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Abstract: In frequentist inference, minimizing the Hellinger distance between a kernel density
estimate and a parametric family produces estimators that are both robust to outliers and statistically
efficient when the parametric family contains the data-generating distribution. This paper seeks to
extend these results to the use of nonparametric Bayesian density estimators within disparity methods.
We propose two estimators: one replaces the kernel density estimator with the expected posterior
density using a random histogram prior; the other transforms the posterior over densities into a
posterior over parameters through minimizing the Hellinger distance for each density. We show that it
is possible to adapt the mathematical machinery of efficient influence functions from semiparametric
models to demonstrate that both our estimators are efficient in the sense of achieving the Cramér-Rao
lower bound. We further demonstrate a Bernstein-von-Mises result for our second estimator,
indicating that its posterior is asymptotically Gaussian. In addition, the robustness properties
of classical minimum Hellinger distance estimators continue to hold.

Keywords: robustness; efficiency; Bayesian nonparametric; Bayesian semi-parametric; asymptotic
property; minimum disparity methods; Hellinger distance; Berstein von Mises theorem

1. Introduction

This paper develops Bayesian analogs of minimum Hellinger distance methods. In particular, we
aim to produce methods that enable a Bayesian analysis to be both robust to unusual values in the
data and to retain their asymptotic precision when a proposed parametric model is correct.

All statistical models include assumptions which may or may not be true of the mechanisms
producing a given data set. Robustness is a desired property in which a statistical procedure is
relatively insensitive to deviations from these assumptions. For frequentist inference, concerns are
largely associated with distributional robustness: the shape of the true underlying distribution deviates
slightly from the assumed model. Usually, this deviation represents the situation where there are some
outliers in the observed data set; see [1] for example. For Bayesian procedures, the deviations may
come from the model, prior distribution, or utility function, or some combination thereof. Much of the
literature on Bayesian robustness has been concerned with the prior distribution or utility function. By
contrast, the focus of this paper is robustness with respect to outliers in a Bayesian context, a relatively
understudied form of robustness for Bayesian models. For example, we know that Bayesian models
with heavy tailed data distributions are robust with respect to outliers for the case of one single location
parameter estimated by many observations. However, as a consequence of the Crámer–Rao lower
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bound and the efficiency of the MLE, modifying likelihoods to account for outliers will usually result in
a loss of precision in parameter estimates when they are not necessary. The methods we propose, and
the study of their robustness properties, will provide an alternative means of making any i.i.d. data
distribution robust to outliers that do not lose efficiency when no outliers are present. We speculate
that they can be extended beyond i.i.d. data as in [2], but we do not pursue this here.

Suppose we are given the task of estimating θ0 ∈ Θ from independent and identically distributed
univariate random variables X1, . . . , Xn, where we assume each Xi has density fθ0 ∈ F = { fθ : θ ∈ Θ}.
Within the frequentist literature, minimum Hellinger distance estimates proceed by first estimating a
kernel density ĝn(x) and then choosing θ to minimize the Hellinger distance h( fθ , gn) = [

∫
{ f 1/2

θ (x)−
ĝ1/2

n (x)}2dx]1/2. The minimum Hellinger distance estimator was shown in [3] to have the remarkable
properties of being both robust to outliers and statistically efficient, in the sense of asymptotically
attaining the information bound, when the data are generated from fθ0 . These methods have been
generalized to a class of minimum disparity estimators, based on alternative measures of the difference
between a kernel density estimate and a parametric model, which have been studied since then,
e.g., [4–8]. While some adaptive M-estimators can be shown to retain both robustness and efficiency,
e.g., [9], minimum disparity methods are the only generic methods we are aware of that retain both
properties and can also be readily employed within a Bayesian context. In this paper, we only consider
Hellinger distance in order to simplify the mathematical exposition; the extension to more general
disparity methods can be made following similar developments to those in [5,7].

Recent methodology proposed in [2] suggested the use of disparity-based methods within
Bayesian inference via the construction of a “disparity likelihood” by replacing the likelihood function
when calculating the Bayesian posterior distribution; they demonstrated that the resulting expected a
posteriori estimators retain the frequentist properties studied above. These methods first obtain kernel
density estimates from data and then calculate the disparity between the estimated density function
and the corresponding density functions in the parametric family.

In this paper, we propose the use of Bayesian non-parametric methods instead of the classical
kernel methods in applying the minimum Hellinger distance method. One method we proposed is just
to replace the kernel density estimate used in classical minimum Hellinger distance estimate by the
Bayesian nonparametric expected a posteriori density, which we denote by MHB (minimum Hellinger
distance method using a Bayesian nonparametric density estimate). The second method combines the
minimum Hellinger distance estimate with the Bayesian nonparametric posterior to give a posterior
distribution of the parameter of interest. This latter method is our main focus. We show that it is more
robust than usual Bayesian methods and demonstrate that it retains asymptotic efficiency, hence the
precision of the estimate is maintained. So far as we are aware, this is the first Bayesian method that
can be applied generically and retain both robustness and (asymptotic) efficiency. We denote it by
BHM (Bayesian inference using a minimum Hellinger distance).

To study the properties of the proposed new methods, we treat both MHB and BMH as special
cases of semi-parametric models. The general form of a semi-parametric model has a natural
parametrization (θ, η) 7→ Pθ,η , where θ ∈ Θ is a Euclidean parameter and η ∈ H belongs to an
infinite-dimensional set. For such models, θ is the parameter of primary interest, while η is a nuisance
parameter. Asymptotic properties of some of Bayesian semi-parametric models have been discussed
in [10]. Our disparity based methods involve parameters in Euclidean space and Hilbert space, with
the former being of most interest. However, unlike many semi-parametric models in which Pθ,η ∈ P
is specified jointly by θ and η, in our case, the finite dimensional parameter and the nonparametric
density functions are parallel specifications of the data distribution. Therefore, standard methods to
study asymptotic properties of semi-parametric models will not apply to the study of disparity-based
methods. Nevertheless, considering the problem of estimating ψ(P) of some function ψ : P 7→ Rd,
where P is the space of the probability models P, semi-parametric models and disparity-based methods
can be unified into one framework.
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The MHB and BMH methods are introduced in detail in Section 2, where we also discuss
some related concepts and results, such as tangent sets, information, consistency, and the specific
nonparametric prior that we employ. In Section 3, both MHB and BMH are shown to be efficient, in the
sense that asymptotically the variance of the estimate achieves the lower bound of the Cramér–Rao
theorem. For MHB, we show that asymptotic normality of the estimate holds, where the asymptotic
variance is the inverse of the Fisher information. For BMH, we show that the Bernstein von Mises
(BvM) theorem holds. The robustness property and further discussion of these two methods are given
in Sections 4 and 5, respectively. A broader discussion is given in Section 6.

