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Abstract: In this paper, a distributed Bayesian filter design was studied for nonlinear dynamics and
measurement mapping based on Kullback–Leibler divergence. In a distributed structure, the nonlinear
filter becomes a challenging problem, since each sensor cannot access the global measurement
likelihood function over the whole network, and some sensors have weak observability of the state.
To solve the problem in a sensor network, the distributed Bayesian filter problem was converted
into an optimization problem by maximizing a posterior method. The global cost function over the
whole network was decomposed into the sum of the local cost function, where the local cost function
can be solved by each sensor. With the help of the Kullback–Leibler divergence, the global estimate
was approximated in each sensor by communicating with its neighbors. Based on the proposed
distributed Bayesian filter structure, a distributed cubature Kalman filter (DCKF) was proposed.
Finally, a cooperative space object tracking problem was studied for illustration. The simulation
results demonstrated that the proposed algorithm can solve the issues of varying communication
topology and weak observability of some sensors.

Keywords: cooperative space object tracking; distributed sensor network; distributed estimation;
cubature Kalman filter; Kullback–Leibler divergence; consensus

1. Introduction

Recently, space situational awareness (SSA) [1–3] has attracted more and more attention, because
of its broad applications in space surveillance, tracking of objects in Earth orbit, monitoring the
conditions of Earth’s magnetosphere, ionosphere and thermosphere, etc. Among the varieties of SSA
systems, the space-based sensor network [4] (e.g., distributed satellite system) has many advantages
compared with ground-based ones, since there is no atmosphere and weather problems for space-based
sensor networks. Object tracking is a key problem in SSA, because many space missions highly depend
on the results of object tracking, i.e., threat detection, cooperative search and collision avoidance.
Kalman filter-based estimation [5,6] plays a key role among tracking methods, due to its ability of
real-time estimation and non-stationary process tracking.

The main challenging problem in tracking objects in Earth orbit is the strong nonlinear dynamics
of objects. Existing approximate nonlinear filters can be roughly classified into two categories:
linearization and sampling approaches. The linearization approach is based on linearizing the
nonlinear dynamics and measurement map and then employing the classical Kalman filter equations.
For example, the extended Kalman filter (EKF) [7,8] puts the Jacobians of dynamics and measurement
maps into the structure of the Kalman filter to estimate the state and corresponding covariance.
It should be noted that the EKF is highly effective and has a broad range of applications [9,10].
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The sampling approach is to use a collection of state samples to approximate the state estimate and its
error covariance, i.e., uncertain Kalman filter (UKF) [11,12] and cubature Kalman filter (CKF) [13]. In [5],
the authors studied the spacecraft tracking problem using sampled-data Kalman filters. Notice that
UKF introduces a nonzero scaling parameter, which defines a non-zero center of sampling points. The
CKF does not entail any free parameter and is more accurate than the UKF [14]. There exist many
works studying the centralized estimation method, which need a central node to fuse information from
the whole network [15,16]. For example, in [15], the authors proposed a fusion method based on the
cubature information filter for the target tracking problem. However, when it comes to a distributed
setting and the central node failure, information is exchanged only between neighbors.

Most of the existing distributed Kalman filters include consensus terms in the Kalman filter
structure [17–22]. For example, Olfati-Saber [18] constructed a Kalman consensus filter (KCF), in which
the estimates of each node are provided by consensus on measurement information. The work in
[17] proposed an optimal KCF and then proved the convergence property. However, KCF in [17]
is not scalable, since it needs all-to-all communications. Additionally, Zhou et al. [23,24] studied
KCF for switching communication topologies. The work in [19] considered the KCF with consensus
on the inverse covariance matrix and the information vector. It should be noted that the works
in [19] only need communication once between two sample instances and do not need any global
information. When it comes to the nonlinear case, the main difficulty is that the joint (all-sensor)
likelihood function is not available for each sensor. Several distributed Bayesian filters were proposed
to solve the problem [20,25,26]. In [25], a likelihood consensus-based distributed Bayesian filtering
was studied, where the joint likelihood function was approximated by the consensus algorithm,
and a distributed particle filter was proposed. Nevertheless, particle filters suffer from the burden
of computational complexity, which is not suitable for real-time applications. In [20], the authors
extended the results of [19] to a class of nonlinear systems and proposed a distributed extended
Kalman filter. In [26], the authors proposed a distributed cubature information filter (DCIF), which
was used for the cooperative space object tracking problem. However, in [26], information of the whole
network is need, which may not be suitable for application. Therefore, we need to investigate a more
scalable distributed Bayesian filter.

In this paper, a distributed sensor network architecture without a fusion center is considered,
and a global estimation (global estimation means that the measurements of all sensors are processed by
one sensor) task is performed by consensus algorithms through local processing and communicating
with neighbors such that the final global estimate is obtained locally at each sensor. We first discuss
the distributed Bayesian filter (DBF) by maximizing a posterior estimation method. Then K–L
divergence-based consensus is used to approach the global posterior estimation. In order to improve
the effectiveness and practicality of DBF, the cubature rules are adopted to formulate a distributed
cubature Kalman filter. Notice that K–L divergence as an information metric has been used in several
Kalman filters [19,27–30]. Similar to [19], K–L divergence in our paper is used to measure the difference
of posterior distributions between sensors.

The contributions of this paper are summarized as follows:

1. A distributed Bayesian filter is developed, which can be treated as an extension of the traditional
Bayesian filter [7] and an extension of distributed linear filters [18,19,31] to a nonlinear case. By
maximizing a posterior estimation method, we show that the global posterior estimation can
be achieved by consensus of each local posterior distribution, where the consensus of PDFs is
obtained by an information-theoretic approach.

