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loranta@math.uni.lodz.pl (A.L.); rpawlak@math.uni.lodz.pl (R.J.P.)
* Correspondence: ekor@math.uni.lodz.pl
† These authors contributed equally to this work.

Received: 22 January 2018; Accepted: 13 February 2018; Published: 16 February 2018

Abstract: In the paper, we consider local aspects of the entropy of nonautonomous dynamical systems.
For this purpose, we introduce the notion of a (asymptotical) focal entropy point. The notion of
entropy appeared as a result of practical needs concerning thermodynamics and the problem of
information flow, and it is connected with the complexity of a system. The definition adopted
in the paper specifies the notions that express the complexity of a system around certain points
(the complexity of the system is the same as its complexity around these points), and moreover, the
complexity of a system around such points does not depend on the behavior of the system in other
parts of its domain. Any periodic system “acting” in the closed unit interval has an asymptotical focal
entropy point, which justifies wide interest in these issues. In the paper, we examine the problems of
the distortions of a system and the approximation of an autonomous system by a nonautonomous
one, in the context of having a (asymptotical) focal entropy point. It is shown that even a slight
modification of a system may lead to the arising of the respective focal entropy points.

Keywords: nonautonomous (autonomous) dynamical system; topological entropy; (asymptotical)
focal entropy point; disturbation; m-dimensional manifold
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1. Introduction and Preliminaries

In many papers dealing with dynamical systems, their strong relation to difference equations
is pointed out (see [1]), which gives the possibilities of their wide applications in many fields of
knowledge, including economics, biology, information flow or physics [2–7]. Among the problems
connected with “dynamical systems with discrete time observations”, a special role is played by the
entropy of these systems, which may be treated as a “measure” of the complexity of a dynamical
system. This notion was introduced with respect to the issues connected with thermodynamics and
the problem of “information loss” (more details on this topic can be found in [8]). At the beginning, the
notion of entropy was related to the measure theory. Later, there appeared the notion of topological
entropy introduced by R. Adler, A. Konheim and J. McAndrew [9], and next, an equivalent definition
for metric spaces was formulated [10,11]. It is worth mentioning that in the further stage of research, the
definition of topological entropy for discontinuous functions was also studied [12]. The considerations
mentioned concerned autonomous systems. Later, still, there appeared results regarding the entropy of
nonautonomous dynamical systems. We will base our investigations, among others, on [13]. In general,
the notion of entropy concerns a global property of dynamical systems. However, research connected
for example with stability points or non-wandering points, as well as the analysis of various examples
of functions lead to the conclusion that it is also purposeful to examine local aspects of entropy and
points around which the entropy is “focused” in some sense, e.g., [14,15]. Simultaneously, the example
presented in [16] (p. 1118) shows that it is intentional to assume that the essence of a point “focusing”
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entropy should be connected with the behavior of functions only (exclusively) around this point
or the value of functions at this point (sometimes, the fact that a point is a full entropy point [15]
is decisively influenced by the behavior of a function “far away” from that point). For that reason,
a new approach to this problem was introduced in [16]. All the above-mentioned papers concerned
autonomous systems. In this paper, we will refer to these issues as nonautonomous dynamical systems.
Our considerations will be mainly connected with the periodicity of the examined systems. Such kind
of investigations are frequently connected in the literature with such systems (e.g. [6,13,17]). It is
caused by the connections of such systems with periodic difference equations (it is well signalled
in [3]).

Throughout the paper, the symbol N will stand for the set of all positive integers and N0 = N∪{0}.
Moreover, (X, ρ) will denote a compact metric space. The closure, the interior and the cardinality of a
set A ⊂ X will be denoted by cl(A), int(A) and #(A), respectively. For any function f : X → X and
sets A, B ⊂ X, the symbols f � A and A→

f
B mean the restriction of f to A and B ⊂ f (A), respectively.

The symbol FIXX(x0) will denote the family of all self-maps defined on X such that the point
x0 is their fixed point, and the symbol FIX( f ) will stand for the set of all fixed points of a function
f . Moreover, for any functions f , g : X → X, let us adopt the following notation 6= ( f , g) = {x ∈ X :
f (x) 6= g(x)}.

Let (X, $) be a metric space and {Kn}n∈N be a sequence of nonempty closed subsets of X. We shall
say that the sequence {Kn}n∈N has the extension property if for any i, j ∈ N and any continuous
function ϕ : A → Kj, where A ⊂ Ki is a closed set, one can find a continuous function ψ : Ki → Kj,
which is an extension of ϕ, i.e., ψ � A = ϕ. Obviously, if for example X = Rn and Kn are cubes, then
this fact follows from the generalizations of the classical Tietze theorem.

Following [13], by a nonautonomous dynamical system on X (NDS), we will mean any sequence
of functions f1,∞ = { fi}i∈N such that fi : X → X. If fi = f for i ∈ N, then we call the system
autonomous and denote it by ( f ). For n ∈ N, let fn,∞ = { fn, fn+1, . . . } and f n

1,∞ = { f n
(i−1)·n+1}i∈N,

where f n
i = fn+i−1 ◦ fn+i−2 ◦ · · · ◦ fi+1 ◦ fi. Moreover, let f 0

i = f−0
i = id (where id is the identity

function) and f−n
i = f−1

i ◦ f−1
i+1 ◦ · · · ◦ f−1

i+(n−1) for any i, n ∈ N (the last notation will be applied to sets,
so we do not assume that these maps are invertible). If f : X → X is a function, then for any n ∈ N, the
symbol f n will denote the n-th iteration of f , i.e., f n = f ◦ f n−1 and f 0 = id.