2. Minimum Hellinger Distance Estimates

Assume that random variables X1, . . . , Xn are independent and identically distributed (iid) with
density belonging to a specified parametric family F = { fθ : θ ∈ Θ}, where all the fθ in the family
have the same support, denoted by supp( f ). For simplicity, we use Xn to denote the random variables
X1, . . . , Xn. More flexibly, we model Xn ∼ gn, where g is a probability density function with respect to
the Lebesgue measure on supp( f ). Let G denote the collection of all such probability density functions.
If the parametric family contains the data-generating distribution, then g = fθ for some θ. Formally,
we can denote the probability model of the observations in the form of a semi-parametric model
(θ, g) 7→ Pθ,g. We aim at estimating θ and consider g as a nuisance parameter, which is typical of
semi-parametric models.

Let π denote a prior on G , and for any measurable subset B ⊂ G , the posterior probability of
g ∈ B given Xn is

π(B | Xn) =

∫
B ∏n

i=1 g(Xi)π(dg)∫
G ∏n

i=1 g(Xi)π(dg)
.

Let g∗n =
∫

gπ(dg | Xn) denote the Bayesian nonparametric expected a posteriori estimate. Our first
proposed method can be described formally as follows:

MHB: Minimum Hellinger distance estimator with Bayesian nonparametric density estimation:

θ̂1 = argminθ∈Θ h ( fθ , g∗n) . (1)

This estimator replaces the kernel density estimate in the classical minimum Hellinger distance method
introduced in [3] by the posterior expectation of the density function.

For this method, we will view θ̂1 as the value at g∗n of a functional T : G 7→ Θ, which is defined via

‖ f 1/2
T(g) − g1/2‖ = min

t∈Θ
‖ f 1/2

t − g1/2‖ (2)

where ‖ · ‖ denotes the L2 metric. We can also write θ̂1 as T(g∗n).
In a more general form, what we estimate is the value ψ(P) of some functional ψ : P 7→ Rd,

where the P stands for the common distribution from which data are generated, and P is the set of
all possible values of P, which also denotes the corresponding probability model. In the setting of
minimum Hellinger distance estimation, the model P is set as F × G , P can be specified as Pθ,g, and
ψ(P) = ψ(Pθ,g) = θ. For the methods we proposed in this paper, we will focus on the functional
T : G 7→ Θ, for a given F , as defined above. Note that the constraint associated with the family F is
implicitly applied by T.

Using functional T, we can also propose a Bayesian method, which assigns nonparametric prior
on the density space and gives inference on the unknown parameter θ of a parametric family as follows:

BMH: Bayesian inference with minimum Hellinger distance estimation:

π(θ | Xn) = π(T(g) | Xn). (3)
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A nonparametric prior π on the space G and the observation Xn leads to the posterior distribution
π(g | Xn), which can then be converted to the posterior distribution of the parameter θ ∈ Θ through
the functional T : G 7→ Θ.

In the following subsections, we discuss properties associated with the functional T as well as the
consistency of MHB and BHM, and we provide a detailed example of the random histogram prior that
we will employ and its properties that will be used for the discussion of efficiency in Section 2.1.

2.1. Tangent Space and Information

In this subsection, we obtain the efficient influence function of the functional T on the linear span
of the tangent set on g0 and show that the local asymptotic normality (LAN) expansion related to the
norm of the efficient influence function attains the Caramér–Rao bound. These results play important
roles in showing that BvM holds for the BMH method in the next section.

Estimating the parameter by T(g) under the assumption g ∈ G uses less information than
estimating this parameter for g ∈ G ∗ ⊂ G . Hence, the lower bound of the variance of T(g) for g ∈ G

should be at least the supremum of the lower bounds of all parametric sub-models G ∗ = {Gλ : λ ∈
Λ} ⊂ G .

To use mathematical tools such as functional analysis to study the properties of the proposed
methods, we introduce some notations and concepts below. Without loss of generality, we consider
one-dimensional sub-models G ∗, which pass through the “true” distribution, denoted by G0 with
density function g0. We say a sub-model indexed by t, {gt : 0 < t < ε} ⊂ G , is differentiable in
quadratic mean at t = 0 if we have that, for some measurable function q : supp(g0) 7→ R,

∫ [dG1/2
t − dG1/2

0
t

− 1
2

qdG1/2
0

]2

→ 0 (4)

where Gt is the cumulative distribution function associated with gt. Functions q(x)s are known as the
score functions associated with each sub-model. The collection of these score functions, which is called
a tangent set of the model G at g0 and denoted by Ġg0 , is induced by the collection of all sub-models
that are differentiable at g0.

We say that T is differentiable at g0 relative to a given tangent set Ġg0 , if there exists a continuous
linear map Ṫg0 : L2(G0) 7→ R such that for every q ∈ Ġg0 and a sub-model t 7→ gt with score function q,
there is

T(gt)− T(g0)

t
→ Ṫg0 q (5)

where L2(G0) = {q : supp(g0) 7→ R,
∫

q2(x)g0(x)dx < ∞}. By the Riesz representation theorem
for Hilbert spaces, the map Ṫg0 can always be written in the form of an inner product with a fixed
vector-valued, measurable function T̃g0 : supp(g0) 7→ R,

Ṫg0 q = 〈T̃g0 , q〉G0 =
∫

T̃g0 qdG0.

Let T̃g0 denote the unique function in linĠg0 , the closure of the linear span of the tangent set. The
function T̃g0 is the efficient influence function and can be found as the projection of any other “influence
function” onto the closed linear span of the tangent set.

For a sub-model t 7→ gt whose score function is q, the Fisher information about t at 0 is G0q2 =∫
q2dG0. In this paper, we use the notation Fg to denote

∫
gdF for a general function g and distribution

F. Therefore, the “optimal asymptotic variance” for estimating the functional t 7→ T(gt), evaluated at
t = 0, is greater than or equal to the Caramér–Rao bound

(dT(gt)/dt)2

G0q2 =
〈T̃g0 , q〉2G0

〈q, q〉G0

.



Entropy 2018, 20, 955 5 of 20

The supremum of the right-hand side (RHS) of the above expression over all elements of the tangent
set is a lower bound for estimating T(g) given model G , if the true model is g0. The supremum can be
expressed in the norm of the efficient influence function T̃g0 by Lemma 25.19 in [11]. The lemma and
its proof is quite neat, and we reproduce it here for the completeness of the argument.

Lemma 1. Suppose that the functional T : G 7→ R is differentiable at g0 relative to the tangent set Ġg0 . Then

sup
q∈lin ˙Gg0

〈T̃g0 , q〉2G0

〈q, q〉G0

= G0T̃2
g0

.

Proof. This is a consequence of the Cauchy–Schwarz inequality (G0T̃g0 q)2 ≤ G0T̃2
g0

G0q2 and the fact
that, by definition, the efficient influence function, T̃g0 , is contained in the closure of linĠG0 .

Now we show that functional T is differentiable under some mild conditions and construct its
efficient influence function in the following theorem.