2. Based on the developed distributed Bayesian filter structure, a distributed cubature Kalman
filter (DCKF) is proposed, which can improve the effectiveness and practicality for applications.
Different from the design in [26], the only global information we required is the number of sensor,
which is more suitable for applications.

3. The cooperative space object tracking problem is studied. Different from [26], we focus on the
scenario in which the communication topology may change due to the blockage of the Earth.
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Moreover, we also consider the case that measurement mapping of each sensor may differ, which
will lead to the problem of weak observability for some sensors. The issues of weak observability
and blockage are handled by the proposed DCKF.

The remainder of paper is organized as follows. The problem formulation is given in Section 2.
Then, the distributed Bayesian filter is discussed, while a fully-distributed cubature Kalman filter is
proposed in Section 3. Following that, numerical simulations on space object tracking are shown in
Section 4. The discussions are provided in Section 5. Finally, the conclusion of this paper is provided
in Section 6.

Notations: The superscript “>” represents the transpose. E{x} denotes the mathematical
expectation of the stochastic variable x. diag{·} represent the diagonalization scalar elements. tr(P) is
the trace of the matrix P, and var(x) is the variance of x. p(·) denotes the probability density function
(PDF), and N(0, U) is the Gaussian distribution with mean zero and variance matrix U.

2. Problem Formulation

In this section, we first give the formulating of distributed Bayesian filtering and describe the
consensus of PDFs.

2.1. Distributed Bayesian Filter Formulation

Consider the following discrete-time stochastic non-linear dynamics,

xk+1 = f (xk) + wk, (1)

where xk ∈ Rn is the state that needs to be estimated and wk is zero mean Gaussian noise with
E{wkw>k } = Qk. Dynamics (1) describes the state transition p(xk|xk−1). Assume that the state xk is
observed by a network of N sensors, whose measurement model is given as:

zi,k = h(xk) + vi,k, i = 1, 2, . . . , N, (2)

where zi,k ∈ Rmi is the measurement by sensor i at time k. vi,k ∼ N(0, Ri,k) is the measurement noise of
sensor i, where 0 ∈ Rm

i denotes the zero vector. Measurement Equation (2) describes the measurement
likelihood function p(zi,k|xk), i = 1, 2, . . . , N. In this paper, we assume that wk and vi,k∀i ∈ V are
independent, and all zi,k, ∀i ∈ V are conditionally independent of xk.

The communication of the network is modeled by an undirected graph Gk = (V , Ek,Ak),
which consists of the set of sensors V = {1, 2, . . . , N}, the set of edges Ek ⊆ V × V and the weighted
adjacent matrix Ak = [aij,k]. In the weighted adjacent matrix Ak, all the elements are nonnegative,
row stochastic, and the diagonal elements are all positive, i.e., aii,k > 0, aij,k ≥ 0, ∑j∈V aij,k = 1.
If aij,k > 0, j 6= i, there is an edge (i, j) ∈ Ek, which means nodes i and j can directly communicate, and node
j is called the neighbor of node i. The degree matrix is defined as D(G) = diag{d1, d2, . . . , dN} ∈ RN×N ,
where the diagonal element di is the number of nodes connected to node i. All the neighbors of node
i including itself can be represented by the set {j ∈ V|(i, j) ∈ Ek}

⋃{i} , Ni,k, whose size is denoted
as |Ni,k|. In this paper, we assume that the undirected graph Gk is connected for all k.

The adjacent matrix Ak represents the weights of nodes. Note that for a certain graph, there exists
an infinite number of associated adjacency matrices. To ensure the double stochastic nature of adjacent
matrix Ak, a possible choice of the weights [32] is:

aij,k =
1

max{|Ni,k|, |Nj,k|}
, j ∈ Ni,k, i 6=j, (3)

aii,k = 1− ∑
j∈Ni,k,j 6=i

aij,k. (4)
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Denote the global measurement as zk = [z>1,k, z>2,k, . . . , z>N,k]
>. The relationship between zk and xk

can be given as global likelihood function p(zk|xk), and the relationship between xk and measurement
zi,k can be described as local likelihood function p(zi,k|xk). Under the assumption that the agents
are independent of each other, the global likelihood function can be expressed as a product of local
likelihood functions,

p(zk|xk) =
N

∏
i=1

p(zi,k|xk). (5)

In this paper, we assume that the state xk is conditional independent with all past measurements
z1:k−1, i.e., p(xk|z1:k) = p(xk|zk). Sensor i knows the dynamics (1) and local likelihood function p(zi,k|xk)

and does not know the global likelihood function p(zk|xk). Sensor i can only communicate with its
neighbors.

The aim of the Bayesian filter is to compute posterior distribution p(xk|zk). The recursive solution
to compute p(xk|zk) consists of prediction and update steps. The predictive distribution of state xk can
be given by the Chapman–Kolmogorov equation,

p(xk|zk−1) =
∫

p(xk|xk−1)p(xk−1|zk−1)dxk−1. (6)

The posterior can be given as:

p(xk|zk) =
1
c̃

p(xk|zk−1)p(zk|xk), (7)

where c̃ =
∫

p(xk|zk−1)p(zk|xk)dxk denotes the normalization. However, for the Bayesian filter (6) and
(7), the computational complexity of state estimation is usually intractable. A computationally-feasible
approximation is provided by the cubature Kalman filter [13,14], which uses cubature rules to compute
numerical integration for multi-dimensional integrals. It has been shown that the CKF has better
performance compared with EKF and UKF [13].

It can be seen from (6) and (7) that if one can access the global likelihood p(zk|xk), the global
estimate x̂k can be obtained. However, in our paper, each sensor only knows local likelihood function
p(zi,k|xk), and therefore, we have to propose a distributed approach to estimate xk. In Section 3, we
proposed a distributed Bayesian filter based on the consensus of PDFs, which is obtained by the
Kullback–Leibler divergence described in Section 2.2.

