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Abstract: In this work we relax the usual separability assumption made in rate-distortion literature
and propose f-separable distortion measures, which are well suited to model non-linear penalties.
The main insight behind f-separable distortion measures is to define an n-letter distortion measure to
be an f-mean of single-letter distortions. We prove a rate-distortion coding theorem for stationary
ergodic sources with f-separable distortion measures, and provide some illustrative examples of the
resulting rate-distortion functions. Finally, we discuss connections between f-separable distortion
measures, and the subadditive distortion measure previously proposed in literature.
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1. Introduction

Rate-distortion theory, a branch of information theory that studies models for lossy data
compression, was introduced by Claude Shannon in [1]. The approach of [1] is to model the
information source with distribution PX on X , a reconstruction alphabet X̂ , and a distortion measure
d : X × X̂ → [0, ∞). When the information source produces a sequence of n realizations, the source
PXn is defined on X n with reconstruction alphabet X̂ n, where X n and X̂ n are n-fold Cartesian products
of X and X̂ . In that case, [1] extended the notion of a single-letter distortion measure to the n-letter
distortion measure, dn : X n × X̂ n → [0, ∞), by taking an arithmetic average of single-letter distortions,

dn(xn, x̂n) =
1
n

n

∑
i=1

d(xi, x̂i). (1)

Distortion measures that satisfy (1) are referred to as separable (also additive, per-letter, averaging);
the separability assumption has been ubiquitous throughout rate-distortion literature ever since its
inception in [1].

On the one hand, the separability assumption is quite natural and allows for a tractable
characterization of the fundamental trade-off between the rate of compression and the average
distortion. For example, in the case when Xn is a stationary and memoryless source the rate-distortion
function, which captures this trade-off, admits a simple characterization:

R(d) = inf
PX̂|X : E[d(X,X̂)]≤d

I(X; X̂). (2)

On the other hand, the separability assumption is very restrictive as it only models distortion penalties
that are linear functions of the per-letter distortions in the source reproduction. Real-world distortion
measures, however, may be highly non-linear; it is desirable to have a theory that also accommodates
non-linear distortion measures. To this end, we propose the following definition:

Entropy 2018, 20, 111; doi:10.3390/e20020111 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e20020111
http://www.mdpi.com/journal/entropy


Entropy 2018, 20, 111 2 of 16

Definition 1 (f-separable distortion measure). Let f(z) be a continuous, increasing function on [0, ∞).
An n-letter distortion measure dn(·, ·) is f-separable with respect to a single-letter distortion d(·, ·) if it can be
written as

dn(xn, x̂n) = f−1

(
1
n

n

∑
i=1

f (d(xi, x̂i))

)
. (3)

For f(z) = z this is the classical separable distortion set up. By selecting f appropriately, it is possible
to model a large class of non-linear distortion measures, see Figure 1 for illustrative examples.
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Figure 1. The number of reconstruction errors for an information source with 100 bits vs. the
penalty assessed by f-separable distortion measures based on the Hamming single-letter distortion.
The f(z) = z plot corresponds to the separable distortion. The f-separable assumption accommodates
all of the other plots, and many more, with the appropriate choice of the function f.

In this work, we characterize the rate-distortion function for stationary and ergodic information
sources with f-separable distortion measures. In the special case of memoryless and stationary sources
we obtain the following intuitive result:

Rf(d) = inf
PX̂|X : E[f(d(X,X̂))]≤f(d)

I(X; X̂). (4)

A pleasing implication of this result is that much of rate-distortion theory (e.g., the Blahut-Arimoto
algorithm) developed since [1] can be leveraged to work under the far more general
f-separable assumption.

The rest of this paper is structured as follows. The remainder of Section 1 overviews related
work: Section 1.1 provides the intuition behind Definition 1, Section 1.2 reviews related work in other
compression problems, and Section 1.3 connects f-separable distortion measures with sub-additive
distortion measures. Section 2 formally sets up the problem and demonstrates why convexity of the
rate-distortion function does not always hold under the f-separable assumption. Section 3 presents
our main result, Theorem 1, as well as some illustrative examples. Additional discussion about
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problem formulation and sub-additive distortion measures is given in Section 4. We conclude the
paper in Section 5.