Theorem 1. For the functional T defined in Equation (2), and for t ∈ Θ ⊂ R, let st(x) denote f 1/2
θ (x) for

θ = t. We assume that there exist ṡt(x) and s̈t(x) both in L2, such that for α in a neighborhood of zero,

st+α(x) = st(x) + αṡt(x) + αuα(x) (6)

ṡt+α(x) = ṡt(x) + αs̈t(x) + αvα(x), (7)

where uα and vα converge to zero as α→ 0. Assuming T(g0) ∈ int(Θ), the efficient influence function of T is

T̃g0 =

(
−
[∫

s̈T(g0)
(x)g

1
2
0 (x)dx

]−1
+ at

)
ṡT(g0)

(x)

2g
1
2 (t)
0

(8)

where at converges to 0 as t→ 0. In particular, for g0 = fθ ,

T̃fθ
=

(
−
[∫

s̈θ(x)sθ(x)dx
]−1

+ at

)
ṡθ(x)

2sθ(x)
. (9)

Proof. Let the t-indexed sub-model be

gt := (1 + tq(x))g0(x)

where q(x) satisfies
∫

q(x)g0(x)dx = 0 and q ∈ L2(g0). By direct calculation, we see that q is the score
function associated with such a sub-model at t = 0 in the sense of Equation (4) and thus the collection
of q is the maximal tangent set.

By the definition of T, T(g0) maximizes
∫

st(x)g1/2
0 (x)dx. From Equation (6), we have that

limα→0α−1
∫
[st+α(x)− st(x)]g1/2

0 (x)dx =
∫

ṡt(x)g1/2
0 (x)dx. (10)

Since T(g0) ∈ int(Θ), we have that ∫
ṡT(g0)

(x)g1/2
0 (x)dx = 0. (11)

Similarly,
∫

ṡT(gt)(x)g1/2
t (x)dx = 0. Using Equation (7) to substitute ṡT(gt), we have that

0 =
∫
[ṡT(g0)

(x) + s̈T(g0)
(x)(T(gt)− T(g0)) + vt(x)(T(gt)− T(g0))]g1/2

t (x)dx
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where vt(x) converge in L2 to zero as t→ 0 since T(gt)→ T(g0). Thus,

lim
t→0

1
t
[T(gt)− T(g0)]

= − lim
t→0

1
t

[∫
(s̈T(g0)

(x) + vt(x))g
1
2
t (x)dx

]−1 ∫
ṡT(g0)

(x)g1/2
t (x)dx

= lim
t→0

1
t

(
−
[∫

(s̈T(g0)
(x))g

1
2
0 (x)dx

]−1
+ at

) ∫
ṡT(g0)

(x)(g
1
2
t (x)− g

1
2
0 (x))dx

=

(
−
[∫

(s̈T(g0)
(x))g

1
2
0 (x)dx

]−1
+ at

) ∫ ṡT(g0)
(x)

2g
1
2
0 (x)

q(x)g0(x)dx.

Since by the definition of T̃, which requires
∫

T̃g0 g0(x)dx = 0, we have that

T̃g0 =

(
−
[∫

s̈T(g0)
(x)g

1
2
0 (x)dx

]−1
+ at

) ṡT(g0)
(x)

2g
1
2
0 (x)

−
∫ ṡT(g0)

(x)
2

g
1
2
0 (x)dx


=

(
−
[∫

s̈T(g0)
(x)g

1
2
0 (x)dx

]−1
+ at

)
ṡT(g0)

(x)

2g
1
2
0 (x)

.

By the same argument we can show that, when g0 = fθ , Equation (9) holds.

Some relatively accessible conditions under which Equations (6) and (7) hold are given by
Lemmas 1 and 2 in [3]. We do not repeat them here.

Now we can expand T at g0 as

T(g)− T(g0) = 〈
g− g0

g0
, T̃g0〉G0 + r̃(g, g0) (12)

where T̃ is given in Theorem 1 and r̃ = 0.

2.2. Consistency of MHB and BMH

Since T(g) may have more than one value, the notation T(g) is used to denote any arbitrary one of
the possible values. In [3], the existence, continuity in Hellinger distance, and uniqueness of functional
T are ensured under the following condition:

A1 (i) Θ is compact, (ii) θ1 6= θ2 implies fθ1 6= fθ2 on a set of positive Lebesgue measures, and (iii), for
almost every x, fθ(x) is continuous in θ.

When a Bayesian nonparametric density estimator is used, we assume the posterior consistency:
A2 For any given ε > 0, π{g : h(g, fθ0) > ε | Xn} → 0 in probability.

Under Conditions A1 and A2, consistency holds for MHB and BMH.

Theorem 2. Suppose that Conditions A1 and A2 hold, then

1. ‖g∗1/2
n − f 1/2

θ0
‖2 → 0 in probability, T(g∗n)→ T( fθ0) in probability, and hence θ̂1 → θ0 in probability;

2. For any given ε > 0, π(|θ − θ0| > ε | Xn)→ 0 in probability.
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Proof. Part 1: To show that ‖g∗1/2
n − f 1/2

θ0
‖2 → 0 in probability, which is equivalent to

showing that
∫ (∫

gπ(dg | Xn)1/2 − f 1/2
θ0

)2
dx → 0 in probability, it is sufficient to show that∫ ∣∣∫ gπ(dg | Xn)− fθ0

∣∣ dx → 0 in probability, since h2( f , g) ≤ ‖ f − g‖1. We have that

∫ ∣∣∣∣∫ gπ(dg | Xn)− fθ0

∣∣∣∣ dx =
∫ ∣∣∣∣∫ (g− fθ0)π(dg | Xn)

∣∣∣∣ dx

≤
∫ ∫ ∣∣g− fθ0

∣∣π(dg | Xn)dx

=
∫ ∫ ∣∣g− fθ0

∣∣ dxπ(dg | Xn)

≤
∫ √

2h(g, fθ0)π(dg | Xn).

Note that the change of order of integration is due to Fubini’s theorem and the last inequality is due to
‖ f − g‖1 ≤

√
2h( f , g). Split the integral on the right-hand side of the above expression into two parts:∫

A

√
2h(g, fθ0)π(dg | Xn) +

∫
A c

√
2h(g, fθ0)π(dg | Xn)

where A = {g : h(g, fθ0) ≤ ε} for any given ε > 0. The first term is bounded by ε by construction.
By Condition A1, the posterior of measure of A c to 0 in probability as n→ ∞. Since Hellinger distance
is bounded by 2, so does the second term above. This completes the proof for ‖g∗1/2

n − f 1/2
θ0
‖2 → 0

in probability.
To show T(g∗n)→ T( fθ0) and θ̂1 → θ0 in probability, we need that the functional T is continuous

and unique at fθ0 , which is proved by Theorem 1 in [3] under Condition A1.
Part 2: By Condition A1 and Theorem 1 in [3], the functional T is continuous and unique at

fθ0 . Hence, for any given ε > 0, there exist δ > 0 such that |T(g)− T( fθ0)| < ε when h(g, fθ0) < δ.
By Condition A2, we have that π(h(g, fθ0) < δ) → 1, which implies that π(|θ − θ0| < ε) → 1
in probability.

