition at a higher
temperature T2 appears which separates the BKT phase from the paramagnetic (PM) phase; it can
be noticed that T2 is essentially constant with respect to q. The background colors blue, yellow, and
red (from bottom to top) mark the FM, BKT, and PM phases, respectively. Spin orientations for one
possible snapshot corresponding to the 64 × 64 lattice and q = 9 are given in the gray color over the
background colors.

Several features in Figure 7 deserve special attention. First, the lower critical temperature T1

follows a monotonous decrease with q approaching zero asymptotically. Second, the higher critical
temperature T2 remains at a constant value for q ≥ 6. Third, for q = 5, there is just one critical
temperature following the tendency of T1, but for L = 10 (and also for L = 64), the two transitions are
clearly visible for q = 5. Fourth, an order parameter beyond the usual magnetization is necessary to
distinguish the BKT phase from the PM disordered phase.

To further specify the different phases, Figure 8 shows the specific heat for a 32 × 32 lattice
as a function of temperature. In this figure, we show a two-dimensional (2D) order parameter at
certain characteristic temperatures which clearly discriminate the three (FM, BKT, and PM) different
phases. The order parameter we use is the 2D distribution of the variable M = (Mx, My), as defined in
Equation (7), that is, the spin-lattice average at time t after the thermalization process of τ MCSs.

This corresponds to the vector spin average for a given spin configuration at time t. This vector
is then calculated after the thermalization, and every 20 MCSs of a total of Nc times. By plotting all
Nc vectors, we generate a 2D distribution that clearly characterizes the different phases. In the FM
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phase, only certain directions of the spin are allowed. In Figure 8, constructed for q = 9, we see that
at low temperature, the average magnetization vector points in nine directions which correspond to
the nine-fold symmetry of the FM states with equal probability. The BKT-like phase is characterized
by spin waves and vortex structures; therefore, the lattice average of the spin points to any of the 2π

directions while conserving, to a great extent, its magnitude in every lattice average. Therefore, a ring
structure is formed. In the disordered (PM) phase, every spin in the lattice points randomly to any
direction; therefore, the lattice average magnetization distribution exhibits a 2D-Gaussian peak with
decreasing magnitude as T increases; hence, the circle begins to be filled with a higher probability
(red color) near the center. The color code goes from black (zero value) to purple, blue, green, yellow,
and red in increasing order of probability for this 2D order parameter. This parameter was already
introduced as a complex order parameter by Baek et al. [31].

The next figure (Figure 9) depicts snapshots of some spin configurations showing the spin
arrangements that occur at different temperatures.

The next figure (Figure 10) shows the magnetization modulus as the thermal average of the
spin-lattice average, as defined in Equation (8).

Figure 8. Specific heat for q = 9 in a 32× 32 lattice (red curve). The figures depict the 2D order
parameter distribution of M (two-component vector), as defined in the text, for T = 0.21, 0.27, 0.5, 1,
and 1.51. In the ferromagnetic (FM) phase, the distribution presents a nine-fold symmetry, indicating
the nine possible orientations of the magnetic domains in the FM phase at T = 0.21. Vortex-like phase
(1) shows (T = 0.27) the onset of the BKT phase where we have smaller FM domains and vortex
structures. This makes the thermal average magnetization (the 2D order parameter) rotate while
keeping its overall magnitude. At T = 0.27, the FM phase is seemingly still present, as can be seen in
the ring structure with nine maxima, as observed at T = 0.21. In T = 0.5, a pure BKT phase is observed
as a uniform ring structure, but their radii are beginning to shrink, maintaining a smaller magnitude.
At T = 1 is the onset of the disordered phase in which the magnitude of the magnetization decreases,
filling the interior of the circle as a 2D Gaussian distribution with a zero average. At T = 1.51, the
overall magnitude of the M parameter further shrinks. The color code of the 2D order parameter
distribution goes from black to purple, blue, green, yellow, and red as values of the 2D distribution
increase. The radii of the ring-like 2D distributions represent the thermal magnetization modulus as a
function of temperature, and this is given in Figure 10.
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Figure 9. Spin arrangements of the q-state clock model for q = 9 in a 32× 32 lattice. The figure depicts
five snapshots, where each one is a sample of the 2× 105 states used for thermal averages at different
temperatures. The temperatures are the same as those shown in Figure 8, i.e., T = 0.21, 0.27, 0.5, 1, and
1.51. The snapshots clearly show the FM phase (a), the BKT-like phase (b) and (c), and the disordered
phase (d) and (e).

Figure 10. Thermal average of the absolute value of the magnetization, as defined in Equation (8),
for q = 2 (blue) to q = 10 (red) in a 32× 32 lattice. The figure also depicts five stars for q = 9 at the
temperatures where the 2D order parameter is shown in Figure 8 for T = 0.21, 0.27, 0.5, 1, and 1.51. The
values of their absolute magnetization are the average radii of the ring and circular point distributions
shown in Figure 8.

Let us now consider the information content as an independent test to characterize these phase
transitions. We shall concentrate on the simulations for 32× 32 lattices, measuring µ and δ as defined
in the Models and Methods Section.