2.2. Consensus of Probability Densities

In this section, we will describe the consensus of probability density functions, which will be used
to solve the distributed Bayesian filter problem in Section 3.

The traditional average consensus problem is defined under Euclidean space [32]. However, the
measure under Euclidean space is not suitable for the probability distribution. For example, two
normal distributions N(0, 10,000) and N(10, 10,000) are almost indistinguishable, the Euclidean distance
between the parameter is 10. In contrast, the distributions N(0, 0.01) and N(0.1, 0.01) barely overlap,
but this is not reflected in the Euclidean distance, which is only 0.1. A more natural measure between
two densities is Kullback–Leibler divergence rather than Euclidean distance.

K–L divergence between two PDFs p(· ) and q(· ) is defined as:

DKL(p‖q) =
∫

p(x) log
p(x)
q(x)

dx. (8)
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Following [19,33], the centroid depending on K–L divergence (CKL) is considered, which describes
the centroid form initial PDFs,

p̄ = arg inf
N

∑
i=1

aiDKL(p‖pi). (9)

where ai ≥ 0,∀i are weights and should satisfy ∑i∈N ai = 1. The centroid in (9) turns out to be [19],

p̄(x) = ∏N
i=1[pi(x)]ai∫

∏N
i=1[pi(x)]ai dx

. (10)

It is worth noting that the CKL can be seen as an example of Bregman information as the mean
of Bregman divergence [34,35]. An important feature of (10) is that it is suitable for distributed
computation. Namely, the CKL can be achieved by some consensus algorithms, which requires that
the data are only transmitted between agents and their neighbors at each step. Thus, CKL can be
computed by the consensus algorithm as follows,

p(t)i (x) =
∏j∈Ni

[p(t−1)
j (x)]aij,k∫

∏j∈Ni
[p(t−1)

j (x)]aij,k dx
(11)

where t = 1, 2, . . . refer to the t-th step and aij,k is the weights between agent i and j.
When the distribution is given, the consensus of PDFs will be achieved by manipulating the

corresponding parameters. The following lemma shows how to compute consensus on the exponential
family iteratively, which can be found in [36].

Lemma 1. Consider the network Gk = (V ,Ek,Ak). Let a PDF p(t)i (x) = f (x; λ
(t)
i ),∀i ∈ N be exponential

distribution families, where λ is a natural parameter. Then, iteratively update (11) given by:

λ
(t+1)
i = ∑

j∈Ni

aij,kλ
(t)
j (12)

Remark 1. An exponential family can be expressed in the following form [37],

p(θ) = h(θ) exp{λ>u(θ)− Ag(λ)}, (13)

where λ is a natural parameter, Ag(λ) is a log-normalizer and h(θ) is a carrier measure [38]. The exponential
families include many of the most common distributions, e.g., Gaussian, Poisson, Bernoulli, Wishart, and many
other. Namely, those distributions can be written in the form of exponential families (13).

Remark 2. It should be noted that K–L divergence defined in (8) is not symmetric. In [33], the authors
discussed sided Bregman centroids, i.e., right-sided centroid p̄R = arg inf ∑N

i=1 aiDKL(pi‖p) and left-sided
centroid p̄L = arg inf ∑N

i=1 aiDKL(p‖pi). As shown in [33] (Theorem 3.1 in [33]), p̄R can be expressed as a
convex combination of PFDs, i.e., p̄R = ∑N

i=1 ai pi, which always is the center of mass. Notice that p̄R is hard to
obtain, if pi and pj are correlated. However, for the distributed estimation problem, pi from different nodes need
to be fused at each time k, and consequently, they are correlated (see [17]). In this paper, we only consider the
left-sided centroid (9), which is easy to compute as shown in (12).

3. Distributed Cubature Kalman Filter

In this section, we first discuss the distributed Bayesian filter based on the maximum a posterior
method and propose a distributed cubature Kalman filter based on K–L divergence.
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3.1. Distributed Bayesian Filter

The global posterior distribution can be given as:

p(xk|zk) =
1
c̃

p(xk|zk−1)p(yk|xk) (14)

=
1
c̃

p(xk|zk−1)
N

∏
i=1

p(zi,k|xk). (15)

Notice that the predictive distribution is p(xk|zk−1) = N(x̃k, P̃k), and the likelihood function is
p(zi,k|xk) = N(zi,k − hi(xk)|Ri,k). Therefore, under the assumption of Gaussian noises, we can obtain
the log posterior distribution as follows,

log p(xk|zk) = log
1
c̃
+ log p(xk|zk−1) +

N

∑
i=1

log p(zi,k|xk) (16)

= log
1
c̃
+ log

1√
(2π)n|P̃k|

+
N

∑
i=1

log
1√

(2π)mi |Ri,k|

− 1
2
(xk − x̃k)

>P̃−1
k (xk − x̃k)−

1
2

N

∑
i=1

(zi,k − hi(xk))
>R−1

i,k (zi,k − hi(xk)). (17)

Rearranging the items of Equation (17), we obtain:

log p(xk|zk) = C̃ +
1
N

N

∑
i=1

{
−1

2
(xk − x̃k)

> P̃−1
k (xk − x̃k)−

1
2

N(zi,k − hi(xk))
>R−1

i,k (zi,k − hi(xk))

}
(18)

where C̃ is a constant term that does not effect the estimate of xk. By the maximum a posteriori method,
our problem becomes:

max
xk

Fk(xk) =
1
N

N

∑
i=1
− fi,k(xk) (19)

where fi,k =
1
2 (xk− x̃k)

>P̃−1
k (xk− x̃k) +

1
2 N(zi,k− hi(xk))

>R−1
i,k (zi,k− hi(xk)). Notice that Problem (19)

is equivalent to min
xk

1
N ∑N

i=1 fi,k(xk).