It should be noted that, if we change the ε in Condition A2 to εn, a sequence converging to 0, then
we can apply the results for the concentration rate of the Bayesian nonparametric density estimation
here. However, such an approach cannot lead to the general “efficiency” claim, no matter in the
form of rate of concentration or asymptotic normality. There are two reasons for this. First, the rate
of concentration for Bayesian nonparametric posterior is about n−2/5 for a rather general situation
and (log n)a × n−1/2, where a > 0, for some special cases (see [12–14]). This concentration rate
is not sufficient in many situations to directly imply that the concentration of the corresponding
parametric estimates achieves the lower bound of the variance given in the Cramér–Rao theorem.
Second, the Hellinger distances between pairs of densities as functions of parameters vary among
different parametric families. Therefore, obtaining the rate of concentration in parameters from the
rate of convergence in the densities cannot be generally applied to different distribution families.

It should also be noted that, although Θ is required to be compact in Condition A1, Theorem 2 is
useful for a Θ that is not compact, as long as the parametric family fθ : θ ∈ Θ can be re-parameterized
where the space of new parameters can be embedded within a compact set. An example of
re-parameterizing a general location-scale family with parameters µ ∈ R and σ ∈ R+ to a family
with parameters t1 = tan−1(µ) and t2 = tan−1(σ), where Θ(t1,t2)

= (−π/2, π/2) × (0, π/2) and
Θ ⊂ Θ̄ = [−π/2, π/2]× [0, π/2], is discussed in [3], and the conclusions of Theorem 1 in [3] is still
valid for a location-scale family. Therefore, Theorem 2 remains valid for the same type of the families,
whose parameter space may not be compact and for the same reasons; the compactness requirement
stated in the theorem is mainly for mathematical simplicity.
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2.3. Prior on Density Functions

We introduce a random histogram as an example for priors used in Bayesian nonparametric
density estimation. It can be seen as a simplified version of a Dirichlet process mixture (DPM) prior,
which is commonly used in practice. Both DPM and random histogram are mixture densities. While
DPM uses a Dirichlet process to model the weights within an infinite mixture of kernels, the random
histogram prior only has a finite number of components. Another difference is that, although we
specify the form of the kernel function for DPM, the kernel function could be any density function in
general, while the random histogram uses only the uniform density as its mixing kernel. Nevertheless,
the limit on the finite number of the mixing components is not that important in practice, since the
Dirichlet process will always be truncated in computation. In the next section, we will verify that the
random histogram satisfies the conditions that are needed for our proposed methods to be efficient.
On the other hand, although we believe that DPM should also lead to efficiency, the authors are
unaware of the theoretical results or tools required to prove it. This is mostly due to the flexibility of
DPM, which in turn significantly increases the mathematical complexity of the analysis.

For any k ∈ N, denote the set of all regular k bin histograms on [0, 1] by Hk = { f ∈ L2([0, 1]) :
m(x) = ∑k

j=1 f j1lIj(x), f j ∈ R, j = 1, . . . , k}, where Ij = [(j− 1)/k, j/k). Denote the unit simplex in

Rk by Sk = {ω ∈ [0, 1]k : ∑k
j=1 ωj = 1}. The subset of Hk, H 1

k = { f ∈ L2(R), f (x) = fω,k =

k · ∑k
j=1 ωj1lIj(x), (ω1, . . . , ωk) ∈ Sk}, denotes the collection of densities on [0, 1] in the form of

a histogram.
The set Hk is a closed subset of L2[0, 1]. For any function f ∈ L2[0, 1], denote its projection in the

L2 sense on Hk by f[k], where f[k] = k ∑k
j=1 1lIj

∫
Ij

f .

We assign priors on H 1
k via k and (ω1, . . . , ωk) for each k. A degenerate case is to let k = Kn = o(n).

Otherwise, let pk be a distribution on positive integers, where

k ∼ pk, e−b1k log(k) ≤ pk(k) ≤ e−b2k log(k) (13)

for all k large enough and some 0 < b1 < b2 < ∞. For example, Condition (13) is satisfied by the
Poisson distribution, which is commonly used in Bayesian nonparametric models.

Conditionally on k, we consider a Dirichlet prior on ω = {ω1, . . . , ωk}:

ω ∼ D(α1,k, . . . , αk,k), c1k−a ≤ αj,k ≤ c2 (14)

for some fixed constants a, c1, c2 > 0 and any 1 ≤ j ≤ k. For posterior consistency, we need the
following condition:

sup
k∈Kn

k

∑
j=1

αj,k = o(
√

n) (15)

where Kn ⊂ {1, 2, . . . , bn/(log n)2c}.
The consistency result of this prior is given by Proposition 1 in the supplement to [15]. For

n ≥ 2, k ≥ 1, M > 0, let
An,k(M) = {g ∈H 1

k , h(g, g0,[k])} < Mεn,k (16)

where ε2
n,k = k log n/n denote a neighborhood of g0,[k], and we have that

• (a) there exist c, M > 0 such that

P0

[
∃k ≤ n

log n
; π[g /∈ An,k(M) | Xn, k] > e−ck log n

]
= o(1). (17)
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• (b) Suppose g0 ∈ C β with 0 < β ≤ 1, if kn(β) = (n log n)1/(2β+1) and εn(β) = kn(β)−β, then, for
k1 and a sufficiently large M,

π[h(g0, g) ≤ Mεn(β); k ≤ k1kn(β) | Xn] = 1 + op(1), (18)

where C β denotes the class of β-Hölder functions on [0, 1].

This means that the posterior of the density function concentrates around the projection g0[k] of g0 and
around g0 itself in terms of the Hellinger distance. We can easily conclude that π(Kn | Xn) = 1 + o(1)
from Equation (18) for g0 ∈ C β.

It should be noted that, although the priors we defined above are on the densities on [0, 1], this
is for mathematical simplicity, which could easily be extended to the space of probability densities
on any given compact set. Further, transformations of Xn, similar to those discussed at the end of
Section 2.2, can extend the analysis to the real line (refer to [3,16] for more example and details).

3. Efficiency

We say that both MHB and BMH methods are efficient if the lower bound of the variance of the
estimate, in the sense of Cramèr and Rao’s theorem, is achieved.

3.1. Asymptotic Normality of MHB

Consider the maximal tangent set at g0, which is defined as HT = {q ∈ L2(g0),
∫

qg0 = 0}.
Denote the inner product onHT by 〈q1, q2〉L =

∫
q1q2g0, which induces the L-norm as

‖g‖2
L =

∫ 1

0
(g− G0g)2g0. (19)

Note that the inner product 〈·, ·〉L is equivalent to the inner product introduced in Section 2.1, and the
induced L-norm corresponds to the local asymptotic normality (LAN) expansion. Refer to [17] and
Theorem 25.14 in [11] for more details.

With functional T and priors on g defined in the previous section, Theorem 3 shows that the MHB
method is efficient when the parametric family contains the true model.