1.1. Generalized f-Mean and Rényi Entropy

To understand the intuition behind Definition 1, consider aggregating n numbers (z1, . . . , zn) by
defining a sequence of functions (indexed by n)

Mn(z) = f−1

(
1
n

n

∑
i=1

f(zi)

)
(5)

where f is a continuous, increasing function on [zmin, zmax], zmin = min{zi}n
i=1, and zmax = max{zi}n

i=1.
It is easy to see that (5) satisfies the following properties:

1. Mn(z) is continuous and monotonically increasing in each zi,
2. Mn(z) is a symmetric function of each zi,
3. If zi = z for all i, then Mn(z) = z,
4. For any m ≤ n

Mn(z) = Mn (Mm(zm
1 ), . . . ,Mm(zm

1 ), zm+1, . . . , zn) . (6)

Moreover, it is shown in [2] that any sequence of functions Mn that satisfies these properties must
have the form of Equation (5) for some continuous, increasing f. The function Mn is referred to as
“Kolmogorov mean”, “quasi-arithmetic mean”, or “generalized f-mean”. The most prominent examples
are the geometric mean, f(z) = log z, and the root-mean-square, f(z) = z2.

The main insight behind Definition 1 is to define an n-letter distortion measure to be an f-mean of
single-letter distortions. The f-separable distortion measures include all n-letter distortion measures
that satisfy the above properties, with the last property saying that the non-linear “shape” of distortion
measure (cf. Figure 1) is independent of n.

Finally, we note that Rényi also arrived at his well-known family of entropies [3] by taking an
f-mean of the information random variable:

Hα(X) = f−1
α E [fα(ıX(X))] , α ∈ (0, 1) ∪ (1, ∞) (7)

where the information at x is

ıX(x) = log
1

PX(x)
. (8)

Rényi [3] limited his consideration to functions of the form fα(z) = exp {(1− α)z} in order to
ensure that entropy is additive for independent random variables.

1.2. Compression with Non-Linear Cost

Source coding with non-linear cost has already been explored in the variable-length lossless
compression setting. Let `(x) denote the length of the encoding of x by a given variable length code.
Campbell [4,5] proposed minimizing a cost function of the form

f−1E [f(`(X))] , (9)

instead of the usual expected length. The main result of [4,5] is that for

ft(z) = exp{tz}, t ∈ (−1, 0) ∪ (0, ∞), (10)
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the fundamental limit of such setup is Rényi entropy of order α = 1
t+1 . For more general f, this problem

was handled by Kieffer [6], who showed that (9) has a fundamental limit for a large class of functions f.
That limit is Rényi entropy of order α = 1

t+1 with

t = lim
z→∞

f ′′(z)
f ′(z)

. (11)

More recently, a number of works [7–9] studied related source coding paradigms, such as guessing
and task encoding. These works also focused on the exponential functions given in (10); in [7,8] Rényi
entropy is shown to be a fundamental limit yet again.

1.3. Sub-Additive Distortion Measures

A notable departure from the separability assumption in rate-distortion theory is sub-additive
distortion measures discussed in [10]. Namely, a distortion measure is sub-additive if

dn(xn, x̂n) ≤ 1
n

n

∑
i=1

d(xi, x̂i). (12)

In the present setting, an f-separable distortion measure is sub-additive if f is concave:

dn(xn, x̂n) = f−1

(
1
n

n

∑
i=1

f (d(xi, x̂i))

)
≤ 1

n

n

∑
i=1

d(xi, x̂i). (13)

Thus, the results for sub-additive distortion measures, such as the convexity of the rate-distortion
function, are applicable to f-separable distortion measures when f is concave.

2. Preliminaries

Let X be a random variable defined on X with distribution PX , with reconstruction alphabet X̂ ,
and a distortion measure d : X × X̂ → [0, ∞). LetM = {1, . . . , M} be the message set.