Figure 11 presents the information content results for the same energy series generated by the
previously described MC algorithm; the case of a 32× 32 lattice for q = 2 was chosen for this report.
The open-squares curve (red) gives the results for mutability, and it presents a local maximum near
T = 2.2, in agreement with the specific heat results (see Figure 5). The solid-circles curve (blue) is
the result for diversity and shows a sharper absolute maximum at T = 2.2. The vertical dashed line
illustrates the temperature 2.269, at which the Onsager solution predicts the transition for an extremely
large system [32]. This is just a reference since our systems are finite and have free boundary conditions,
so they do not correspond well with this theoretical solution.
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Figure 11. Mutability (µ) and diversity (δ) for the energy data for L = 32, q = 2. The vertical dashed
line corresponds to the position of the Onsager solution valid for the thermodynamic limit.

The previous results were obtained from sequences presenting energy data. However, there are
more sensitive parameters associated with states of the system whose sequences present alternatives
which can recognize this phase transition in a better way. These are the cases of the magnetic order
parameters (magnetization, neighbor correlations, site-memory correlation) [25] which we initially
tested and obtained encouraging results. To consider this additional study is beyond the goals of the
present paper, so we will stick to the energy data results analyzed for diversity to directly compare
with the results reported above.

In Figure 12, we present the results for δ in the cases for q = 3, q = 4, q = 6, and q = 8.
The ordinates were multiplied by the appropriate constants to fit a common arbitrary scale since the
meaningful information is in the temperatures that are marked by each maximum or the inflections of
the curves. For q = 3, just one critical temperature is visible and in agreement with the maximum of
the specific heat for this lattice size, as shown in Figure 5. A similar situation is observed for q = 4,
with a maximum at a lower temperature of around 1.1. For q = 6, a maximum of around 1.1 and a
“knee” just over 0.5 are visible, in agreement with the two maxima for this value of q reported in the
figure for specific heat. In the case of q = 8, the maximum near 1.1 is clearly present, although it is a
bit broader than that for q = 6. The “knee” is a barely visible tiny change in slope at T = 0.5.

Figure 12. Diversity δ of the energy data for L = 32, q = 3, q = 4, q = 6, and q = 8.
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The results shown by the previous two figures, as well as similar ones for other intermediate
values of q, show that the information method is able to recognize the transitions present in the clock
model for low values of q when applied to the energy data vectors produced by the MC simulations.
However, the phases are less detectable by this method as q increases.

The previous shortcomings of the information theory method could be due to the system itself
and the way in which the transition is characterized. With respect to the former, it should be noticed
that as q increases, the number of possible configurations increases, the energy intervals decrease, and
the density of states is highly degenerate and tending to a continuum as q→ ∞; to distinguish among
energy values is now increasingly difficult. With respect to the latter, energy is not the best order
parameter to characterize these transitions, and, eventually, different order parameters more oriented
to the recognition of magnetic states of the system (magnetization, site memory, neighbor correlations)
can render better results. At the moment, this is an open question, and it should be addressed in
future work.

4. Conclusions

Using analytically derived expressions and Monte Carlo simulations, we explored the q-state
clock model for square lattices with free boundary conditions which better mimic the properties of
small systems for which this approach is intended. We calculated their thermodynamic properties
and characterized the three magnetic phases present for this model. The corresponding magnetic
phase diagrams were calculated for lattice sizes of up to 64× 64. It turns out that there exists an FM
below a critical temperature T1. For q ≥ 5 and lattice sizes over 10 × 10, a BKT-like phase appears for
temperatures between T1 and a second critical temperature T2, separating this BKT phase from the
disordered paramagnetic phase. The BKT phase reflects partial magnetic ordering characterized by
spin vortex configurations and zones with FM spin–spin correlation, reflecting curling, or wave-like
ordering. The three phases can be well characterized using the spin-lattice average distribution.
This 2D distribution shows characteristic patterns which clearly identify the three (FM, BKT, and
PM) phases.

The entropy of the system always increases with temperature, showing subtle slope changes at
the transition temperatures T1 and T2. The low-temperature limit for the entropy is simply given by
ln(q) in absence of a magnetic field, while it vanishes for any magnetic field that breaks the degeneracy
of the ground state, yielding a singlet as a ground state. On the other hand, the high-temperature
value for entropy tends asymptotically to N ln(q), thus reflecting that all degrees of freedom are
equally probable.

The information theory method produces results that are in agreement with those of the specific
heat of the system. It distinguishes the phase diagram presented in Figure 7 for low values of q,
thus confirming previous results obtained by conventional treatments. However, this recognition is
progressively lost as q increases. This is probably due to the fact that the information recognition
points to the energy values which are shared by increasingly more states as q increases (contribution of
the internal degrees of freedom to the density of states). Eventually, different simulations involving a
more elaborated order parameter are needed to address the slight difference between the BKT phase
and the disordered phase, both with vanishing magnetization. This work is in progress and should
produce results in the near future.
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