Theorem 3. Let two priors π1 and π2 be defined by Equations (13)–(14) and let a prior on k be either a Dirac
mass at k = Kn = n1/2(log n)−2 for π1 or k ∼ πk given by Equation (13) for π2. Then the limit distribution
of n1/2[T(g∗n)− T(g0)] under g0 as n→ ∞ is Norm(0, ‖T̃g0‖2

L), where ‖T̃g0‖2
L = I(θ0)

−1 when g0 = fθ0 .

Proof. To prove this result, we verify Lemma 25.23 in [11], which is equivalent to showing that

√
n(T(g∗n)− T(g0)) =

1√
n

n

∑
i=1

T̃g0(Xi) + op(1).

By the consistency result provided for priors π1 and π2 in the previous section, we consider only
g∗n ∈ An,k for an n that is sufficiently large. Then by Equation (12) we have that

√
n(T(g∗n)− T(g0)) =

√
n
〈

g∗n − g0

g0
, T̃g0

〉
L
+ op(1).

Therefore, showing

√
n
∫ 1

0
(g∗n(x)− g0(x))T̃g0(x)dx =

1√
n

n

∑
i=1

T̃g0(Xi) + op(1)



Entropy 2018, 20, 955 10 of 20

will complete the proof. Due to
∫ 1

0 g0(x)T̃g0(x)dx = 0, we now need to show that
∫ 1

0 g∗n(x)T̃g0(x)dx =

(1/n)∑n
i=1 T̃g0(Xi) + op(1). By the law of large numbers, we have that 1

n ∑n
i=1 T̃g0(Xi) − G0T̃g0 =

op(1), and
∫ 1

0 g∗n(x)T̃g0(x)dx− G0T̃g0 = op(1) due to the posterior consistency demonstrated above.
Therefore, we have that

1
n

n

∑
i=1

T̃g0(Xi)−
∫ 1

0
g∗n(x)T̃g0(x)dx

=
1
n

n

∑
i=1

T̃g0(Xi)−
∫ 1

0
g∗n(x)T̃g0(x)dx +

∫ 1

0
g∗n(x)T̃g0(x)dx− G0T̃g0

= op(1).

3.2. The Bernstein von Mises Theorem for BMH

Theorem 2.1 in [15] yielded a general result and approach to show that the BvM Theorem holds
for smooth functionals in some semi-parametric models. The theorem shows that, under the continuity
and consistency condition, the moment generating function (MGF) of the parameter endowed with a
posterior distribution can be calculated approximately through the local asymptotic normal (LAN)
expansion, and its convergence to an MGF of some normal random variable can then be shown under
some assumptions on the statistical model.

We will show that the BvM theorem holds for the BMH Method via Theorem 4. The result also
shows that the approach given in [15] can be applied not only to simple examples but also to relatively
complicated frameworks. To prove it, we introduced Lemma 2, which is modified from Proposition 1
in [15], the proof of which was not given explicitly in the original paper.

For mathematical simplicity, we assume that the true density fθ0 belongs to the set F , which is
restricted to the space of all densities that are bounded away from 0 and ∞ on [0, 1]. As noted above,
the compactness of the domain can be relaxed by considering transformations of the parameters and
random variables.

To state the lemma, we need several more notations. Assume that the functional T satisfies
Equation (12) with bounded efficient influence function T̃g0 6= 0. We denote T̃g0 by T̃, where T̃[k]
denotes the projection of T̃ on Hk. For k ≥ 1, let

T̂k = T(g0[k]) +
GnT̃[k]√

n
, Vk = ‖T̃[k]‖2

L

T̂ = T(g0) +
GnT̃√

n
, V = ‖T̃‖2

L (20)

and denote

Gn(g) = Wn(g) =
1√
n

n

∑
i=1

[g(xi)− G0(g)]. (21)

Lemma 2. Let g0 belong to G , let the prior π be defined as in Section 2.3, and let Conditions (13, 14, 15) be
satisfied. Consider estimating a functional T(g), differentiable with respect to the tangent set HT := {q ∈
L2(g0),

∫
[0,1] qg0 = 0} ⊂ H = L2(g0), with efficient influence function T̃g0 bounded on [0, 1], and with r̃

defined in Equation (12), for Kn as introduced in Equation (15). If

max
k∈Kn

∣∣∣‖T̃[k]‖2
L − ‖T̃‖2

L

∣∣∣ = op(1) (22)

max
k∈Kn

Gn(T̃[k] − T̃) = op(1) (23)
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sup
k∈Kn

sup
g∈An,k(M)

√
nr̃(g, g0) = op(1) (24)

for any M > 0 and An,k(M) defined as in (16), as n→ ∞, and

max
k∈Kn

√
n
∣∣∣∣∫ (T̃ − T̃[k])(g− g0)

∣∣∣∣ = o(1), (25)

then the BvM theorem for the functional T holds.

Proof. To show that BvM holds is to show that the posterior distribution converges to a normal
distribution. If we have that

π[
√

n(T − T̂k) ≤ z | Xn] = ∑
k∈Kn

π[k | Xn]π
[√

n(T − T̂) ≤ z +
√

n(T̂ − T̂k) | Xn, k
]
+ op(1)

= ∑
k∈Kn

π[k | Xn]Φ
(

z +
√

n(T̂ − T̂k)√
Vk

)
+ op(1), (26)

then the proof will be completed by showing that the RHS of Equation (26) reduces from the mixture
of normal to the target law N(0, V).

By Condition (22), we have that Vk goes to V uniformly for k ∈ Kn. Due to the definition of T̃ and
the Lemma 4 result (iii) in the supplement of [15], we have that

√
n(T̂ − T̂k) =

√
n
(

T(g0)− T(g[k])
)
+Gn(T̃ − T̃[k])

=
√

n
∫

T̃(g0[k] − g0) +Gn(T̃[k] − T̃) + op(1)

=
√

n
∫
(T̃ − T̃[k])(g0[k] − g0) +Gn(T̃[k] − T̃) + op(1).

By Conditions (25) and (23), the last line converges to 0 uniformly for k ∈ Kn.
Therefore, showing that for any given k, Equation (26) holds will complete the proof. We prove

this by showing that the MGF (Laplace transformation) of the posterior distribution of the parameter of
interest converges to the MGF of some normal distribution, which implies that the posterior converges
to the normal distribution weakly by Lemmas 1 and 2 in supplement to [15] or Theorem 2.2 in [18].