Definition 2 (Lossy source code). A lossy source code (g, c) is a pair of mappings,

g : X →M (14)

c : M→ X̂ . (15)

A lossy source-code (g, c) is an (M, d)-lossy source code on (X , X̂ , d) if

E [d(X, c(g(X))] ≤ d. (16)

A lossy source code (g, c) is an (M, d, ε)-lossy source code on (X , X̂ , d) if

P [d(X, c(g(X)) > d] ≤ ε. (17)

Definition 3. An information source X is a stochastic process

X = {Xn = (X1, . . . , Xn)}∞
n=1 . (18)

If (g, c) is an (M, d)-lossy source code for Xn on (X n, X̂ n, dn), we say (g, c) is an (n, M, d)-lossy
source code. Likewise, an (M, d, ε)-lossy source code for Xn on (X n, X̂ n, dn) is an (n, M, d, ε)-lossy
source code.
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2.1. Rate-Distortion Function (Average Distortion)

Definition 4. Let a sequence of distortion measures {dn} be given. The rate-distortion pair (R, d) is achievable
if there exists a sequence of (n, Mn, dn)-lossy source codes such that

lim sup
n→∞

1
n

log Mn ≤ R, and lim sup
n→∞

dn ≤ d.

Our main object of study is the following rate-distortion function with respect to f-separable
distortion measures.

Definition 5. Let {dn} be a sequence of f-separable distortion measures. Then,

Rf(d) = inf{R : (R, d) is achievable}. (19)

If f is the identity, then we omit the subscript f and simply writeR(d).

2.2. Rate-Distortion Function (Excess Distortion)

It is useful to consider the rate-distortion function for f-separable distortion measures under the
excess distortion paradigm.

Definition 6. Let a sequence of distortion measures {dn} be given. The rate-distortion pair (R, d) is (excess
distortion) achievable if for any γ > 0 there exists a sequence of (n, Mn, d + γ, εn)-lossy source codes such that

lim sup
n→∞

1
n

log Mn ≤ R, and lim sup
n→∞

εn = 0.

Definition 7. Let {dn} be a sequence of f-separable distortion measures. Then,

R′f(d) = inf{R : (R, d) is (excess distortion) achievable}. (20)

Characterizing the f-separable rate-distortion function is particularly simple under the excess
distortion paradigm, as shown in the following lemma.

Lemma 1. Let the single-letter distortion d and an increasing, continuous function f be given. Then,

R′f(d) = R̃
′(f(d)) (21)

where R̃′(d) is computed with respect to d̃(x, x̂) = f(d(x, x̂)).

Proof. Let {dn} be a sequence of f-separable distortions based on d(·, ·) and let
{
d̃n} be a sequence of

separable distortion measures based on d̃(·, ·) = f(d(·, ·)).
Since f is increasing and continuous at d, then for any γ > 0 there exists 0 < γ̃ such that

f(d + γ)− f(d) = γ̃. (22)

The reverse is also true by continuity of f: for any γ̃ > 0 there exists γ > 0 such that (22)
is satisfied.

Any source code (gn, cn) is an (n, Mn, d + γ, εn)-lossless code under f-separable distortion dn if
and only if (gn, cn) is also an (n, Mn, f(d) + γ̃, εn)-lossless code under separable distortion d̃n. Indeed,
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εn ≥ P [dn(Xn, cn (gn(Xn))) ≥ d + γ] (23)

= P
[
f−1

(
1
n

n

∑
i=1

f(d(Xi, X̂i))

)
≥ d + γ

]
(24)

= P
[

1
n

n

∑
i=1

f(d(Xi, X̂i)) ≥ f(d + γ)

]
(25)

= P
[
d̃n(Xn, cn (gn(Xn))) ≥ f(d) + γ̃

]
(26)

where X̂n = cn (gn(Xn)). It follows that (R, d) is (excess distortion) achievable with respect to {dn}
if and only if (R, f(d)) is (excess distortion) achievable with respect to

{
d̃n}. The lemma statement

follows from this observation and Definition 6.

2.3. f-Separable Rate-Distortion Functions and Convexity

While it is a well-established result in rate-distortion theory that all separable rate-distortion
functions are convex ([11], Lemma 10.4.1), this need not hold for f-separable rate-distortion functions.