We say that a dynamical system f1,∞ is periodic with a period n if fk = fk mod n, if k mod n 6= 0
and fk = fn otherwise. Moreover, we say that x0 is a periodic point with a period n of an NDS f1,∞ if
x0 is a fixed point of an NDS f n

1,∞, i.e., f n
(i−1)·n+1(x0) = x0 for any i ∈ N.

If M is a matrix, then the trace of M will be denoted by tr(M). Let {Mn}n∈N be a sequence of

square matrices of the same degree t. Then, for any k ∈ N, we will consider
k

∏
i=1

Mi = M1 ·M2 · · · · ·Mk.

In [13] was introduced a Bowen-like definition of entropy for an NDS consisting of continuous
functions. This definition was expanded for systems consisting of arbitrary functions in the paper [8].
We will briefly review that notion.

Let n ∈ N and ε > 0. A set E ⊂ X is called (n, ε)-separated if for any two distinct points x, y ∈ E,
there exists j ∈ {0, . . . , n− 1} such that ρ( f j

1(x), f j
1(y)) > ε. If Y ⊂ X, then E is (n, ε)-separated in Y

if it satisfies the above condition and E ⊂ Y. Let sn( f1,∞, Y, ε) denote the maximal cardinality of the
(n, ε)-separated set in Y. Then, the entropy of a system f1,∞ on Y is the number:

h( f1,∞, Y) = lim
ε→0

lim sup
n→∞

1
n

log sn( f1,∞, Y, ε).

If Y = X, then we write briefly h( f1,∞) instead of h( f1,∞, X). Moreover, if we consider an
autonomous system ( f ), then the entropy of this system will be denoted by h( f , Y) and h( f ),
respectively. By the entropy of a function f , we will mean the entropy of a respective autonomous
system ( f ).
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Now, we will signal, in the form of lemmas, basic facts that will be used in the further part of the
paper. Reasoning similar to that in the proofs of Lemma 4.3 and 4.5 [13] allows proving the following
result concerning the entropy of an NDS consisting of not necessarily continuous functions.

Lemma 1. Let f1,∞ be a dynamical system. Then, for any n ≥ 1, we have:

h( f n
1,∞) ≤ n · h( f1,∞).

Lemma 2. Let f1,∞ be a dynamical system on X. For any 1 ≤ i ≤ j < ∞, we have h( fi,∞) ≤ h( f j,∞).

In the case of NDS, entropy does not always fully reflect the complexity of a system (see, e.g., the
considerations in [13], p. 216). Therefore, in [13] was introduced a new notion of asymptotical entropy,
which, with respect to autonomous systems, coincides with the classical entropy.

An asymptotical entropy of a dynamical system f1,∞ is the number h∗( f1,∞) defined as follows:
h∗( f1,∞) = lim

n→∞
h( fn,∞). The existence of such a limit follows from Lemma 2. Moreover, Lemma 2

allows concluding that h( f1,∞) ≤ h∗( f1,∞). It is worth adding that the inequality from Lemma 2 is not
true for entropy on subsets of the space, so the asymptotical entropy of a system on a set Y ⊂ X is
defined as the following upper limit:

h∗( f1,∞, Y) = lim sup
n→∞

h( fn,∞, Y).

Our terminology and notations related to m-dimensional manifolds will coincide with those of [18].
An m-dimensional manifold with a boundary is a nonempty compact metric space (M, d) such that
every point q ∈M has a neighborhood U that is homeomorphic (via a transformation called the chart
on U) to an open subset of the m-dimensional upper half space Hm = {(x1, ..., xm) ∈ Rm : xm ≥ 0}.
Since any open ball in Rm is homeomorphic to some open subset of Hm, an m-dimensional topological
manifold is an m-dimensional topological manifold with a boundary (with an empty boundary).
Therefore, in this paper, we will consider only m-dimensional topological manifolds with a boundary.

If M is a nonempty m-dimensional manifold with a boundary, a point that belongs to the inverse
image of int(Hm) = {(x1, ..., xm) ∈ Rm : xm > 0} under some chart is called an interior point of M.
The set of all interior points of a manifold M will be denoted by Int(M). The symbol BM will stand for
the set of all closed submanifoldsM of M (i.e.,M⊂M is a closed manifold) such that the dimensions
ofM and M are the same.

We shall say that an NDS ( f1,∞) of functions defined on M is irreducible at x0 if for n ∈ N,
a function f n

1 is irreducible at x0, i.e., for any open neighborhood U of x0, there exists a point
y0 ∈ Int(M) ∩U such that f n

1 (x0) 6= f n
1 (y0).

2. Focal Entropy Points of NDS

Now, we will introduce the notion of a focal entropy point of NDS, having in mind the general
assumption: the fact that a given point is a focal entropy point means that the complexity of the system
in any neighborhood of this point is the same as the complexity of the whole system and does not
depend on the behavior of functions around other points.

Let A be a family of nonempty subsets of X such that each nonempty open set contains some
element of A. In view of the considerations presented in this paper, from now on, we will assume that
A contains the family of all closed sets of cardinality continuum.

