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Abstract: This paper presents an analytical study on the use of deterministic chaos as an entropy
source for the generation of random numbers. The chaotic signal generated by a phase-locked loop
(PLL) device is investigated using numerical simulations. Depending on the system parameters,
the chaos originating from the PLL device can be either bounded or unbounded in the phase direction.
Bounded and unbounded chaos differs in terms of the flatness of the power spectrum associated
with the chaotic signal. Random bits are generated by regular sampling of the signal from bounded
and unbounded chaos. A white Gaussian noise source is also sampled regularly to generate random
bits. By varying the sampling frequency, and based on the autocorrelation and the approximate
entropy analysis of the resulting bit sequences, a comparison is made between bounded chaos,
unbounded chaos and Gaussian white noise as an entropy source for random number generators.

Keywords: deterministic chaos; random number generator; unbounded chaos; bounded chaos;
phase-locked loop; Gaussian white noise

1. Introduction

Random number generators (RNGs) are fundamental components of cryptographic systems,
as they are responsible for generating the unpredictable key values used in ciphering algorithms
to protect the integrity, confidentiality and authenticity of the information [1]. Basically, an RNG
consists of an entropy source, a sampler to harvest entropy and a post processor to remove statistical
imperfections [2]. An ideal entropy source used in an RNG system should have a constant power
spectral density over its operating bandwidth, and it is preferable that this bandwidth is as wide
as possible [3]. A commonly used entropy source in RNGs is based on amplification of a physical
noise in the microscopic domain, such as thermal or shot noise [4,5]. However, it has been previously
demonstrated that chaotic noise obtained from a macroscopic system can also be used to generate
white noise, eliminating the need for amplification [6]. Despite being deterministic, chaotic systems
can be used as an entropy source due to their extreme sensitivity to initial conditions, noise-like power
spectrum and positive Lyapunov exponent [7]. The use of chaotic systems as an entropy source
in RNGs suggests the possibility of reaching higher throughput data without the need for post
processing and with ease of implementation in an integrated circuit form [8–10]. With two or more
positive Lyapunov exponents, hyperchaotic systems can also be used for random number generation,
and they have more complex behaviors, making it harder to predict the RNG output time series [11].
However, synchronization of two coupled hyperchaotic systems despite parameter mismatches
was demonstrated in [12] based on the concept of the Master Stability Function. In [13], the security
issues of chaos-based random number generators were discussed by studying the synchronization of
chaotic systems, and it is suggested that the inclusion of noise analysis in deterministic chaos qualifies
chaos-based generators as a truly random number source. In this paper, the use of a phase-locked
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loop (PLL) device in the chaotic regime for random number generation is considered. The use of PLL
circuits for the generation of random numbers in reconfigurable hardware platforms was extensively
studied, where the randomness was extracted from the intrinsic jitter of the synthesized clock signal
by the PLL [14–17]. In this paper, the PLL device is used to generate bounded and unbounded chaos,
as described in [18,19]. At the input of the voltage-controlled oscillator (VCO) component of the PLL,
a chaotic signal is observed under certain conditions; however, the spectrum of this chaotic signal is
non-flat over the spectral bandwidth. By adjusting the system parameters, the chaos can be made
unbounded, which results in an approximately flat spectrum up to a certain frequency, similar to white
Gaussian noise [20].