The convexity argument for separable distortion measures is based on the idea of time sharing;
that is, suppose there exists an (n1, M1, d1)-lossy source code of blocklength n1 and an (n2, M2, d2)-lossy
source code of blocklength n2. Then, there exists an (n, M, d)-lossy source code of blocklength n with
M = M1M2 and d = n1

n1+n2
d1 +

n1
n1+n2

d2: such a code is just a concatenation of codes over blocklengths
n1 and n2. The distortion d is achievable since

dn1(xn1 , x̂n1) =
1
n1

n1

∑
i=1

d(xi, x̂i) = d1 (27)

and letting n = n1 + n2,

dn2
(

xn
n1+1, x̂n

n1+1

)
=

1
n2

n

∑
i=n1+1

d(xi, x̂i) = d2. (28)

Time sharing between the two schemes gives

dn(xn, x̂n) =
1
n

n

∑
i=1

d(xi, x̂i) =
n1

n
d1 +

n2

n
d2. (29)

However, this bound on the distortion need not hold for f-separable distortions. Consider f which
is strictly convex and suppose

f−1

(
1
n1

n1

∑
i=1

f (d(xi, x̂i))

)
= d1, f−1

(
1
n2

n

∑
i=n1+1

f (d(xi, x̂i))

)
= d2. (30)

We can write

f−1

(
1
n

n

∑
i=1

f (d(xi, x̂i))

)
= f−1

(n1

n
f(d1) +

n2

n
f(d2)

)
>

n1

n
d1 +

n2

n
d2. (31)

Thus, concatinating the two schemes together does not guarantee that the distortion assigned by the
f-separable distortion measure is bounded by d.
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3. Main Result

In this section we make the following standard assumptions, see [12].

1. X is a stationary and ergodic source.
2. The single-letter distortion function d(·, ·) and the continuous and increasing function f(·) are

such that

inf
x̂∈X̂

E [f(d(X, x̂))] < ∞. (32)

3. For each d > 0, there exists a countable subset {x̂i} of X̂ and a countable measurable partition
{Ei} of X such that d(x, x̂i) ≤ d, x ∈ Ei for each x̂i, and

∑
i

PX1(Ei) log
1

PX1(Ei)
< ∞. (33)

Theorem 1. Under the stated assumptions, the rate-distortion function is given by

Rf(d) = R̃(f(d)) (34)

where

R̃(f(d)) = lim
n→∞

inf
PX̂n |Xn : 1

n ∑n
i=1 Ed̃(Xi ,X̂i)≤f(d)

1
n

I(Xn; X̂n) (35)

is the rate-distortion function computed with respect to the separable distortion measure given by
d̃(x, x̂) = f(d(x, x̂)).

For stationary memoryless sources (34) particularizes to

Rf(d) = inf
PX̂|X : E[f(d(X,X̂))]≤f(d)

I(X; X̂). (36)

Proof. Equations (35) and (36) are widely known in literature (see, for example, [10,11,13]); it remains
to show (34). Under the stated assumptions,

Rf(d)
(a)
≤ R′f(d)

(b)
= R̃′(f(d)) (c)

= R̃(f(d)) (37)

where (a) follows from assumption (2) and Theorem A1 in the Appendix A, (b) is shown in Lemma 1,
and (c) is due to [14] (see also ([13], Theorem 5.9.1)). The other direction,

Rf(d) ≥ R̃(f(d)) (38)

is a consequence of the strong converse by Kieffer [12], see Lemma A1 in the Appendix A.

An immediate application of Theorem 1 gives the f-separable rate-distortion function for several
well-known binary memoryless sources (BMS).

Example 1 (BMS, Hamming distortion). Let X be the binary memoryless source. That is, X = X̂ = {0, 1},
Xi is a Bernoulli(p) random variable, and d(·, ·) is the usual Hamming distortion measure. Then, for any
continuous increasing f(·) and p ≤ 1

2 ,

Rf(d) =

{
h(p)− h

(
f(d)−f(0)
f(1)−f(0)

)
, f(d)−f(0)

f(1)−f(0) < p

0, o.w.