Put Θ(A) = {(A1, . . . , Am) : A1, . . . , Am ∈ A, m ∈ N, cl(Ai) ∩ cl(Aj) = ∅ for i 6= j}.
Let A = (A1, . . . , Am) ∈ Θ(A) and n ∈ N. Set M fn(A) = [a fn

i,j ]i,j≤m, where:

a fn
i,j =

1 if Ai →
fn

Aj,

0 if Aj \ fn(Ai) 6= ∅.
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Moreover, for k ∈ N, a system ( f1,∞) and A = (A1, . . . , Am) ∈ Θ(A), let:

Mk
f1,∞

(A) =
k

∏
n=1

M fn(A) := [ak
i,j]i,j≤m. (1)

The entropy of f1,∞ with respect to the sequence A is the following number:

H f1,∞(A) =

lim sup
k→∞

1
k log tr(Mk

f1,∞
(A)) if tr(Mk

f1,∞
(A)) > 0,

0 if tr(Mk
f1,∞

(A)) = 0.

The process of computing the entropy of a system with respect to a sequence of sets may be
simplified by introducing the notion of a path. Let k ∈ N. For a k-path connected with the sequence
A and with the dynamical system ( f1,∞), we call each sequence of sets (Ap1 , Ap2 , . . . , Apk ) such that
pi ∈ {1, . . . , m} for i = 1, . . . , k and:

Ap1 −→f1
Ap2 −→f2

Ap3 −→f3
. . . −→

fk−2
Apk−1 −→fk−1

Apk .

The sets Ap1 , Ap2 , . . . , Apk are called the nodes of the path. If no confusion can arise, we will
write simply k-path. We say that a point x0 ∈ Ap1 is connected with a k-path (Ap1 , Ap2 , . . . , Apk ) if
f i
1(x0) ∈ Api+1 for i = 1, . . . , k− 1. It is easy to see that such a point exists for any path.

One can easily notice that the entry ak
i,j, where i, j ∈ {1, . . . , m}, of the matrix (1) is equal to the

number of (k + 1)-paths connected with the sequence A and the NDS f1,∞ such that the set Ai is the
first node of the path and the set Aj is its last node. Consequently, tr(Mk

f1,∞
(A)) is equal to the number

of (k + 1)-paths connected with the sequenceA and the NDS f1,∞ such that the set Ai is simultaneously
the first and the last node of the path, for i = 1, . . . , m.

Now, let us state the theorem, which will allow introducing the next steps of the definition.

Theorem 1. Let f1,∞ be an NDS, A = (A1, . . . , Am) ∈ Θ(A) and n ∈ N. Then:

H f n
1,∞

(A) ≤ h( f n
1,∞) ≤ n · h( f1,∞).

Proof. The second inequality follows from Lemma 1, so it is sufficient to show the first inequality.
Suppose, contrary to our claim, that there exists a real number α such that:

h( f n
1,∞) < α < H f n

1,∞
(A). (2)

It is obvious that α > 0 and H f n
1,∞

(A) > 0. According to our assumptions connected with the

family Θ(A), we have εA = 1
2 min{ρ(cl(Ai), cl(Aj)) : i, j ∈ {1, . . . , m} ∧ i 6= j} > 0. Taking into

account (2), we obtain that there exists an increasing sequence of positive integers {ks}s∈N such that:

1
ks

log tr(Mks
f n
1,∞

(A)) > α for s = 1, 2, . . . (3)

Clearly, aks
1,1, aks

2,2, . . . , aks
m,m are successive entries of the main diagonal of the matrix Mks

f n
1,∞

(A),

for any s ∈ N. By (3), one can conclude that for any s ∈ N, we have Nks = {i ∈ {1, . . . , m} : aks
i,i >

0} 6= ∅. For any s ∈ N and i ∈ {1, . . . , m}, the number of (ks + 1)-paths of the form Ai −→
f n
1

Ap1 −→f n
n+1

Ap2 −→f n
2n+1

. . . −→
f n
(ks−2)n+1

Apks−1 −→
f n
(ks−1)n+1

Ai, where pw ∈ {1, . . . , m} for w = 1, . . . , ks − 1, is equal to aks
i,i .

For any s ∈ N and i ∈ Nks , let βks
i denote the set of all (ks + 1)-paths whose first and last node is

Ai. Obviously #(βks
i ) = aks

i,i . Therefore, let βks
i = {Bks

i,1, Bks
i,2, . . . , Bks

i,aks
i,i
}. For any s ∈ N, i ∈ Nks and

j ∈ {1, . . . , aks
i,i}, let bks

i,j be a point connected with the path Bks
i,j.
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Put ∆(ks) = {bks
i,j : i ∈ Nks ∧ j ∈ {1, . . . , aks

i,i}} for s ∈ N. It is easily seen that bks
i,j ∈ Ai for

s ∈ N, i ∈ Nks and j ∈ {1, . . . , aks
i,i}. Thus, if i1, i2 ∈ Nks and i1 6= i2, then bks

i1,j 6= bks
i2,j. Moreover, if

j1, j2 ∈ {1, . . . , aks
i,i} and j1 6= j2, then bks

i,j1
6= bks

i,j2
. Thus, #(∆(ks)) = ∑

i∈Nks

#(βks
i ) = ∑

i∈Nks

aks
i,i , and finally,

#(∆(ks)) =
m
∑

i=1
aks

i,i , because aks
i,i = 0 for i ∈ {1, . . . , m} \ Nks .