In this paper, using deterministic chaos as an entropy source, random bit sequences of fixed length
are generated by regularly sampling the chaotic signal observed at the VCO input when the nature
of chaos is bounded and unbounded. The sampling frequency limits the maximum throughput of
the RNG and is a critical parameter to ensure randomness in the generated bit stream. A faster sampling
rate is preferred for high-throughput data, but the bandwidth of the entropy source imposes restrictions
on the maximum allowable sampling frequency to maintain randomness in the resulting bit sequence.
To investigate this phenomenon, the sampling frequency is gradually elevated, and the randomness
of the resulting bit streams are assessed through the application of the concepts of autocorrelation
and approximate entropy. Then the bounded and unbounded chaos is benchmarked against white
Gaussian noise, which might originate in a stationary stochastic process. It is numerically shown
that up to a certain frequency which is dependent on the PLL system parameters, unbounded chaos
approaches white Gaussian noise as an entropy source to generate random numbers by the regular
sampling of an irregular waveform method. To the best of authors’ knowledge, this is the first analytical
study on the application of bounded and unbounded chaos from a PLL device as an entropy source
for RNG and the comparison of deterministic bounded or unbounded chaos and white Gaussian noise
from a stochastic process. This paper is organized as follows. In Section 2, the equations governing
the PLL system are described. Section 3 focuses on the formation of bounded and unbounded chaos in
PLL and the analysis of the associated chaotic signals. In Section 4, regular sampling of the chaotic
signal method is applied to generate random bit sequences using bounded chaos, unbounded chaos
and white Gaussian noise as an entropy source and the randomness of the generated bit sequences are
discussed, followed by conclusions in Section 5.

2. Chaotic System

The chaotic system in this paper is based on a sinusoidally driven PLL, which has previously been
extensively studied in [19,20]. Therefore, the equations will be summarized by referring to [19,20].
Basically, a PLL device is made up of a phase detector to identify the phase error, a low-pass
filter and a VCO generating a square wave at a frequency dependent on input signal amplitude.
Figure 1 illustrates the phase model of a PLL. The θin, θout and φ(t) = θin − θout are input phase,
output phase and phase error, respectively.
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The nonlinear function h(φ) is a 2π-periodic function of φ and it is in symmetric triangular form
for an EX-OR type phase detector. It is defined as

h(φ) = h(φ + 2nπ), n = 0,±1,±2, . . . ..n ∈ Z (1)

h(φ) =

{
φ f or |φ| < π

2
−φ + π f or π

2 < φ < 3π
2

(2)

The transfer function of the low-pass (lag-lead) filter is given as

F(s) = (1 + τ2s)/(1 + τ1s) (3)

Following the diagram in s-domain

φ(s) = θin(s)− θout(s) (4)

θout(s) = h(φ(s))K0F(s)· 1
s

(5)

Substituting (3), (5) in (4), using cross multiplication and then dividing each side by τ1,

φ(s) + h(φ(s))K0
(1 + τ2s)
(1 + τ1s)s

= θin(s) (6)

τ1s2φ(s) + sφ(s) + K0h(φ(s)) + τ2sK0h(φ(s)) = τ1s2θin(s) + sθin(s) (7)

s2φ(s) +
1
τ1
(sφ(s) + K0τ2sh(φ(s))) +

(
K0

τ1

)
h(φ(s)) = s2θin(s) +

1
τ1

sθin(s) (8)

Using (8), with respect to the phase error φ, the system equation in the time domain can be stated as

d2φ

dt2 +
1
τ1

(
1 + K0τ2h′(φ)

)dφ

dt
+

(
K0

τ1

)
h(φ) =

d2θin
dt2 +

1
τ1

dθin
dt

(9)

Assuming the input signal is modulated by a sinusoidal waveform

dθin
dt

= ∆ω + Msinωmt (10)

∆ω = ωin −ωout (11)

where ωm, ωin, ωout and ∆ω are phase modulation, input signal, output signal angular frequencies
and frequency detuning, respectively. The natural angular frequency and the damping coefficient are
defined as follows:

ωn =
√

K0/τ1 = 2π fn (12)

ζ = (1 + K0τ2)/2
√

K0τ1 (13)

To simplify the equations, the following normalized parameters are introduced:

β =
ωn

K0
=

1√
K0τ1

normalized natural frequency (14a)

σ =
∆ω

ωn
normalized frequency detuning (14b)

Ωm =
ωm

ωn
normalized modulation frequency (14c)



Entropy 2018, 20, 957 4 of 10

m =
M
ωn

normalized maximum angular frequency deviation (14d)