Although the global cost function Fk(xk) over the whole network can be decomposed, we cannot
independently minimize the local cost function fi,k(xk) at each node to reach a global optimum. A key
point is that the global cost function −Fk(xk) of the full measurements over the whole network is
definitely larger than or equal to the average local cost function fi,k(xk) over all nodes. Namely,

minxk − Fk(xk) = −Fk(x∗k )
= 1

N ∑N
i=1 fi,k(x∗k )

≥ 1
N ∑N

i=1 fi,k(x∗i,k)
= 1

N ∑N
i=1 minxk fi,k(xk),

(20)

where x∗k is the optimal distribution minimizing −F(xk) and x∗k is the one minimizing fi,k(xk).
The equality in the second line holds if and only if x∗k is also the optimal solution for all the local cost
functions fi,k(xk), which is not always the case. Therefore, we cannot find the optimal solution by
individually minimizing the local cost function at each sensor. However, from (20), we can see that the
global optimal solution over the whole network can be approximated by the average local optimal
solution of each sensor. Therefore, we can construct a distributed approach to solve the problem based
on average consensus.
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Taking the derivative of fi,k with respect to xk, we have:

Oxk fi,k ≈P̃−1
k (xk − x̃k) + NH>i,kRi,k [hi(x̃k)− zi,k + Hi,kxk − Hi,k x̃k] (21)

=(P̃−1
k + NH>i,kR−1

i,k Hi,k)(xk − x̃k) + NH>i,kR−1
i,k [hi(x̃k)− zi,k] . (22)

Here, we use the fact hi(xk) ≈ hi(x̃) + Hi,k(xk − x̃k) with Hi,k =
∂hi(xk)

∂xk
|xk=x̃k . Denote x̌i,k as the optimal

solution with respect to problem minxk fi,k. The estimate x̌i,k by sensor i can be obtained by letting
Oxk fi,k be equal to zero, and we get:

x̌i,k = x̃k + N(P̃−1
k + NH>i,kR−1

i,k Hi,k)
−1H>i,kR−1

i,k (zi,k − hi(x̃k)). (23)

By the matrix inverse lemma, we have:

N(P̃−1
k + NH>i,kRi,k Hi,k)

−1H>i,kR−1
i,k =(I + NP̃k H>i,kRi,k Hi,k)

−1NP̃k H>i,kR−1
i,k (24)

=NP̃k H>i,k(NHi,k P̃H>i,k + Ri,k)
−1. (25)

Substituting (25) into (23), we obtain:

x̌i,k = x̃k + NP̃k H>i,k(NHi,k P̃H>i,k + Ri,k)
−1(zi,k − hi(x̃k)). (26)

The estimate error covariance can be computed as follows,

P̌i,k = P̃k + Pi,xz,kP−1
i,zz,kP>i,xz,k, (27)

where:

Pi,zz,k = NHi,k P̃H>i,k + Ri,k, (28)

Pi,xz,k = NP̃k H>i,k. (29)

Remark 3. It should be noted that Pi,zz,k and Pi,xz,k are a little different with the standard extended Kalman
filter, even though they can be obtained by each sensor individually. With N = 1 in (26) and (27), it will reduce
to the standard Kalman filter.

Up to now, we obtain the optimal solution of minxk fi,k as x̌i,k and P̌i,k, which follows the Gaussian
distribution N(x̌i,k, P̌i,k). As discussed in (20), the global optimal solution can be approximated
by averaging local estimate N(x̌i,k, P̌i,k). However, the traditional average consensus algorithm in
Euclidean space may not be suitable to compute the average of PDFs. Therefore, we use the consensus
of PDFs described in Section 2.2 to compute the global solution to Problem (19).

The natural parameter of Gaussian distribution pi(x|x̌i, P̌i) is λi =

[
P̌−1

i x̌i
− 1

2 P̌−1
i

]
[38]. Then, the global

posterior distribution can be approximated by the consensus of probability densities (12) as follows,

(P̌s+1
i )−1 x̌s+1

i = ∑
j∈Ni

aij,k(P̌s
j )
−1 x̌s

j , (30)

(P̌s+1
i )−1 = ∑

j∈Ni

aij,k(P̌s
i )
−1, (31)

where s = 1, . . . , S is the step of the consensus. Then, the estimates of each node can be achieved by
Pi,k = (P̌S

i,k)
−1 and x̂i,k = (Pi,k)

−1(P̌S
i )
−1 x̌S

i .
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Remark 4. In [19], each sensor performed a standard Kalman filter, then the fusion estimation was obtained
based on consensus of PDFs. It should be noted that, if N = 1, (26)–(27) will reduce to the measurement update
of the standard Kalman filter. We derive an optimal solution of each sensor for Problem (19), which may achieve
better performance compared to [19]. However, we should highlight that [19] provided meaningful information
the theoretical expression for the distributed filter.

Equations (26)–(31) provide a general framework of the distributed Bayesian filter for posterior
estimation. Based on the measurement update Equations (26)–(31), we can construct distributed
nonlinear filtering by combining the existing method for state propagation. For example, in [29],
the ensemble Kalman filter (EnKF) was used for state propagation, which uses the Monte Carlo
technique for integral operation in the Bayesian filtering. In this paper, we use cubature rules for state
propagation and measurement update, which we will discuss in the following.