Let bks
i1,j1

, bks
i2,j2

be any distinct points of the set ∆(ks). If i1 6= i2, then ρ(bks
i1,j1

, bks
i2,j2

) ≥
ρ(cl(Ai1), cl(Ai2)) > εA. If i1 = i2 = i, then j1 6= j2. Thus, since bks

i,j1
is connected

with the path Bks
i,j1

= (Ai,j1 , Ap1,j1 , . . . , Apks−1,j1 , Ai,j1) and bks
i,j2

is connected with the path Bks
i,j2

=

(Ai,j2 , Ap1,j2 , . . . , Apks−1,j2 , Ai,j2) and Bks
i,j1
6= Bks

i,j2
, so there exists w0 ∈ {1, . . . , ks − 1} such that

Apw0 ,j1 6= Apw0 ,j2 and ρ( f w0·n(bks
i,j1

), f w0·n(bks
i,j2

)) ≥ ρ(cl(Apw0 ,j1), cl(Apw0 ,j2)) > εA. This gives that
∆(ks) is the (ks, εA)-separated set for the system ( f n

1,∞).

As a consequence, we obtain sks( f n
1,∞, εA) ≥ #(∆(ks)) = aks

1,1 + · · · + aks
m,m. Let ε ∈ (0, εA).

Thus, lim sup
l→∞

1
l log sl( f n

1,∞, ε) ≥ lim sup
s→∞

1
ks

log
m
∑

i=1
aks

i,i = lim sup
s→∞

1
ks

log tr(Mks
f n
1,∞

(A)) ≥ α, and hence,

h( f n
1,∞) = lim

ε→0
lim sup

l→∞

1
l log sl( f n

1,∞, ε) ≥ α, which contradicts (2).

We continue the considerations leading to the definition of a focal entropy point. Let U ⊂ X
be an open set. For A = (A1, . . . , Am) ∈ Θ(A), the notation A ⊂ U will mean that Ai ⊂ U for any
i ∈ {1, . . . , m}. Let us adopt the following notation:

H(A, f1,∞, U) = sup
{

1
n

H f n
1,∞

(A) : A ∈ Θ(A) ∧A ⊂ U ∧ n ∈ N
}

.

Notice that on account of Theorem 1, for any open set U, we have:

H(A, f1,∞, U) ≤ h( f1,∞). (4)

Put:

d(A, f1,∞, U) =


H(A, f1,∞ ,U)

h( f1,∞)
if h( f1,∞) ∈ (0, ∞),

1 if H(A, f1,∞, U) = ∞ or h( f1,∞) = 0,

0 if H(A, f1,∞, U) ∈ [0, ∞) and h( f1,∞) = ∞.

Using the last quantity, one can define the next one in the following way:

E(A, f1,∞, x0) = inf{d(A, f1,∞, U) : U ∈ O(x0)},

where O(x0) denotes the family of all open sets containing x0.
According to Theorem 1, we have E(A, f1,∞, x0) ≤ 1. If E(A, f1,∞, x0) = 1, then we say that a point

x0 ∈ X is a A-focal entropy point of a system f1,∞.
Notice that if a system f1,∞ is autonomous, i.e., fi = f for i ∈ N, then the definition of a A-focal

entropy point of the system f1,∞ coincides with the definition introduced in [16].
If in the definition of the quantity d(A, f1,∞, U) we will replace an entropy h( f1,∞) with

asymptotical entropy h∗( f1,∞), then by defining in an analogous way as above, we will obtain the
notion of a asymptotical A-focal entropy point of f1,∞. In such a case, we will use a star in the respective
symbols: d∗(A, f1,∞, U), E∗(A, f1,∞, x0). Therefore, we say that a point x0 ∈ X is an asymptotical A-focal
entropy point of a system f1,∞ if E∗(A, f1,∞, x0) = 1.

It is easy to see that if x0 is an asymptotical A-focal entropy point of a system f1,∞, then it is a
A-focal entropy point of this system. Obviously, if f1,∞ is periodic, then the notions of an asymptotical
A-entropy point of the system and of a A-focal entropy point of the system coincide.
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The natural question arises whether there exist such points. The next theorem is a partial answer
to this problem.

Theorem 2. Let f1,∞ be a periodic dynamical system on [0, 1] consisting of continuous functions. Then, there
exists an asymptotical A-focal entropy point of the system f1,∞.

Proof. Let n be a period of the system f1,∞. Put f = f n
1 and g1,∞ = f n

1,∞. Then, g1,∞ = ( f ). Hence,
by Lemma 1, we obtain:

h(g1,∞) = n · h( f1,∞). (5)

Moreover, notice that:

gk
1,∞ = f n·k

1,∞ for k ∈ N. (6)

By Corollary 4.5 [16], there exists a point x0 ∈ [0, 1], which is a A-focal entropy point of g1,∞.
We will show that x0 is a A-focal entropy point of the system f1,∞. Let U ∈ O(x0). It is easy to

observe that E(A, g1,∞, x0) = 1 and consequently d(A, g1,∞, U) = 1. We need to consider the following
cases (we omit the trivial case h(g1,∞) = 0):

(i) H(A, g1,∞, U) = ∞. Thus, sup{ 1
k Hgk

1,∞
(A) : A ∈ Θ(A) ∧A ⊂ U ∧ k ∈ N} = ∞. For any β > 0,

there exist kβ ∈ N and Aβ ∈ Θ(A) such that Aβ ⊂ U and 1
kβ

H
g

kβ
1,∞

(Aβ) > n · β. Obviously,

by (6), we have g
kβ

1,∞ = f
n·kβ

1,∞ , so 1
kβ

H
f

n·kβ
1,∞

(Aβ) > n · β, and therefore, 1
n·kβ

H
f

n·kβ
1,∞

(Aβ) > β.