First, consider the deterministic k = Kn case. We calculate the MGF as

E[et
√

n(T(g)−T̂(g0[k])) | Xn, An] =

∫
An

et
√

n(T(g)−T̂(g0[k]))+ln(g)−ln(g0[k])dπ(g)∫
An

eln(g)−ln(g0[k])dπ(g)
(27)

where ln(g) is the log-likelihood for given g and Xn. Based on the LAN expansion of the log-likelihood
and the smoothness of the functional, the exponent in the numerator on the RHS of the equation can
be transformed with respect to T̄(k) = T̃[k] −

∫
T̃[k]g0[k]

t
√

n(T(g)− T̂k) + ln(g)− ln(g0[k])

= t
√

n

(
T(g)− T(g0[k])−

GnT̃[k]√
n

)
+ ln(g)− ln(g0[k])

= t
√

n

(〈
log

g
g0[k]

−
∫

log
g

g0[k]
g0[k], T̄[k]

〉
L

+B(g, g0[k]) + r̃(g, g0[k])−
GnT̄[k]√

n

)

−1
2

∥∥∥∥∥√n log
g

g0[k]

∥∥∥∥∥
2

L

+ Wn

(
√

n log
g

g0[k]

)
+ Rn,k(g, g0[k])
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where B(g, g0) =
∫ 1

0 [log(g/g0)− (g− g0)/g0](x)T̃g0(x)g0(x)dx. Note that Gn = Wn and add a term
of (t2/2)‖T̄(k)‖2

L. Re-arranging the RHS expression above, we have

t
√

n(T(g)− T̂k) + ln(g)− ln(g0,[k])

= −n
2

∥∥∥∥∥log
g

g0[k]
− t√

n
T̄(k)

∥∥∥∥∥
2

L,k

+
√

nWn

(
log

g
g0[k]

− t√
n

T̄(k)

)

+
t2

2
‖T̄(k)‖2

L,k + t
√

nBn,k + Rn,k(g, g0[k]) + r̃(g, g0[k])

= −n
2

∥∥∥∥∥∥log
ge−

t√
n T̄(k)

g0[k]

∥∥∥∥∥∥
2

L,k

+
√

nWn

log
ge−

t√
n T̄(k)

g0[k]

+
t2

2
‖T̄(k)‖2

L,k

+t
√

nBn,k + Rn,k(g, g0[k]) + r̃(g, g0[k]).

This is because the cross term in calculating the first term in the second line above is equal to the inner
product term in the equation above it.

Let gt,k = ge−
t√
n T̄(k)/Ge−

t√
n T̄(k) , the RHS of the above equation can be written as

t2

2
‖T̄(k)‖2

L,k + ln(gt,k)− ln(g0[k]) + o(1). (28)

Substituting the corresponding terms on the RHS of Equation (27) by (28), we have that

E[et
√

n(T(g)−T̂(g0[k])) | Xn, An] = e(t
2/2)‖T̄(k)‖2

L,k+o(1) ×

∫
An,k

eln(gt,k)−ln(g0[k])dπk(g)∫
An,k

eln(g)−ln(g0[k])dπk(g)
. (29)

Notice that the integration in the denominator of the second term is an expectation based on a Dirichlet
distribution on ω as described in Equation (14) and that gt,k = k ∑k

j=1 ζ j1lIj , where

ζ j =
ωjγ

−1
j

∑k
j=1 ωjγ

−1
j

(30)

with γj = etT̄j/
√

n and T̄j := k
∫

Ij
T̄(k). Let Sγ−1(ω) = ∑k

j=1 ωjγ
−1
j , by (30). We then have S−1

γ (ζ) =

Sγ−1(ω). Now using these notations,

∫
An,k

eln(gt,k)−ln(g0[k])dπk(g)∫
An,k

eln(g)−ln(g0[k])dπk(g)
=

∫
An,k

eln(gt,k)−ln(g0[k]) ∏k
j=1 ω

αj,k−1
j /B(α)dω∫

An,k
eln(g)−ln(g0[k]) ∏k

j=1 ω
αj,k−1
j /B(α)dω

=

∫
An,k

e
ln(k ∑k

j=1

ωjγ−1
j

∑k
j=1 ωjγ−1

j
1lIj

)−ln(g0[k])

∏k
j=1 ω

αj,k−1
j dω∫

An,k
e

ln(k ∑k
j=1 ωj1lIj

)−ln(g0[k]) ∏k
j=1 ω

αj,k−1
j dω

(31)

=

∫
An,k

e
ln(k ∑k

j=1 ζ j1lIj
)−ln(g0[k])∆ζ ∏k

j=1[γjζ jS−1
γ (ζ)]αj,k−1dζ∫

An,k
e

ln(k ∑k
j=1 ωj1lIj

)−ln(g0[k]) ∏k
j=1 ω

αj,k−1
j dω

where ∆ζ = S−k
γ (ζ)∏k

j=1 γj is the Jacobian of the change of variable, (ω1, . . . , ωk−1)→ (ζ1, . . . , ζk−1),

which is given in Lemma 5 in supplement of [15], and B(α) = ∏k
i=1 Γ(αi)/Γ(∑k

i=1 αi) is the constant
for normalizing Dirichlet distribution.
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Notice that, over the set An,k,

k

∏
j=1

[γjS−1
γ (ζ)]αj,k−1∆ζ = Sγ(ζ)

−∑k
j=1 αj,k γ

∑k
j=1 αj,k

j

= Sγ(ζ)
−∑k

j=1 αj,k et ∑k
j=1 aj,k T̄j/

√
n (32)

= et ∑k
j=1 αj,k T̄j/

√
n
(

1− t√
n

∫ 1

0
T̄(k)(g− g0) + O(n−1)

)∑k
j=1 αj,k

,

since

Sγ−1(ω) =
∫ 1

0
e−tT̄(k)(x)/

√
ng[k](x)dx = 1− t√

n

∫ 1

0
T̄(k)(g[k] − g0) + O(n−1)

by Taylor’s expansion. Expression (32) converges to 1 under Condition (15), so Expression (31)
converges to ∫

An,k
e

ln(k ∑k
j=1 ζ j1lIj

)−ln(g0[k]) ∏k
j=1 ζ

αj,k−1
j /B(αk)dζ∫

An,k
e

ln(k ∑k
j=1 ωj1lIj

)−ln(g0[k]) ∏k
j=1 ω

αj,k−1
j /B(αk)dω

(33)

since, when ‖ω−ω0‖1 ≤ M
√

k log n/
√

n,

‖ζ −ω0‖1 ≤ ‖ω−ω0‖1 + ‖ω− ζ‖1 =
M
√

k log n + 2|t|‖T̃‖∞√
n

≤ (M + 1)

√
k log n√

n

and, vice versa, when ‖ζ −ω0‖1 ≤ M
√

k log n/
√

n,

‖ω−ω0‖1 ≤ ‖ω− ζ‖1 + ‖ω0 − ζ‖1 =
M
√

k log n + 2|t|‖T̃‖∞√
n

≤ (M + 1)

√
k log n√

n
.