3.2. Distributed Cubature Kalman Filter

Suppose that the state xk−1 is approximated by sensor i at time k− 1 as follows,

p(xk−1|zi,k−1) = N(x̂i,k−1, P̂i,k−1), (32)

where N(x, P) denotes the Gaussian distribution with mean x and covariance P. The predictive
distribution p(xk|zi,k−1) = N(x̃i,k, P̃i,k) can be obtained by the prediction step of CKF. To be specific, a
set of cubature points [13] can be provided by:

Xi,t,k−1 =Si,k−1ξt + x̂i,k−1, (33)

X∗i,t,k = f (Xi,t,k−1), (34)

where the basic cubature point is given by ξt =
√

m
2 × [1]t, t = 1, . . . , m, m = 2nx and [1]t denotes the

t-th element of set [1]. For example, let [1] ∈ R2, then it represents the set

{[
1
0

]
,

[
0
1

]
,

[
−1
0

]
,

[
0
−1

]}
.

Then, the predicted state and covariance are given by:

x̃i,k =
1
m

m

∑
t=1

X∗i,t,k, (35)

P̃i,k =
1
m

m

∑
t=1

X∗i,t,kX∗>i,t,k − x̃i,k x̃>i,k + Qk−1. (36)

Denote P̃i,k = S̃i,kS̃>i,k; under the assumption that these errors can be well approximated by
the Gaussian, the prediction measurement can be obtained as follows,

z̃i,k =
1
m

m

∑
t=1

Z̃i,t,k. (37)

where the set of cubature points Z̃i,t,k, t = 1, . . . , m is given by:

X̃i,t,k =S̃i,kξt + x̃i,k, (38)

Z̃i,t,k =hi(X̃i,t,k). (39)

In the Bayesian framework, these prediction means and covariances will be incorporated in the
procedure as prior information of the state to propel the measurement update. Based on Equations (26)
and (27), the local posterior can be given as follows,

x̌i,k =x̃i,k + Pi,k,xzP−1
i,k,zz(zi,k − z̃i,k) (40)
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P̌i,k =P̃k + Pi,k,xzP−1
i,k,zzP>i,k,xz. (41)

Different from the standard cubature Kalman filter, the innovation covariance matrix Pi,zz,k and
cross-covariance matrix Pi,xz,k of node i can be given according to (28) and (29) as follows,

Pi,zz,k =N

[
1
m

m

∑
t=1

Z̃i,t,kZ̃>i,t,k − z̃i,k z̃>i,k

]
+ Ri,k, (42)

Pi,xz,k =N

[
1
m

m

∑
t=1

X̃i,t,kZ̃>i,t,k − x̃i,k z̃>i,k

]
. (43)

By the consensus of Gaussian distributions (30), the global estimate can be approximated as:

(Ps+1
i )−1 x̂s+1

i = ∑
j∈Ni

aij,k(Ps
j )
−1 x̂s

j , s = 1, 2, . . . (44)

(Ps+1
i )−1 = ∑

j∈Ni

aij,k(Ps
i )
−1, s = 1, 2, . . . . (45)

With the iterations (44) and (45), we can get the final estimation of state in each sensor. Meanwhile,
the iterative estimation will approximate to the global solution of Problem (20) because of the
convergence of the average consensus of PDFs as S → ∞. In practice, the convergence will not
be achieved fully, because the total number of iterations S is finite. Therefore, the distributed
implementation will not perform as well as the centralized one. We summarize the distributed
cubature Kalman filter in Algorithm 1.

In (36), Qk can be chosen as a sufficiently small constant matrix. Notice that the initialization
of all the local estimates is exactly the same mean of the initial state. However, in practice, it is not
easy to let every sensor know the prior knowledge. A more suitable setting is xi,0 = 0, ∀i ∈ V and
Pi,0 = 0, ∀i ∈ V , which means that there does not exist prior knowledge.

In [26], the authors proposed DCIF for cooperative space object tracking. For comparison,
we briefly summarize the main steps of DCIF in Table 1, where the prediction step is omitted due to it
being the same as the prediction step of DCKF. In DCIF, z̃i,k and Pi,xz,k can be obtained by (39) and (43),
and 0 < ε < 1

∆max
, ∆max = maxi{di}.

Table 1. Local estimation and consensus steps of DCIF.

Local estimation:
ỹi,k = P̃−1

i,k x̃i,k, Ỹi,k = P̃−1
i,k

ii,k ≈ P̃−1
i,k Pi,xz,kR−1

i,k

[
(zi,k − z̃i,k) + P>i,xz,k(P̃−1

i,k )> x̃i,k

]
,

Ii,k ≈ P̃−1
i,k Pi,xz,kR−1

i,k P>i,xz,k(P̃−1
i,k )>,

yi,k =
ỹi,k
N + ij,k, Yi,k =

Ỹi,k
N + Ij,k;

Consensus:
for s = 1, . . . , S do
ys+1

i,k = ys
i,k − ε ∑j∈Ni

(ys
i,k − ys

j,k),

Ys+1
i,k = Ys

i,k − ε ∑j∈Ni
(Ys

i,k −Ys
j,k),

end for
Estimate of sensor i:
Pi,k = (NYS

i,k)
−1, x̂i,k = (Yi,k)

−1(yS
i,k)
−1.
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Algorithm 1 DCKF at node i at time k

Ensure: At time k, a prior information Pi,k−1 = Si,k−1S>i,k−1 and x̂i,k−1;

• Prediction

Xi,t,k−1 =Si,k−1ξt + x̂i,k−1, X∗i,t,k = f (Xi,t,k−1), x̃i,k =
1
m

m

∑
t=1

X∗i,t,k,

P̃i,k =
1
m

m

∑
t=1

X∗i,t,kX∗>i,t,k − x̃i,k x̃>i,k + Qk−1.

• Local estimation

– Measurement prediction

z̃i,k =
1
m

m

∑
t=1

Z̃i,t,k, X̃i,t,k = S̃i,kξt + x̃i,k, Z̃i,t,k = hi(X̃i,t,k).