As a consequence, sup{ 1
s H f s

1,∞
(A) : A ∈ Θ(A) ∧ A ⊂ U ∧ s ∈ N} > β. Hence and from

arbitrariness β, we conclude that sup{ 1
s H f s

1,∞
(A) : A ∈ Θ(A) ∧ A ⊂ U ∧ s ∈ N} = ∞, and

consequently, d(A, f1,∞, U) = 1.
(ii) h(g1,∞) ∈ (0, ∞) and H(A, g1,∞, U) = h(g1,∞). By (5), we obtain h( f1,∞) ∈ (0, ∞). We have

h(g1,∞) = sup{ 1
k Hgk

1,∞
(A) : A ∈ Θ(A) ∧A ⊂ U ∧ k ∈ N}, so for any β > 0, there exist kβ ∈ N

and Aβ ∈ Θ(A) such that Aβ ⊂ U and 1
kβ

H
g

kβ
1,∞

(Aβ) > h(g1,∞)− n · β. Clearly, by (6), we may

infer that g
kβ

1,∞ = f
n·kβ

1,∞ , so 1
kβ

H
f

n·kβ
1,∞

(Aβ) > h(g1,∞)− n · β. By use of (5), we get 1
n·kβ

H
f

n·kβ
1,∞

(Aβ) >

h( f1,∞)− β. Finally, we have shown that for any β > 0, there exist lβ = n · kβ ∈ N andAβ ∈ Θ(A)

such that Aβ ⊂ U and 1
lβ

H
f

lβ
1,∞

(Aβ) > h( f1,∞)− β, so:

sup{1
k

H f k
1,∞

(A) : A ∈ Θ(A) ∧A ⊂ U ∧ k ∈ N} ≥ h( f1,∞). (7)

Moreover, according to (4), we have:

H(A, f1,∞, U) ≤ h( f1,∞). (8)

Finally, (7) and (8) give H(A, f1,∞, U) = sup{ 1
k H f k

1,∞
(A) : A ∈ Θ(A) ∧ A ⊂ U ∧ k ∈ N} =

h( f1,∞). Thus, d(A, f1,∞, U) = 1.

Since U was chosen arbitrarily, we obtain E(A, f1,∞, x0) = 1, so x0 is a A-focal entropy point of f1,∞,
and simultaneously, it is its asymptotical A-focal entropy point because this system is periodic.

3. Disturbance and Approximation

In various considerations connected with autonomous and nonautonomous dynamical systems,
a special role is played by fixed points of the systems (e.g., stable points [6]). It is not difficult to find
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an example showing that a fixed point of NDS need not be its focal entropy point. On the other hand,
a given NDS can be approximated or disturbed by entering new functions into it. In each of these
operations, it is important to do it by means of functions that are close to the base NDS and belong to
the common structure. This leads in a natural way to distinguishing equivalence classes.

Let f , g ∈ FIXX(x0) and ε > 0. In the set FIXX(x0), we will define the following relation:

f
ε

x0
g⇔6= ( f , g), f ( 6= ( f , g)), g( 6= ( f , g)) ⊂ B(x0, ε), (9)

where B(x0, ε) is an open ball with radius ε and center x0. It is not difficult to show that for the fixed
ε > 0 and x0 ∈ X, the relation (9) is an equivalence relation in FIXX(x0).

The symbol [ f ]εx0
will stand for the equivalence class of f ∈ FIXX(x0) under the relation ε

x0
.

In this paper are mainly examined periodic dynamical systems, so it is natural to consider periodic
disruptions called disturbances. The idea of the disturbance is introducing, in equal periods of time,
a function belonging to the equivalence class generated by the iteration of functions lying between
successive disturbance periods.

Let f1,∞ be a periodic NDS with a period k0 ∈ N, and let ε > 0. We say that Tε
1,∞ is a periodic

ε-disturbance of f1,∞ if there exists a continuous function ψ such that:

(PD1) Tε
1,∞ = { f1, f2, . . . , fk0 , ψ, f1, f2, . . . , fk0 , ψ, . . . },

(PD2) ψ ∈ [ f k0
1 ]εx0

.

The next theorem shows that a periodic dynamical system may be periodically disturbed by means of
a function belonging to an earlier defined equivalence class (with arbitrary small ε) in such a way that
a periodic point of the system becomes its asymptotical A-focal entropy point.

Theorem 3. Let f1,∞ be a periodic dynamical system on M consisting of continuous functions such that x0 ∈M
is a periodic point of this NDS and f1,∞ is irreducible at x0. For any ε > 0, there exists a system Tε

1,∞ that is
a periodic ε-disturbance of f1,∞ such that x0 is an asymptotical A-focal entropy point of Tε

1,∞.