Choosing M, such that

π
[
‖ω−ω0‖1 ≤ (M + 1)

√
k log n | Xn, k

]
= 1 + op(1), (34)

Expression (33) equals 1 + op(1). Notice that ‖T̄(k)‖L,k = ‖T̃[k]‖L. We then have that

Eπ
[
et
√

n(T(g)−T̂k) | Xn, An,k

]
= et2‖T̃[k]‖2

L
(
1 + op(1)

)
, (35)

which completes the proof for a fixed k case.
For a random k case, the proof will follow the same steps as the corresponding part in the proof

for Theorem 4.2 in [15]. For completeness, we briefly sketch the proof here. Since k is not fixed, we
will calculate Eπ [et

√
n(T( f )−T̂k) | Xn] on Bn =

⋃
1≤k≤n An,k

⋂{ f = fω,k, k ∈ Kn}. Consider Kn a subset
of {1, 2, . . . , n/ log2 n} such that π(Kn | Xn) = 1 + op(1) by the concentration property (a) of the
random histogram, we have that π[Bn | Xn] = 1 + op(1). We rewrite the left-hand side (LHS) of

Equation (35) as Eπ [et
√

n(T( f )−T̂k) | Xn, Bn,k], which is also equal to et2‖T̃[k]‖2
L(1+ op(1)). Notice that o(1)

in this expression is uniform in k. This is because it holds in the proof for a deterministic case for any
given k < n. Therefore,

Eπ
[
et
√

n(T( f )−T̂) | Xn, Bn

]
= ∑

k∈Kn

Eπ
[
et
√

n(T( f )−T̂k)+T̂k)−T̂) | Xn, An,k, k
]

π[k | Xn]

= (1 + o(1)) ∑
k∈Kn

et2Vk/2+t
√

n(T̂k−T̂)π[k | Xn].
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Using Equations (23) and (25) together with the continuous mapping theorem for the exponential
function yields that the last display converges in probability to et2V/2 as n → ∞, which completes
the proof.

The following theorem shows that Method 2 is efficient, the proof of which consists in verifying
that the conditions in the above lemma are satisfied.

Theorem 4. Suppose g0 ∈ C β with β > 0. Let the prior on k be either a Dirac mass at k = Kn =

n1/2(log n)−2 or k ∼ πk given by (13), and let two priors π1 and π2 be defined by (14) and satisfy (13). Then,
for all β > 1/2, the BvM holds for T( f ) for both π1 and π2.

Proof. For T( f ) such that Equation (12) is satisfied, Condition (24) is satisfied obviously.
For Equation (23), the empirical process Gn(T̃[k] − T̃) is controlled and will converge to 0 by

applying Lemma 19.33 in [11].
Condition (25) is satisfied by Lemma 3 below.
Now we show that Equation (22) holds:

‖T̃f ‖2
L − ‖T̃[k]‖2

L ≤
∣∣∣∣∣
∫

ṡT( f )(x)dx−
∫ ṡT( f[k](x)) f (x)

f[k](x)
dx

∣∣∣∣∣
.

∣∣∣∣∫ ṡT( f )(x) f[k](x)− ṡT( f [k])(x) f (x)
∣∣∣∣

=

∣∣∣∣∫ ṡT( f[k])(x)[ f[k](x)− f (x)]
∣∣∣∣

.
∫
| f[k](x)− f (x)|dx.

The last equality is based on Conclusion (3) in Lemma 4 in [19], and the last inequality is due to the
assumption that T̃ is bounded. Then the last term is controlled by h( f , fn), which completes the proof.

Lemma 3. Under the same conditions as in Theorem 4, Equation (25) holds.

Proof. Since T̃ =

(
−
[∫

s̈T(g0)
(x)g

1
2
0 (x)dx

]−1
+ at

)
ṡT(g0)

(x)

2g
1
2
0 (x)

, under the deterministic k-prior with

k = Kn = n1/2(log n)−2 and β > 1/2,∣∣∣∣∫ (T̃ − T̃[k])(g0 − g0[k])

∣∣∣∣ . h2(g0, g0[k]) = o(1/
√

n).

For the random k-prior, since we restrict g to be bounded from above and below, so the Hellinger and
L2-distances considered are comparable. For a given k ∈ Kn, by definition, there exists g∗k ∈ H

1
k with

h(g0, g∗k ) ≤ Mεn(β), so

h2(g0, g0[k]) .
∫
(g0 − g0[k])

2 ≤
∫
(g0 − g∗k )

2 . h2(g0, g∗k ) . ε2
n(β),

which completes the proof.

4. Robustness Properties

In frequentist analysis, robustness is usually measured by the influence function and breakdown
point of estimators. These have been used to study robustness in minimum Hellinger distance
estimators in [3] and in more general minimum disparity estimators in [2,7].
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In Bayesian inference, robustness is labeled “outlier rejection” and is studied under the framework
of the “theory of conflict resolution”. There is a large literature on this topic, e.g., [20–22]. While the
results of [22] are only about symmetric distributions, [23] provides corresponding results covering a
wider class of distributions with tails in the general exponential power family. These results provide a
complete theory for the case of many observations and a single location parameter.

We examine the behavior of the methods MHB and BMH under a mixture model for gross
errors. Let δz denote the uniform density of the interval (z− ε, z + ε), where ε > 0 is small, and let
fθ,α,z = (1− α) fθ + αδz, where θ ∈ Θ and α ∈ [0, 1)] and z is a real number. The density fθ,α,z models a
situation, where 100(1− α)% observations are distributed from fθ , and 100α% of the observations are
the gross errors located near z.

Theorem 5. For every α ∈ (0, 1) and every θ ∈ Θ, denote the mixture model for gross errors by fθ,α,z. We then
have that limz→∞limn→∞T(g∗n) = θ, under the assumptions of Theorem 3 and that, for the BMH method,
π(T(g) | Xn) → φ(θ, ‖T̃fθ,α,z

‖2
L) in the distribution as n → ∞ and z → ∞, where φ denotes the probability

function of the normal distribution, when conditions in Theorem 4 are satisfied.

Proof. By Theorem 7 in [3], for functional T, as we defined and under the conditions in this theorem,
we have that

limz→∞T( fθ,α,z) = θ.

We also have that, for MHB, under conditions of Theorem 3, limn→∞T(g∗n)→ T( fθ,α,z) in probability.
Combining the two results, limz→∞limn→∞T(g∗n) = θ, when the data is generated from a contaminated
distribution as fθ,α,z. Similarly, by Theorem 4, we have that π(T(g) | Xn)→ φ(T( fθ,α,a), ‖T̃fθ,α,z

‖2
L) in

distribution as n→ ∞, and which converges to φ(θ, ‖T̃fθ,α,z
‖2

L), as z→ ∞.

5. Demonstration

We provide a demonstration of both BMH and MHB methods on two data sets: the classical
Newcomb light speed data (see [24,25]), in which 2 out of 66 values are clearly negative oultiers, and a
bivariate simulation containing 10% contamination in two asymmetric locations.

We have implemented the BMH and MHB methods using two Bayesian nonparametric priors:

1. the random histogram prior studied in this paper based on a fixed k = 100 with the range naturally
extended to the range of the observed data (this is applied only to our first univariate example).

2. the popular Dirichlet Process (DP) kernel mixture of the form

yi | µi, Σi ∼ N(µi, Σi)

(µi, Σi) | G ∼ G

G | α, G0 ∼ DP(αG0)

where the baseline distribution is the conjugate normal-inverted Wishart,

G0 = N(µ | m1, (1/k0)Σ)IW(Σ | ν1, ψ1).