}
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where

h(p) = p log
1
p
+ (1− p) log

1
1− p

(39)

is the binary entropy function. The result follows from a series of obvious equalities,

Rf(d) = inf
PX̂|X :E[f(d(X,X̂))]≤f(d)

I(X; X̂) (40)

= inf
PX̂|X :

E[f(d(X,X̂))]−f(0)
f(1)−f(0) ≤ f(d)−f(0)

f(1)−f(0)

I(X; X̂) (41)

= inf
PX̂|X : E

[
f(d(X,X̂))−f(0)

f(1)−f(0)

]
≤ f(d)−f(0)

f(1)−f(0)

I(X; X̂) (42)

= inf
PX̂|X : E[d(X,X̂)]≤ f(d)−f(0)

f(1)−f(0)

I(X; X̂) (43)

= R
(
f(d)− f(0)
f(1)− f(0)

)
. (44)

The rate-distortion function given in Example 1 is plotted in Figure 2 for different functions f.
The simple derivation in Example 1 could be applied to any source for which the single-letter distortion
measure can take on only two values, as is shown in the next example.

0.0 0.2 0.4 0.6 0.8 1.0
d

0.0

0.2

0.4

0.6

0.8

1.0

R f
(d

)

Equiprobable BMS with Hamming per-letter distortion
f(z) = exp(ρz)
f(z) = (z− a)3
f(z) = z2

f(z) = z
f(z) = √z

Figure 2. Rf (d) for the binary memoryless source with p = 0.5. Compare these to the f-separable
distortion measures plotted for the binary source with Hamming distortion in Figure 1.

Example 2 (BMS, Erasure distortion). Let X be the binary memoryless source and let the reconstruction
alphabet have the erasure option. That is, X = {0, 1}, X̂ = {0, 1, e}, and Xi is a Bernoulli

(
1
2

)
random variable.

Let d(·, ·) be the usual erasure distortion measure:

d(x, x̂) =


0, x = x̂
1, x̂ = e
∞, o.w.

 .
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The separable rate-distortion function for the erasure distortion is given by

R(d) = 1− d,

see ([11], Problem 10.7). Then, for any continuous increasing f(·),

Rf(d) = 1− f(d)− f(0)
f(1)− f(0)

.

The rate-distortion function given in Example 2 is plotted in Figure 3 for different functions f.
Observe that for concave f (i.e., subadditive distortion) the resulting rate-distortion function is convex,
which is consistent with [10]. However, for f that are not concave, the rate-distortion function is not
always convex. Unlike in the conventional separable distortion measure, an f-separable distortion
measure is not convex in general.

0.0 0.2 0.4 0.6 0.8 1.0
d

0.0

0.2

0.4

0.6

0.8

1.0

R f
(d
)

Equiprobable BMS with Erasure per-letter distortion

f(z) = exp(ρz)
f(z) = (z− a)3
f(z) = z2

f(z) = z
f(z) = √z

Figure 3. Rf (d) for the binary memoryless source with p = 0.5 and erasure per-letter distortion.

Having a closed-form analytic expression for a separable distortion measure does not always
mean that we could easily derive such an expression for an f-separable distortion measure with the
same per-letter distortion. For example, consider the Gaussian source with the mean-square-error
(MSE) per-letter distortion. According to Theorem 1, letting f(z) =

√
z recovers the Gaussian source

with the absolute value per-letter distortion. This setting, and variations on it, is a difficult problem in
general [15]. However, we can recover the f-separable rate-distortion function whenever the per-letter
distortion d(·, ·) composed with f(·) reconstructs the MSE distortion, see Figure 4.

Theorem 1 shows that for well-behaved stationary ergodic sources, Rf(d) admits a simple
characterization. According to Lemma 1, the same characterization holds for the excess distortion
paradigm without stationary and ergodic assumptions. The next example shows that, in general,
Rf(d) 6= R̃(f(d)) within the average distortion paradigm. Thus, assumption (1) is necessary for
Theorem 1 to hold.
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0.0 0.2 0.4 0.6 0.8 1.0
d
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12

R f
(d
)

Gaussian source with three different per-letter distortions
f(z) = z, d(x, ̂x) = (x− ̂x)2
f(z) = z2, d(x, ̂x) = |x− ̂x|

f(z) = z4, d(x, ̂x) =√ |x− ̂x|

Figure 4. Rf (d) for the Gaussian memoryless source with mean zero and unit variance.