Proof. Let m0 be a period of f1,∞ and m1 be a period of x0. Put n0 = m0 ·m1. It follows immediately
that n0 is both a period of f1,∞ and of x0. Let ε > 0 and {Mn}∞

n=0 ⊂ BM be a sequence of connected
submanifolds satisfying the following properties:

[M1] x0 ∈ Mn+1 ⊂ int(Mn) for n ∈ N0,
[M2] f n0

1 (Mn+1) ⊂ int(Mn) for n ∈ N0,
[M3] lim

n→∞
diam(Mn) = 0,

[M4] the sequence {Mn}∞
n=0 has the extension property.

Without loss of generality, we can also assume that M0 ⊂ B(x0, ε
3 ). Obviously, there exists

an open set U ⊂M, such that x0 ∈ U and f n0
1 (U) ⊂ B(x0, ε

3 ). Moreover, Condition [M3] implies that
there exists k∗ > 1 such thatMk ⊂ U for k ≥ k∗.

Put k1 = k∗ + 1. Since f n0
1 is irreducible at x0 ∈ int(Mk1), it is easy to see that there exist

x1 ∈ Mk1 and an arc A(x0, f n0
1 (x1)) with endpoints at x0 and f (x1) such that A(x0, f n0

1 (x1)) ⊂
f n0
1 (Mk1). Let A1

1, A1
2 be disjoint arcs such that A1

1, A1
2 ⊂ A(x0, f n0

1 (x1)) and x0 6∈ A1
1 ∪ A1

2. Put
Γ1

i = f−n0
1 (A1

i ) ∩Mk1 for i = 1, 2. Then, Γ1
1 6= ∅ 6= Γ1

2, x0 6∈ Γ1
1 ∪ Γ1

2 ⊂Mk1 , Γ1
1 ∩ Γ1

2 = ∅ and the sets
Γ1

1 and Γ1
2 are closed. Moreover, f n0

1 (Γ1
i ) = A1

i for i = 1, 2.
On account of the well-known Hahn–Mazurkiewicz theorem (see, e.g., [19], p. 106), there exists

a continuous function g1 : A1
1 ∪ A1

2 → Mk1 such that g1(A1
1) =Mk1 and g1(A1

2) =Mk1 . From the
fact that the set Γ1

1 ∪ Γ1
2 is closed and from Condition [M3], it follows that there exists k2 > k1 such that

Mk2 ∩ (Γ1
1 ∪ Γ1

2) = ∅. Obviously, (A1
1 ∪ A1

2) ∩ f n0
1 (Mk2) = ∅.

By the same reasoning as above, one can find x2 ∈ Mk2 and A(x0, f n0
1 (x2)) ⊂ f n0

1 (Mk2)
.

Let A2
1, A2

2, A2
3, A2

4 be such arcs that A2
1 ∪ A2

2 ∪ A2
3 ∪ A2

4 ⊂ A(x0, f n0
1 (x2)), A2

i ∩ A2
j = ∅ if i 6= j,
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x0 6∈ A2
1 ∪ A2

2 ∪ A2
3 ∪ A2

4. Put Γ2
i = f−n0

1 (A2
i ) ∩Mk2 , i = 1, . . . , 4. Clearly

4⋃
i=1

Γ2
i ⊂ Mk2 , Γ2

i ∩ Γ2
j = ∅

whenever i 6= j, x0 6∈
4⋃

i=1
Γ2

i and Γ2
i are closed for i = 1, . . . , 4. Moreover, f n0

1 (Γ2
i ) = A2

i for i = 1, . . . , 4.

Let g2 : A2
1 ∪ A2

2 ∪ A2
3 ∪ A2

4 →Mk2 be a continuous function such that g2(A2
i ) =Mk2 for i = 1, . . . , 4.

Continuing in this fashion, we obtain two sequences: {ki}i∈N ⊂ N and {Γi}i∈N of closed sets such

that Γi =
2i⋃

s=1
Γi

s ⊂ Mki
for i ∈ N, Γi

s is closed for i ∈ N, s ∈ {1, . . . , 2i} and Γi
s1
∩ Γi

s2
= ∅ whenever

s1 6= s2. Moreover, there exists a sequence {gi}i∈N of continuous functions such that gi( f n0
1 (Γi

s)) =Mki

for i ∈ N, s ∈ {1, . . . , 2i}.
Now, let us consider the set Γ =

∞⋃
i=1

Γi ∪ {x0}. It follows easily that Γ ⊂ int(M1). It is easy to

prove that Γ is closed.
Consider the following function:

g0(x) =


x0 for x = x0,

gi(x) for x ∈
2i⋃

s=1
Γi

s, i ∈ N,

f n0
1 (x) for x ∈ FrMk∗ .

Clearly, g0 : Γ ∪ FrMk∗ → Mk∗−1. Since Γ ∪ FrMk∗ is closed and g0 is continuous, it follows
by Condition [M4] that there exists a continuous function g∗0 : Mk∗ → Mk∗−1 such that g∗0 � (Γ ∪
FrMk∗) = g0.

Put:

ψ(x) =

{
g∗0(x) for x ∈ Mk∗ ,

f n0
1 (x) for x 6∈ Mk∗ .

Consider the system:

T1,∞ = { f1, f2, . . . , fn0 , ψ, f1, f2, . . . , fn0 , ψ, . . . }.