– Local estimate and estimate error covariance

Pi,zz,k =N

[
1
m

m

∑
t=1

Z̃i,t,kZ̃>i,t,k − z̃i,k z̃>i,k

]
+ Ri,k,

Pi,xz,k =N

[
1
m

m

∑
t=1

X̃i,t,kZ̃>i,t,k − x̃i,k z̃>i,k

]
,

x̌i,k =x̃i,k + Pi,k,xzP−1
i,k,zz(zi,k − z̃i,k),

P̌i,k =P̃k + Pi,k,xzP−1
i,k,zzP>i,k,xz.

• Consensus

– for s = 1 to S do

(P̌s+1
i )−1 x̌s+1

i = ∑
j∈Ni

aij,k(P̌s
j )
−1 x̌s

j , s = 1, 2, . . .

(P̌s+1
i )−1 = ∑

j∈Ni

aij,k(P̌s
i )
−1, s = 1, 2, . . .

– end for
• Compute the estimate x̂i,k and covariance matrix Pi,k,

Pi,k = (P̌S
i,k)
−1, x̂i,k = (Pi,k)

−1(P̌S
i )
−1 x̌S

i .

Remark 5. The algorithm in [26] can approach the centralized solution, which is achieved by performing
a consensus on information pairs, i.e., H̃>i,kR−1

i,k (ži,k + H̃i,k x̃i,k) and H̃>i,kR−1
i,k H̃i,k, where H̃i,k ≈ P̌−1

i,k Pi,xz,k is the
pseudo measurement matrix and ži,k = zi,k − z̃i,k. The main limitation of [26] is that it needs a sufficiently large
number of consensus steps at each time step, so that the local information pairs can spread to the whole network.
It should be noted that we do not limit the range of S. In [19], the convergence properties were proven for such a
fusion principle, even S = 1 in the linear dynamics case, which used the fact that the whole posterior PDFs are
combined rather than the state or the information pairs. A distributed extended Kalman filter was discussed in
[20], which needs the linearization of nonlinear dynamics and measurement mapping. We proposed a distributed
cubature Kalman filter, which does not need linearization and can achieve better performance. On the other hand,
we provide a structure for the distributed Bayesian filter with the help of K–L divergence, which could approach
the centralized solution more efficiently compared with the one in Euclidean space.
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Remark 6. An important feature of proposed algorithm is that the only used global information is the number
of sensors N, which is suitable in application. In [26], the author proposed a distributed cubature information
filter (DCIF) for the cooperative tracking space object, where the number of sensor N and the maximum degree
∆max of the network are needed. However, in practice, ∆max may change and is not easy to obtain in time.

4. Numerical Simulations

In this section, we illustrate the effectiveness of the proposed DCKF for the space object tracking
problem, where the scenario is shown in Figure 1. A distributed satellite system is observing a
non-cooperative object, where the bearing-only measurement information is considered. The number
of observation satellites is N = 6.

 

Figure 1. Scenario of cooperative space object tacking.

In what follows, we first give the dynamics of the space object and measurement mapping by
a distributed satellite system, then we solve the cooperative space object tracking problem by the
proposed DCKF.

4.1. Dynamics of Space Target

The dynamics of space object can be described as follows,

r̈ = − µ

‖ r ‖3 r + J2 + w, (46)

where r = [rx ry rz]> represents the position of the object in the Earth-centered inertial (ECI) coordinate
frame, µ is the gravitational constant, J2 stands for perturbations and w is Gaussian noise with
zero mean.

Denote x = [rx, ry, rz, ˙rx, ˙ry, ṙz]> as the state variables; we can rewrite (46) in state-space
description as follows,

ẋ =



˙rx
˙ry

ṙz
− µ

‖r‖3 rx + J2,1 + w1

− µ

‖r‖3 ry + J2,2 + w2

− µ

‖r‖3 rz + J2,3 + w3


= f (x), (47)
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where w = [w1, w2, w3]
> is process noise, and the perturbation has the following form,

J2 =
3
2

aJ(
Er

‖ r ‖3 )
2 µ

‖ r ‖3


rx(5 rz2

‖r‖2 − 1)

ry(5 rz2

‖r‖2 − 1)

rz(5 rz2

‖r‖2 − 3)

 , (48)

where Er is the Earth radius, aJ ≈ 0.00108263.
Dynamics (47) is a continuous time model, thus (47) should be discretized in order to apply the

EKF algorithm. Let T = tk+1 − tk be the sampling period, then the discrete model of (47) is described
in the following,

xk+1 = xk +
∫ tk+1

tk

f (x(t))dt. (49)

When T = tk+1 − tk is sufficient small, the Taylor expansion of f (x(t)) is:

f (x(t)) ≈ f (xk) + A(xk) f (xk)(t− tk), (50)

where A(xk) has the following form:

A(xk) =
∂ f (xk)

∂x
|t=tk =

[
∂ṙ
∂r

∂ṙ
∂ṙ

∂r̈
∂r

∂r̈
∂ṙ

]
=

[
03×3 I3

A21 03×3

]
. (51)

Combine (49)–(51), the discrete model can be given as:

xk+1 = xk + f (xk)T + A(xk) f (xk)
T2

2
, (52)

where xk ∈ Rnx is the state that needs to be estimated.
The discretized dynamics (52) is used in the prediction step of the EKF. It can be seen that the

higher order terms are ignored in (50), which may enlarge the estimate errors. The state of the object
is completely represented by x(t) ∈ R6, which includes its position and velocity. When we describe
the satellite moving along an orbit, it is often represented in the form of six orbital parameters, i.e.,
the semi-major axis ah, the eccentricity e, the inclination u, the argument of perigee γ, the longitude of
the ascending node Γ and the mean anomaly mh. The nonlinear transformations that converts position
and velocity into orbital elements can be found in [39].