By changing the time t into τ = ωnt and replacing τ by t again, Equation (9) can be given as

d2φ

dt2 + β

[
1 +

(2ζ − β)h′(φ)
β

]
dφ

dt
+ h(φ) = βσ + β msinΩmt + mΩmcosΩmt (15)

where 2ζ − β = K0τ2/
√

K0τ1 ≥ 0. For simplicity, the filter is assumed to be a lag filter
2ζ − β = 0, (τ2 = 0). By changing the time t into t = t′ − θ

Ωm
where tan (θ ) = Ωm

β , and replacing
t′ by t again, Equation (15) can be simplified as

d2φ

dt2 + β
dφ

dt
+ h(φ) = βσ + asinΩmt (16)

a = m
√

β2 + Ωm2 (17)

For small values of a , the solutions are periodic with Ωm, which means that the phase φ is phase-locked
with the input signal. With an increase in a , the phase φ shows bifurcations and becomes chaotic,
as seen in Figure 2. For fixed values of β and Ωm, the parameter m is gradually increased, thus the a
parameter is linearly elevated. The bifurcations and transition from bounded to unbounded chaos
is observed in Figure 2. It is observed that the PLL system demonstrates unbounded chaos when m
(normalized maximum angular frequency deviation) is between approximately 1.75 and 3.

Depending on the parameters as seen in Figure 2, the chaos is either bounded or unbounded in
the φ-direction. In [6,18–20], it is suggested that the chaotic change of φ(t) approaches a Wiener-Levy
process over long times. Therefore, its derivative dφ/dt is supposed to yield a white noise-like
spectrum at angular frequencies substantially below Ωm, ωo(ωo = 1) and ωr(ωr = β/2), where ωo

and ωr are the natural angular frequency and the relaxation angular frequency of the simplified system,
respectively. The chaotic signal at the VCO input is given as

.
θout = msinΩmt−

.
φ (18)

In this paper, the focus is on the signal at the VCO input as it exhibits chaotic behaviors which can be
exploited for random number generation.
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3. Chaotic Signal Formation

In this section, the normalized equations of the PLL are entered into a numerical solver,
and the system parameters are adjusted to set the PLL to operate in the chaotic regime. For numerical
solutions, Dynamics Solver software is used. To put the system in chaos, the normalized natural frequency
β and the normalized modulation frequency Ωm are chosen to be 0.56 and 0.9, respectively, although many
other combinations of parameter values for chaos can be found by experimenting with the numerical
solver. Then, a is changed linearly by varying the m parameter according to (17). The bifurcation
graph shown in Figure 2 suggests that for these values of β and Ωm, m = 1.75 is the transition border
from bounded to unbounded chaos. Figure 3 illustrates the change of Lissajous patterns in φ-

.
φ plane

when the type of chaos transitions from bounded at m = 1.74 to unbounded at m = 2.29 by modifying
only the m parameter in parallel with the bifurcation graph shown in Figure 2.
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Associated parameters β = 0.56, Ωm = 0.9, σ = 0 and m = (1.74, 2.29) for bounded and unbounded
chaos respectively.

Figures 4 and 5 show the signals at VCO input in the time domain and the associated power
spectra for cases of unbounded and bounded chaos in a comparative manner. As the solutions
are obtained for normalized equations, units are not shown in Figure 4 and 5. Even by observing
the time-domain waveforms, it may be possible to distinguish between unbounded and bounded
chaos, as unbounded chaos displays a larger degree of irregularity and aperiodicity compared
to bounded chaos. The time-domain signal at the VCO input, as shown in Figure 4, seems visually
more regular compared to the signal shown in Figure 5. However, power spectral analysis is
a safer method to identify the type of chaos. Figure 4 demonstrates that the power spectrum is not
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flat for bounded chaos; therefore, it is not an optimal entropy source for random number generation.
However, for unbounded chaos, Figure 5 shows that the power spectrum for the VCO input in
a normalized equation can be visually considered to be flat from DC up to approximately Ω ≈ 0.15,
which corresponds to a frequency of f ≈ 0.15× fn ≈ 230 Hz. To expand the flat spectrum range, it is
necessary to increase the natural frequency for a fixed Ωm. Having a flat spectrum similar to white
noise makes the VCO input signal from an unbounded chaos case a possible entropy source for
the generation of random numbers using the regular sampling of an irregular waveform method.
It exhibits very irregular and aperiodic behaviors, which make it unpredictable and useful to be
exploited for random number generation.
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4. Random Bit Generation and Discussion