Note that, when yi values are univariate observations, the inverse Wishart (IW) distribution
reverts to an inverse Gamma distribution. To complete the model specification, independent
hyperpriors are assumed
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α | a0, b0 ∼ Gamma(a0, b0)

m1 | m2, s2 ∼ N(m2, s2)

k0 | τ1, τ2 ∼ Gamma(τ1/2, τ2/2)

ψ1 | ν2, ψ2 ∼ IW(ν2, ψ2).

We obtain posteriors for both using BUGS. We have elected to use BUGS here as opposed to the
package DPpackage within R despite the latter’s rather efficient MCMC algorithms because our BMH
method requires direct access to samples from the posterior distribution as opposed to the expected a
posteriori estimate. The R package distrEx is then used to construct the sampled density functions
and calculated the Hellinger distance between the sampled densities from the nonparametric model
and the assumed normal distribution. The R package optimx is also used to find the minima of the
Hellinger distances. The time cost of our methods are dominated by the optimization step rather than
by the obtaining of samples from the posterior density.

We first apply BMH and MHB on the Simon Newcomb’s measurements to measure the speed
of light. The data contains 66 observations. For this example, we specify the parameters and
hyper-parameters of the DPM as α = 1, m2 = 0, s2 = 1000, τ1 = 1, τ2 = 100, and ν2 = 2, ψ2 = 1.
We plot the data and a bivariate contour of the BMH posterior for both the mean and variance of the
assumed normal in Figure 1, where, despite outliers, the BvM result is readily apparent.

Table 1 summarizes these estimates. We report the estimated mean and variance with and
without the obvious outliers as well as the same quantities estimated using both MHB and BMH
methods with the last of these being the expected a posteriori estimates. Quantities in parentheses given
the “natural” standard error for each quantity: likelihood estimates correspond to standard normal
theory—dividing the estimated standard error by

√
n, and BMH standard errors are obtained from

the posterior distribution. For MHB, we used a bootstrap and note that, while the computational
cost involved in estimating MHB is significantly lower than BMH when obtaining a point estimate,
the standard errors require and MCMC chain for each bootstrap, significantly raising the cost of
obtaining these estimates. We observe that both prior specifications result in parameter estimates that
are identical to two decimal places and very close to those obtained after removing outliers.

Figure 1. Left: Histogram of the light speed data; Right: bivariate contour plots of the posterior for the
mean and variance of these data from the BMH method.
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Table 1. Estimation results for Newcomb’s light speed data. Direct Estimate refers to the standard
mean and variance estimates, and Without Outliers indicates the same estimates with outliers removed.
The first row for each parameter gives the estimate under a Dirichlet process prior and the second using
a random histogram. Standard errors for each estimate are given in parentheses: these are from the
normal theory for the first two columns via a bootstrap for MHB and from posterior samples for BMH.

Direct Estimate Without Outliers MHB BMH

µ̂ 26.21 (1.32) 27.75 (0.64) 27.72 (0.64) 27.73 (0.63)
27.72 (0.64) 27.73 (0.63)

σ̂ 10.75 (3.40) 5.08 (0.46) 5.07 (0.46) 5.00 (0.47)
5.07 (0.46) 5.00 (0.47)

To examine the practical implementation of methods that go beyond our theoretical results, we
applied these methods to a simulated two-dimensional data set of 100 data points generated from a
standard normal with two contamination distributions. Specifically, our data distribution comes from

9
10

N
((

10
5

)
,
(

3 1
1 5

))
+

1
20

N
((

−2
5

)
,
(

0.5 0.1
0.1 0.5

))
+

1
20

N
((

10
14

)
,
(

0.4 −0.1
−0.1 0.4

))
where exactly five points were generated from each of the second-two Gaussians. Our DP prior used
the same hyper-parameters as above with the exception that Ψ1 was obtained from the empirical
variance of the (contaminated) data, and (m2, S2) were extended to their 2-dimensional form as(
(0, 0)T , diag(1000, 1000)

)
. Figure 2 plots these data along with the posterior for the two means.

Figure 3 provides posterior distributions for the components of the variance matrix. Table 2 presents
estimation results for the full data and those with the contaminating distributions removed as well as
from the BMH method. Here we again observe that BMH yields results that are very close to those
obtained using the uncontaminated data. There is some more irregularity in our estimates, particularly
in Figure 3, which we speculate is due to poor optimization. There is considerable scope to improve
the numerics of minimum Hellinger distance methods more generally, but this is beyond the scope of
this paper.

Figure 2. Left: simulated two-dimensional normal example with two contamination components;
Right: BMH posterior for the mean vector (µ1, µ2).

Table 2. Estimation results for a contaminated bivariate normal. We provide generating estimates, the
natural maximum likelihood estimates with and without outliers and the BMH estimates. Reported
BMH estimates are expected a posteriori estimates with posterior standard errors given in parentheses.

µ01 µ02 Σ11 Σ12 Σ22

True 10 5 3 1 2
Contaminated data 9.07 5.36 9.76 1.67 5.80

Data with outliers removed 9.62 (0.13) 4.91 (0.11) 3.45 (0.13) 1.49 (0.13) 2.29 (0.11)
Estimated by BMH 9.59 (0.27) 4.93 (0.19) 2.79 (0.18) 0.98 (0.18) 1.97 (0.076)
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Figure 3. Posterior distributions for the elements of Σ in the simulated bivariate normal example.

6. Discussion

This paper investigates the use of minimum Hellinger distance methods that replace kernel density
estimates with Bayesian nonparametric models. We show that simply substituting the expected a
posteriori estimator will reproduce the efficiency and robustness properties of the classical disparity
methods first derived in [3]. Further, inducing a posterior distribution on θ through the posterior for g
results in a Bernstein von Mises theorem and a distributional robustness result.

There are multiple potential extensions of this work. While we have focused on the specific
pairing of Hellinger distance and random histogram priors, both of these can be generalized. A more
general class of disparities was examined in [7], and we believe the extension of our methods to this
class are straightforward. More general Bayesian nonparametric priors are discussed in [14], where the
Dirichlet process prior has been particularly popular. Extensions to each of these priors will require
separate analysis (e.g. [26]). Extensions of disparities to regression models were examined in [27] using
a conditional density estimate, where equivalent Bayesian nonparametrics are not as well developed.
Other modeling domains such as time series may require multivariate density estimates, resulting in
further challenges.

Our results are a counterpoint to the Bayesian extensions of Hellinger distance methods in [2]
where the kernel density was retained for gn but a prior was given for θ and the disparity treated as
a log likelihood. Combining both these approaches represents a fully Bayesian implementation of
disparity methods and is an important direction of future research.
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The following abbreviations are used in this manuscript:

BMH Bayesian Minimum Hellinger Method
MHB Minimum Hellinger Method with Bayesian Density estimation
BvM Bernstein von Mises
MGF Moment Generating Function
DP Dirichlet Process
DPM Dirichlet Process Mixture
LAN local asymptotic normality
BUGS Bayesian inference Using Gibbs Sampling
MCMC Markov Chain Monte Carlo
IW inverse Wishart
RHS Right hand side
LHS Left hand side
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