4.2. Measurement Model

The dynamics (47) is measured by a distributed satellites system. In this example, we consider
a satellite equipped with an optical sensor that can obtain the azimuth α or elevation β of the object.
Measurement mapping of azimuth α and elevation β can be expressed as follows,

αk = arctan(
ryk − řyk
rxk − řxk

) + vak, (53)

βk = arctan(
rzk − řzk√

(rxk − řxk)2 + (ryk − řyk)
2
) + vbk, (54)

where [řxk, řyk, řzk]
> is the position of the satellite at time k and vak and vbk are measurement noise at

time k.
In [26], the authors assume that the measurement equation of different satellites is the same.

However, in practice, this does not always hold. In this example, we assume that a satellite can
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obtain either or both of the azimuth α and elevation β, which has a broader range of application. The
measurement equation of the i-th satellite can be written as follows,

zi,k = hi(xk) + vi,k, i = 1, . . . , N, (55)

where N is the number of satellites. Due to blockage of the Earth, it is more suitable to model
communication topology as time-varying.

Our aim is to estimate state xk by a network of satellites. It should be noted that, if one satellite
can only obtain azimuth α, then the estimates obtained only by this satellite will be very large or
even divergent. Figures 2 and 3 show the mean square error (MSE) of EKF for space object tacking
in a single satellite, where only the azimuth α can be measured. It can be seen from Figures 2 and 3
that both the MSE of position and velocity are very large. More importantly, since the Earth may
block the communication between satellites, the communication topology may change. Therefore, it is
not reasonable to know the information of the global communication topology for each satellite in
real time.
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Figure 2. Mean square errors of position by a single satellite.

0 50 100 150 200 250 300
150

200

250

300

350

400

450

500

M
S

E
 o

f V
el

oc
ity

 (
m

/s
)

step

 

 
EKF

Figure 3. Mean square errors of velocity by a single satellite.
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4.3. Simulation Results

The trajectories of observation satellites and the true object are generated by the
six orbital parameters as shown in Table 2. We consider the dynamics (47); the state
of the object is x = [rx, ry, rz, ˙rx, ˙ry, ṙz]>. The noise variance of the process is Qk =

diag{10−4, 10−4, 10−4, 10−6, 10−6, 10−6}. The initial state of each agent was chosen randomly
from N(x0, P0), where x0 = [x>p0 x>v0]

> is the true initial state of the object, P0 =

diag[(1010 1010 1010 1002 1002 1002)], and xp0 = [4.36 × 106 m 3.13 × 106 m 6.61 × 106 m]>,
xv0 = [−5505.2 m/s −207.5 m/s 3954.8 m/s]>.

Numerical simulations are conducted through Monte Carlo experiment, in which 50 Monte Carlo
trials are done for each tracking algorithm. The total of the mean square estimation errors (MSE) is
considered, which is widely used to indicate the performance of estimates, which is defined as:

MSEk =
1
N

N

∑
i=1

[
1
50

50

∑
j=1

(x̂(j)
i,k − xk)

T(x̂(j)
i,k − xk)

]
. (56)

The performance of mean square estimation for each satellite is defined as:

MSEi,k =
1
50

50

∑
j=1

(x̂(j)
i,k − xk)

T(x̂(j)
i,k − xk). (57)

The Runge–Kutta method is used to generate prediction x̃i,k in DCKF. Namely, the solution of
nonlinear propagation X∗i,t,k = f (Xi,t,k−1) is computed by the Runge–Kutta method.

Table 2. Six orbital parameters of the observation satellites and object.

Six Orbital Parameter ah (km) e u (Deg) γ (Deg) Γ (Deg) mh (Deg)

Object 8667.13 0 73.9116 14.108 0 52.632
Satellite 1 9067.13 0 73.9116 128.495 0 52.942
Satellite 2 8067.1 0 73.9116 91.0768 0 18.88
Satellite 3 8667.13 0 73.9116 103.658 0 44.818
Satellite 4 8467.13 0 73.9116 116.24 0 70.756
Satellite 5 8267.13 0 73.9116 88.8216 0 96.694
Satellite 6 9067.13 0 73.9116 88.495 0 112.942

Simulation Case 1: We test the performance of the proposed DCKF, where the communication
topology is fixed as shown in Figure 4. We assume each satellite can obtain both azimuth α and
elevation β, where the measurement mapping is defined in (53) and (54). The measurement noise
variances are generated by Ri = i· diag{0.0012 0.0012}, i = 1, . . . , N. The number of consensus is
S = 1.

S1 S2 S3

S4S5S6

Figure 4. Topology of the network.

For Simulation Case 1, the comparison of MSE curves of different satellites is shown in Figure 5.
The filtering precision and stability of the proposed DCKF for different satellites can be seen. It also
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illustrates that the estimations of different satellite almost reach a consensus, which can increase the
robustness of tracking. More importantly, the estimate of each sensor is stable and converges even if
the number of consensus is S = 1, which can reduce the communication rate compared with DCIF
in [26].
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Figure 5. MSE curves of distributed cubature Kalman filter (DCKF) by different satellites under a fixed
topology. (a) MSE of position; (b) MSE of velocity.

Simulation Case 2: In this case, we test the performance of the proposed DCKF for the switching
topology, i.e., the communication is time-varying. To be specific, the communication topology is
switching among the given topologies as shown in Figure 6. The setting of initialization and noise
variances is the same as Simulation Case 1.

As shown in Figure 7, the filtering precision and stability of the proposed DCKF for different
satellites are also demonstrated. It should be noted that, for the switching case, the estimate of
each node only needs the information of its neighbors. However, the algorithm in [16] needs global
information ∆max (∆max = 3, 2, 3 in Figure 6), where ∆max = maxi di, di is the degree of node i, which is
not easy to obtain in time.