We will show that T1,∞ is a periodic ε-disturbance of f1,∞. Condition (PD1) is obvious. To obtain
Condition (PD2), it is enough to show that ψ ∈ [ f n0

1 ]εx0
. We have 6= (ψ, f n0

1 ) ⊂ Mk∗ ⊂ B(x0, ε)

because ψ(x) = f n0
1 (x) for x 6∈ Mk∗ . Moreover, f n0

1 ( 6= (ψ, f n0
1 )) ⊂ f n0

1 (Mk∗) ⊂ f n0
1 (U) ⊂ B(x0, ε) and

ψ( 6= (ψ, f n0
1 )) ⊂ ψ(Mk∗) = g∗0(Mk∗) ⊂Mk∗−1 ⊂ B(x0, ε). This means that ψ ε

x0
f n0
1 .

What is left is to prove that x0 is an asymptotical A-focal entropy point of T1,∞.
Let V be an arbitrary open neighborhood of x0. Obviously, there exists k0 ∈ N such thatMk ⊂ V

for k > k0. Let α ∈ R and α > 0. We will show that there exists A = (A1, . . . , Am) ∈ Θ(A) such
that H

T
n0+1
1,∞

(A) ≥ (n0 + 1)α. Obviously, one can find i∗ ∈ N such that ki∗ > k0 and i∗ > (n0 + 1)α.

Thus, Γi∗ =
2i∗⋃
s=1

Γi∗
s ⊂ V. Consider A = (Γi∗

1 , . . . , Γi∗
2i∗ ) ⊂ V, and put ψ̃ = ψ ◦ fn0 ◦ · · · ◦ f1. Clearly,

Tn0+1
1,∞ = (ψ̃).

Let k ∈ N. It is evident that tr(Mk
T

n0+1
1,∞

(A)) is equal to the number of (k + 1)-paths connected

with A. We have ψ̃(Γi∗
s ) = ψ( f n0

1 (Γi∗
s )) =Mki∗ and Γi∗

s ⊂Mki∗ for any s ∈ {1, . . . , 2i∗}, so Γi∗
s1
−→̃

ψ
Γi∗

s2

for s1, s2 ∈ {1, . . . , 2i∗}. As a consequence tr(Mk
T

n0+1
1,∞

(A)) = (2i∗)k. Thus, H
T

n0+1
1,∞

(A) = log 2i∗ = i∗ >

(n0 + 1)α.
Finally, we have shown that for any α > 0, there exists A ∈ Θ(A), A ⊂ V such that

1
n0+1 H

T
n0+1
1,∞

(A) > α. Hence for any α > 0, we have H(A, T1,∞, V) = sup{ 1
n HTn

1,∞
(A) : A ∈ Θ(A) ∧
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A ⊂ V ∧ n ∈ N} ≥ sup{ 1
n0+1 H

T
n0+1
1,∞

(A) : A ∈ Θ(A) ∧A ⊂ V} ≥ α. Thus, H(A, T1,∞, V) = +∞, and

therefore, d∗(A, T1,∞, V) = 1, so x0 is an asymptotical A-focal entropy point of T1,∞.

The next theorem shows the difference between a A-focal entropy point of NDS and
an asymptotical A-focal entropy point of NDS on the interval under as weak as possible assumptions
imposed on the considered functions. For the simplicity of the notation, we will formulate and prove
the theorem for x0 = 0. It can be easily generalized for any x0 ∈ [0, 1].

Theorem 4. Let f : [0, 1] → [0, 1] be a function continuous at 0 ∈ FIX( f ) and such that h( f ) < ∞. Let us
assume that:

(*) there exists a sequence αn ↘ 0 such that for any n ∈ N, we have f ([αn, 1]) ⊂ [αn, 1].

Then, for any ε > 0, there exists a sequence { fn}n∈N of functions continuous at zero such that { fn}n∈N ⊂ [ f ]εx0

and zero is a A-focal entropy point of the system f1,∞ and is not an asymptotical A-focal entropy point of f1,∞.

Proof. Let ε > 0. Let γ be a positive number less than ε and such that f (x) < ε for x ∈ [0, γ].
There exists n0 ∈ N such that αn0 ∈ (0, γ) and f ([αn0 , 1]) ⊂ [αn0 , 1]. Put δ = αn0 , and hence, f (δ) ≥ δ.
Let m ∈ N be an odd positive integer such that log m > h( f ).

From (*), it follows that there exists an interval P ⊂ (0, δ) such that f ([δ, 1])∩ P = ∅. Put a0 = inf P
and b0 = sup P. Notice that 0 < b0 < δ. Consider a sequence xn ↘ 0 such that x1 = a0. Now, we
can define the function f1 : [0, 1] → [0, 1] as follows: f1(0) = 0, f1(xn+1 + 2k xn−xn+1

m ) = xn+1 for
k ∈ {0, 1, . . . , m−1

2 }, f1(xn+1 + (2k − 1) xn−xn+1
m ) = xn for k ∈ {1, . . . , m+1

2 }, f1(xn+1 +
xn−xn+1

2m ) =

xn+1 +
xn−xn+1

2m , f1(xn − xn−xn+1
2m ) = xn − xn−xn+1

2m , f1 is linear on respective intervals in each [xn+1, xn];
and moreover, f1(x) = a0 for x ∈ [a0, b0), f1(x) = b0 for x ∈ [b0, δ) and f1(x) = f (x) for x ∈ [δ, 1].