Example 3 (Mixed Source). Fix λ ∈ (0, 1) and let the source X be a mixture of two i.i.d. sources,

PXn(xn) = λ
n

∏
i=1

P1(xi) + (1− λ)
n

∏
i=1

P2(xi). (45)

We can alternatively express X as

Xn = ZXn
1 + (1− Z)Xn

2 (46)

where Z is a Bernoulli(λ) random variable. Then, the rate-distortion function for the mixture source (45) and
continuous increasing f is given in Lemma A2 in the Appendix B. Namely,

Rf(d) = min
(d1,d2) : λd1+(1−λ)d2≤d

max
{
R1

f (d1),R2
f (d2)

}
(47)

whereR1
f (d) andR2

f (d) are the rate-distortion functions for discrete memoryless soruces given by P1 and P2,
respectively. Likewise,

R̃ (f(d)) = min
(d1,d2) : λd1+(1−λ)d2≤f(d)

max
{
R̃1(d1), R̃2(d2)

}
. (48)

As shown in Figure 5, Equations (47) and (48) are not equal in general.
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d
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Mixed binary soruce with Hamming distortion

 

 

R̃( f (d )) , f (z ) = z 0 . 5

R f(d ) , f (z ) = z 0 . 5

R (d ) , f (z ) = z

R f(d ) , f (z ) = z 2

R̃( f (d )) , f (z ) = z 2

Figure 5. Mixed binary source with p1 = 0.5, p2 = 0.001, and λ = 0.5. Three examples of f-separable
rate-distortion functions are given. For f(z) = z, the relation R(d) = R̃(d) follows immediately.
When f is not the identity,Rf (d) 6= R̃(f(d)) in general for non-ergodic sources.

4. Discussion

4.1. Sub-Additive Distortion Measures

Recall that an f-separable distortion measure is sub-additive if f is concave (cf. Section 1.3).
Clearly, not all f-separable distortion measures are sub-additive, and not all sub-additive distortion
measures are f-separable. An examplar of a sub-additive distortion measure (which is not f-separable)
given in ([10], Chapter 5.2) is

dn(xn, x̂n) =
1
n

(
n

∑
i=1

dq(xi, x̂i)

)1/q

, q > 1. (49)

The sub-additivity of (49) follows from the Minkowski inequality. Comparing (49) to a sub-additive,
f-separable distortion measure given by

dn(xn, x̂n) =

(
1
n

n

∑
i=1

dq(xi, x̂i)

)1/q

, 0 ≤ q ≤ 1, (50)

we see that the discrepancy between (49) and (50) has to do not only with the different ranges of q but
with the scaling factor as a function of n.

Consider a binary source with Hamming distortion and let xn = 0n, x̂n = 1n. Rewriting (49)
we obtain

dn(xn, x̂n) =
1

n(q−1)/q

(
1
n

n

∑
i=1

dq(xi, x̂i)

)1/q

(51)
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and

lim
n→∞

dn(xn, x̂n) = lim
n→∞

1
n(q−1)/q

(
1
n

n

∑
i=1

dq(0, 1)

)1/q

(52)

= lim
n→∞

1
n(q−1)/q

(
1
n

n

∑
i=1

1

)1/q

(53)

= lim
n→∞

1
n(q−1)/q

= 0. (54)

In the binary example, the limiting distortion of (49) is zero even when the reconstruction of xn gets
every single symbol wrong. It is easy to observe that example (49) is similarly degenerate in many
cases of interest. The distortion measure given by (50), on the other hand, is an example of a non-trivial
sub-additive distortion measure, as can be seen in Figures 2 and 3 for q = 1

2 .