Simulation Case 3: In this case, we compare the performance of DCKF with the distributed extend
Kalman filter (DEKF) in [40] and the distributed cubature information filter (DCIF) in [26]. The discrete
model (52) is adopted for the time update in the DEKF algorithm.

We assume that each satellite can only obtain either azimuth α or elevation β for the tested filters.
To be specific, Satellites 1, 3 and 5 can only obtain the azimuth α, and Satellites 2, 4 and 6 can only
obtain the elevation β of the object. In this case, we assume the measurement noises of satellite i to be
vi,k ~N(0, 10−4).

S1 S2 S3

S4S5S6

S1 S2 S3

S4S5S6

S1 S2 S3

S4S5S6

Figure 6. Switching topology of the network.
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Figure 7. Distributed cubature information filter (DCIF) for the switching topology. (a) MSE of position;
(b) MSE of velocity.

Figure 8 shows the comparison between DEKF and DCKF for different numbers of consensus.
It can be seen that, for the cases S = 1, S = 3 and S = 10, the DCKF performs more accurately
than the DEKF, since the DEKF suffers form linearization errors due to numerically-linearizing the
nonlinear dynamics and measurement map, which will enlarge the estimate errors. As S increases,
the DEKF is more accurate. This is due to the fact that the local information will spread to the whole
network as S→ ∞. Despite the weak observability, the proposed DCKF algorithm provides reasonable
performance even for S = 1, which indicates that the proposed DCKF is more robust and suitable for
real-time applications with weak observability of some sensors than the DEKF.
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Figure 8. Comparison between DEKF and DCKF under weak observability for some sensors. (a) MSE
of position; (b) MSE of velocity.

Figure 9 gives the comparison between DCIF and DCKF with different consensus numbers S
under the weak observability condition. We also assume that Satellites 1, 3 and 5 can only obtain the
azimuth α and Satellites 2, 4 and 6 can only obtain the elevation β of the object. It can be seen that,
under the weak observability condition, all test filters can successfully track, and the estimation errors
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of the position of DCKF and DCIF are almost the same. However, there is a large velocity overshoot in
DCIF, which indicates that the DCKF enjoys a stronger stability property than the DCIF.
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Figure 9. Comparison between DCIF and DCKF under weak observability for some sensors. (a) MSE
of position; (b) MSE of velocity.

The computational time of a single satellite of different filters is given in Table 3. All tests are
operated on a notebook with an Intel central processing unit (i7 4510U) and MATLAB. Note that the
computational time of the DCKF is longer than that of the DEKF, and the computational time of the
DCIF is twice as long as the DCKF.

Table 3. Average computational time of the filters.

Filters DCKF, S = 1 DCKF, S = 10 DEKF, S = 1 DEKF, S = 10 DCIF, S = 1 DCIF, S = 10

Time (s) 0.2002 0.2421 0.0428 0.0916 0.5087 0.5827

5. Discussion

The distributed Bayesian filter design has been researched, and a distributed cubature Kalman
filter was proposed to deal with the time-varying topology and weak observability of sensors. It can
be seen from Figures 2 and 3 that the standard EKF cannot provide good results for weak observability
of a single sensor. When it comes to the distributed setting, for the nodes with weak observability,
both DCKF and DEKF can obtain stable estimation, and DCKF performs better than DEKF. From
Figure 7, it also can be seen that DCKF is suitable for the case of switching topology. Namely, the
proposed DCKF can handle the problem of blockage of the communication channel in time. Figure 9
illustrates that the proposed DCKF enjoys stronger stability properties than DCIF for the case of weak
observability of some sensors, by noting that large velocity overshoot in the DCIF. A possible reason for
such satisfactory performance of DCKF is that the global posterior PDF is considered for distributed
estimation rather than just the innovations, as in DCIF. Moreover, the number of consensus in the
DCKF could be one, which will conserve communication resources. However, we should highlight
that the DCIF in [26] can approach the centralized solution as the number of consensus tends to infinity,
and the DCKF in our paper cannot.

The K–L divergence for average consensus can be treated as a convex combination of the
information matrices and vectors. This convex combination is well known as covariance intersection
(CI) in the literature [41,42]. It is well known that the CI scheme provides an information fusion that is
robust with respect to the unknown correlations among the information sources. The stability of such
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a fusion strategy for distributed estimation has been proven in [19] for linear time-invariant dynamics,
and the results were extended to distributed EKF in [40].

A key point in our paper is that the global cost function (19) has a form of “sum-of-cost”, which is
amenable to distributed implementations [32,43,44]. Information geometric optimization approaches
can be used to construct the formulation, in which the natural gradient descent method is used to
seek the optimal estimation. For example, in [29,30], the natural gradient descent method was used
to construct the Bayesian nonlinear filter. In the distributed setting, a global optimal estimate can be
obtained under the structure of the distributed convex optimization ([43]) by natural gradient descent.

In summary, the proposed DCKF has the advantages of strong stability and being more suitable
for the cooperative object tracking problem compared to DEKF and DCIF. Future research issues
mainly include the problems of measurement and communication delay, which will broaden the
application of DCKF.

6. Conclusions

In this paper, we investigated the distributed Bayesian filter and proposed a distributed cubature
Kalman filter. In order to solve the problems of weak observability and time-varying communication
topology, we introduced Kullback–Leibler (K–L) divergence to measure the difference of local estimates,
and the consensus estimate is achieved under the K–L average of local estimates. The simulation results
indicate that, for the distributed space object tracking problem, the proposed DCKF has better results
than DEKF and DCIF. Moreover, the proposed algorithm does not rely on the same measurement
mapping of each sensor and can successfully track a space object for the time-varying communication
topology and weak observability of some sensors.
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