A method to generate output bit sequence is regular sampling of the chaotic signal at the VCO
input and comparing the samples with a threshold value. The ergodicity of chaotic signals makes
it possible to analyze the distribution and statistical properties of the chaotic variable independent
of initial conditions and sampling frequency. Therefore, the mean value of the samples over a long
operation time can be selected as the threshold. At the time of sampling, if the signal value is below
the threshold, bit 0 is produced; otherwise, the output is bit 1. However, the sampling frequency fs

needs to be adjusted to generate random bits with high entropy and without correlation between
successive bits. The sampling frequency determines the throughput of the RNG, and it heavily depends
on the power spectrum of the chaotic signal at the VCO input. For selection of the sampling frequency,
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autocorrelation analysis can be utilized as a metric to quantify randomness in a finite bit sequence.
The absolute value of normalized autocorrelation function at a lag of one sampling period gives
the correlation between successive bits. Therefore, bit sequences with a length of 20 KBits are generated
by regularly sampling the chaotic signal at varying frequencies and the absolute value of the normalized
autocorrelation at one-bit lag, i.e., one sampling period is calculated. To find the absolute value of
the normalized autocorrelation at one-bit lag, first the mean of the 20 KBits sequence is subtracted
from each binary value in the bit stream and xn is obtained. Then the autocorrelation function for
the resulting bit sequence xn is normalized such that at zero lag, the value is 1, and then its absolute
value is calculated. As the autocorrelation function for the 20 KBits sequence is real and symmetric
around zero lag, the value corresponding to one-bit lag can be found by substituting m = ±1 and taking
the absolute value of the result in (20):

R̂xx(0) =
N−m−1

∑
n=0

xn
2 (19)

R̂xx,normalized(m) =
1

R̂xx(0)


N−m−1

∑
n=0

xn+m xn , m ≥ 0

R̂xx(−m) , m < 0

(20)

The VCO input signals from the previous section depicting bounded and unbounded chaos are used for
random bit generation by the regular sampling of an irregular waveform method. White Gaussian noise
generated by Matlab is also used to generate random bits by regular sampling as a benchmark to assess
the use of chaos as an entropy source for RNGs.

Figure 5 shows the relation between the sampling period and the absolute values of the normalized
autocorrelation function at one-bit lag according to (20) for the bit sequences generated using
bounded chaos, unbounded chaos and Gaussian white noise, respectively. As can be expected,
the correlation between successive bits generally decreases when the sampling period increases,
which also means reducing the sampling frequency. However, the plot of absolute values of
the normalized autocorrelation exhibits local maxima and minima for both bounded and unbounded
chaos. It is noteworthy to mention that the variation in the autocorrelation value is higher in
the case of bounded chaos than for unbounded chaos. In case of bounded chaos, the peaks are
separated from each other by approximately 3.6Tn, where Tn = 2π

ωn
. Therefore, this can be interpreted

as an indication that it would be easier to make a random generator by sampling the chaotic signal
in unbounded chaos. For unbounded chaos, from Figure 5, it can be stated approximately that for
obtaining a random bit stream, the sampling period should be adjusted as Ts = k·5. 2·Tn , k = 2, 3, ....
Furthermore, the performance of unbounded chaos as an entropy source approaches that of white
Gaussian noise. As white Gaussian noise is assumed to be white with infinite bandwidth, there
is no restriction on the minimum sampling period that can be used to generate a random bit
sequence. By proper selection of the sampling frequency of the chaotic signal, the absolute value of
normalized autocorrelation values at one-bit lag of the bit sequence can be made close to that of the bit
sequence generated by regular sampling of Matlab-based white Gaussian noise which has an infinite
and flat power spectrum.