4.2. A Consequence of Theorem 1

In light of the discussion in Section 1.1, an alert reader may consider modifying (16) to

f−1 (E [f (d(X, c(g(X)))]) ≤ d, (55)

and studying the (M, d)-lossy source codes under this new paradigm. Call the corresponding
rate-distortion function Rf(d) and assume that n-letter distortion measures are separable.
Thus, at block length n the constraint (55) is

E
[
f

(
1
n

n

∑
i=1

d(Xi, X̂i)

)]
≤ f(d) (56)

where X̂ = c(g(X)). This is equivalent to the following constraints:

E
[
f

(
1
n

n

∑
i=1

f−1(d̃(Xi, X̂i))

)]
≤ f(d) (57)

and E
[
d̃n(Xi, X̂i))

]
≤ f(d) (58)

where d̃n is an f−1-separable distortion measure. Putting these observations together with Theorem 1
yields

Rf(d) = R̃f−1(f(d)) = R(f−1(f(d))) = R(d). (59)

A consequence of Theorem 1 is that the rate distortion function remains unchanged under this
new paradigm.

5. Conclusions

This paper proposes f-separable distortion measures as a good model for non-linear distortion
penalties. The rate-distortion function for f-separable distortion measures is characterized in
terms of separable rate-distortion function with respect to a new single-letter distortion measure,
f(d(·, ·)). This characterization is straightforward for the excess distortion paradigm, as seen in
Lemma 1. The proof is more involved for the average distortion paradigm, as seen in Theorem 1.
An important implication of Theorem 1 is that many prominant results in rate-distortion literature
(e.g., Blahut-Arimoto algorithm) can be leveraged to work for f-separable distortion measures.
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Finally, we mention that a similar generalization is well-suited for channels with non-linear costs.
That is, we say that bn is an f-separable cost function if it can be written as

bn(xn) = f−1

(
1
n

n

∑
i=1

f (b(xi))

)
. (60)

With this generalization we can state the following result which is out of the scope of this
special issue.

Theorem 2 (Channels with cost). The capacity of a stationary memoryless channel given by PY|X and
f-separable cost function based on single-letter function b(x) is

Cf(β) = sup
PX : E[f(b(X))]≤f(β)

I(X; Y). (61)

Author Contributions: Authors had equal contributions in the paper. All authors have read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Lemmas for Theorem 1

Theorem A1 can be distilled from several proofs in literature. We state it here, with proof, for
completeness; it is given in its present form in [16]. The condition of Theorem A1 applies when the
source satisfies assumptions (1)–(3) in Section 3. This is a consequence of the ergodic theorem and
continuity of f.

Theorem A1. Suppose that the source and distortion measure are such that for any γ > 0 there exists
0 < 4γ < ∞ and a sequence b1, b2, . . . such that

E [dn(Xn, bn)1{4γ < dn(Xn, bn)}] ≤n γ. (A1)

If a rate-distortion pair (R, d) is achievable under the excess distortion criterion, it is achievable under the
average distortion criterion.

Proof. Choose γ > 0. Suppose there is a code (gn, cn) with M codewords that achieves

lim
n→∞

P [dn(Xn, cn(gn(X))) > d + γ] = 0. (A2)

We construct a new code (ĝn, ĉn) with M + 1 codewords:

ĉn(m) =

{
bn, if m = 0

cn(m), if m = 1, . . . , M,
(A3)

ĝn(xn) =

{
0, if dn(xn, cn(gn(xn))) > dn(xn, bn)

gn(xn), if dn(xn, cn(gn(xn))) ≤ dn(xn, bn).
(A4)

Then

dn(xn, ĉn(ĝn(xn))) = min {dn(xn, cn(gn(xn))), dn(xn, bn)} . (A5)
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For brevity denote,

Vn = dn(Xn, ĉn(ĝn(Xn))) (A6)

Wn = dn(Xn, cn(gn(Xn))) (A7)

Zn = dn(Xn, bn). (A8)

Then,

E [Vn] ≤ E [Vn1{Vn ≤ d + γ}]
+E [Vn1{d + γ < Vn ≤ 4γ}] +E [Vn1{4γ < Vn}] (A9)

≤ d + γ +4γP [1{d + γ < Vn}] +E [Vn1{4γ < Vn}] (A10)

≤ d + γ +4γP [1{d + γ < Wn}] +E [Zn1{4γ < Zn}] (A11)

≤n d + 2γ +E [Zn1{4γ < Zn}] (A12)

≤n d + 3γ. (A13)

The following theorem is shown in ([12], Theorem 1).

Theorem A2 (Kieffer). Let X be an information source satisfying conditions (1)–(3) in Section 3, with f being
the identity. Let dn be separable. Given an arbitrary sequence of (n, Mn, d, εn)-lossy source codes, if

lim
n→∞

1
n

log Mn < R(d) (A14)

then

lim
n→∞

εn = 1. (A15)

An important implication of Theorem A2 for f-separable rate-distortion functions is given in the
following lemma.

Lemma A1. Let X be an information source satisfying conditions (1)–(3) in Section 3. Then,

Rf(d) ≥ R̃(f(d)) (A16)

Proof. If R̃(f(d)) = 0, we are done. Suppose R̃(f(d)) > 0. Assume there exists a sequence
{(gn, cn)}∞

n=1 of (n, Mn, dn)-lossy source codes (under f-separable distortion) with

lim sup
n→∞

1
n

log Mn < R̃(f(d)) (A17)

and

lim sup
n→∞

dn ≤ d. (A18)

Since R̃(f(d)) is continuous and decreasing, there exists some γ > 0 such that

lim
n→∞

1
n

log Mn < R̃(f(d + γ)) < R̃(f(d)). (A19)
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For every n, the (gn, cn) lossy source code is also an (n, Mn, d + γ, εn)-lossy source code for some
εn ∈ [0, 1] and f-separable dn. It is also an (n, Mn, f(d + γ), εn)-lossy source code with respect to
separable distortion d̃n(·, ·). We can therefore apply Theorem A2 to obtain

lim
n→∞

εn = 1. (A20)

Thus,

dn ≥ E [dn(Xn, cn(gn(Xn)))] ≥ εn(d + γ), (A21)

> d +
γ

2
(A22)

where (A22) holds for all sufficiently large n. The result follows since we obtained a contradiction
with (A18).

Appendix B. Rate-Distortion Function for a Mixed Source

Lemma A2. The rate-distortion function with respect to f-separable distortion for the mixture source (45) is
given by

Rf(d) = min
(d1,d2) : λd1+(1−λ)d2≤d

max
{
R1

f (d1),R2
f (d2)

}
(A23)

whereR1
f (d) andR2

f (d) are the rate-distortion functions with respect to f-separable distortion for stationary
memoryless sources given by P1 and P2, respectively.

Proof. Observe that,

M∗f (d) ≥ min
(d1,d2)∈D

max
{

M1
f (d1), M2

f (d2)
}

(A24)

M∗f (d) ≤ min
(d1,d2)∈D

max
{

2M1
f (d1), 2M2

f (d2)
}

(A25)

where

D = {(d1, d2) : λd1 + (1− λ)d2 ≤ d} , (A26)

M1
f (d1) and M2

f (d1) are the non-asymptotic limits for P1 and P2, respectively. Indeed, the upper
bound follows by designing optimal codes for P1 and P2 separately, and then combining them to give

M∗f (d) ≤ min
(d1,d2)∈D

{
M1

f (d1) + M2
f (d2)

}
(A27)

≤ min
(d1,d2)∈D

max
{

2M1
f (d1), 2M2

f (d2)
}

. (A28)

The lower bound follows by the following argument. Fix an (M, d)-lossy source code (f-separable
distortion), (g, c). Define

d1 = E [dn(Xn, c(g(Xn)))|Z = 0] , (A29)

d2 = E [dn(Xn, c(g(Xn)))|Z = 1] . (A30)

Clearly, (d1, d2) ∈ D. It also follows that

M ≥ M1
f (d1) (A31)
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since (g, c) is an (M, d1)-lossy source code (f-separable distortion) code for Xn
1 . Likewise,

M ≥ M2
f (d2) (A32)

which proves the lower bound. The result follows directly from (A25).
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