However, as can be observed from Figure 6, in general, the absolute value of autocorrelation of
bit sequences at one-bit lag generated by white Gaussian noise are lower compared to bit sequences
obtained from unbounded chaos. This is because the sampled chaotic signal is obtained purely by
the solution of deterministic equations. However, if the system were implemented experimentally,
the non-deterministic thermal and shot noise in electronic components would affect the chaotic
trajectories continuously, making the bit stream generated by regular sampling of the chaotic signal
non-deterministic, thus resulting in autocorrelation values closer to those of white Gaussian noise [9].
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To further analyze the randomness of the RNG output, the concept of approximate entropy
(ApEn) is used as a measure of sequential irregularity. For a finite length of bit sets, approximate
entropy gives an idea of the randomness, with higher ApEn values indicating a higher level of
randomness. ApEn approaches the theoretical maximum information entropy of ln(2) ≈ 0.69 for
a perfectly random bit sequence. The approximate entropy (ApEn) values of order 8 are calculated for
the bit sequences of a length of 20 KBits generated by sampling unbounded chaos, bounded chaos
and a Gaussian white noise signal at varying sampling frequencies. Figure 7 shows the relation between
approximate entropy of the output bit stream and the sampling period for unbounded chaos, bounded
chaos and Gaussian white noise, respectively. It is noteworthy to mention that at peak points of high
autocorrelation, the approximate entropy is at a local minimum. Furthermore, increasing the sampling
period, i.e., slowing the RNG throughput, generally results in higher ApEn value. In the case of
bounded chaos, there exists a periodic pattern of ups and downs which is due to the non-flat power
spectrum. However, in case of unbounded chaos, the ApEn value reaches the theoretical maximum
quickly after a certain sampling rate, does not deviate very much, and approximates the value of white
Gaussian noise. Unbounded chaos approaches white Gaussian noise, which shows the advantage of
using unbounded chaos as an entropy source instead of bounded chaos.

Table 1. Results of the FIPS-140-2 test suite for RNG based on regular sampling of chaotic signal.

Statistical Tests p-Value

Frequency 0.777297
Block Frequency 0.543739

Runs 0.041646
Longest Run 0.496469
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As the amount of data that can be numerically produced with regular sampling of a chaotic
PLL signal is limited; the data sequence is not put through NIST-800-22 test suite, since it involves
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at least 40 bit sequences with a length of 1Mbit. Instead, bit streams of 20 KBits length are subjected
to tests of FIPS-140-2 test suite without any post processing [7]. The numerical binary streams
of length 20 KBits obtained by regular sampling of the chaotic signal from a PLL device passed
all 4 statistical tests, as shown in Table 1 where p-Value (0 ≤ p−Value ≤ 1) is a real number estimating
the probability that a perfect RNG would produce a less random sequence than the given sequence.
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5. Conclusions

In this paper, the chaotic signal from a phase-locked loop device is studied in order
to develop a comparison between deterministic chaotic and stochastic processes for generation
of random numbers. By adjusting the system parameters, the chaos becomes either bounded or
unbounded in the phase direction, and this changes the power spectral characteristics of the chaotic
signal. Random binary sequences are generated by regular sampling of the chaotic PLL signals.
Autocorrelation and approximate entropy analysis is used to quantify the relationship between
the randomness of the generated bit streams and the associated sampling periods. The chaotic signals
are benchmarked against white Gaussian noise, and it is shown that unbounded chaos approaches
Gaussian white noise as an entropy source for random number generation. To the best of the authors’
knowledge, this is the first analytical study investigating using bounded and unbounded chaos
from a PLL device as an entropy source for random number generation and the comparison of
deterministic chaos to white noise from a stochastic process.
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