We next define functions fn for n ≥ 2. Let fn(x) = f1(x) for x ∈ [0, 1] \ (a0, δ), n ≥ 2. Fix y0 ∈
(a0, b0). Put fn(a0 + 2k y0−a0

m+2 ) = a0 for k ∈ {0, 1, . . . , m+1
2 } and fn(a0 + (2k − 1) y0−a0

m+2 ) = y0 for
k ∈ {1, . . . , m+3

2 } and fn linear on the respective intervals. Moreover, fn(x) = y0 for x ∈ [y0, b0),
fn(x) = b0 for x ∈ [b0, δ).

Obviously fn is continuous at zero for n ∈ N and { fn}n∈N ⊂ [ f ]ε0. We will show that h( f1) =

log m = h( f1,∞) and h( fn) = log(m + 2) = h( fn,∞) for n ≥ 2.
We first prove that h( f1, [a0, b0)) = 0. Let ε1 > 0, n ∈ N and M ⊂ [a0, b0) be an (n, ε1)-separated

set for f1. For any x, y ∈ M, x 6= y, there exists i0 ∈ {0, . . . , n− 1} such that ρ(( f1)
i0(x), ( f1)

i0(y)) > ε1.
Notice that i0 = 0. Indeed, we have f1(x) = a0 and f1(y) = a0. Hence, for i > 0, we have ( f1)

i(x) = a0

and ( f1)
i(y) = a0, so ρ(( f1)

i(x), ( f1)
i(y)) = 0 for i > 0. As a consequence, for any distinct points

x, y ∈ M, we have ρ(x, y) > ε1. It follows that #(M) ≤ [ b0−a0
ε1

] + 1, so sn( f1, [a0, b0), ε1) ≤ [ b0−a0
ε1

] +

1, where [ b0−a0
ε1

] denotes the smallest positive integer greater than b0−a0
ε1

. Hence, h( f1, [a0, b0)) =

lim
ε1→0

lim sup
k→∞

1
k log(sk( f1, [a0, b0), ε1)) ≤ 0. In an analogous way, one can show that h( f1, [b0, δ)) = 0.

Moreover, we have f1(x) = f (x) for x ∈ [δ, 1] and f1([δ, 1]) ⊂ [δ, 1]. Consequently, h( f1, [δ, 1]) =
h( f , [δ, 1]) < log m.

Let n ∈ N. We will show that h( f1, [xn+1, xn]) = log m. Clearly, f1 � [xn+1, xn] : [xn+1, xn] →
[xn+1, xn] and f1 � [xn+1, xn] is piecewise monotone. Denote by ck the number of intervals of
monotonicity of ( f1)

k. We have ck = mk for k ∈ N. Thus, by Theorem 4.2.4 [20], we have
h( f1, [xn+1, xn]) = lim

k→∞
1
k log ck = log m. Obviously, [0, a0] =

⋃
n∈N

[xn+1, xn], and for any n ∈ N, we have

f1([xn+1, xn]) ⊂ [xn+1, xn]. On account of Lemma 4.1.10 [20] (and the remark after it), we obtain
h( f1, [0, a0]) = sup

n∈N
(h( f1, [xn+1, xn])) = log m. Finally, Proposition 3.5 [12] (see also Lemma 4.1

from [13]) gives that h( f1) = max{h( f1, [0, a0]), h( f1, [a0, b0)), h( f1, [b0, δ)), h( f1, [δ, 1])} = log m.
We now turn to the case n ≥ 2. We have fn � [0, a0] = f1 � [0, a0] and f1 : [0, a0] → [0, a0].

Hence, h( fn, [0, a0]) = h( f1, [0, a0]) = log m. Moreover, fn � [δ, 1] = f1 � [δ, 1] and f1 : [δ, 1] → [δ, 1],
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so h( fn, [δ, 1]) = h( f1, [δ, 1]) < log m. Therefore, fn � [b0, δ) = f1 � [b0, δ) and f1 : [b0, δ) → [b0, δ),
so h( fn, [b0, δ)) = h( f1, [b0, δ)) = 0.

As was done for a function f1, one can show that h( fn, [y0, b0)) = 0 and h( fn, [a0, y0]) = log(m+ 2).
As a consequence, by Proposition 3.5 [12], we obtain h( fn) = log(m + 2).

Since fn = f2 for n ≥ 2, it follows that h( fn,∞) = h( f2) = log(m + 2) for n ≥ 2.
We will show now that h( f1,∞) = log m. We claim that:

( f1)
i(z) = f i

1(z) for z ∈ [0, 1] and i ∈ N0. (10)

Indeed, if z ∈ (a0, b0), then f1(z) = a0. Thus, for i ≥ 1, we have ( f1)
i(z) = a0 and f i

1(z) = a0,
so ( f1)

i(z) = f i
1(z). For i = 0, we have ( f1)

0(z) = z = f 0
1 (z), so ( f1)

i(z) = f i
1(z) for z ∈ (a0, b0) and

i ∈ N0. If z ∈ [0, 1] \ (a0, b0) then fn(z) ∈ [0, 1] \ (a0, b0) for n ∈ N. Therefore, it is easy to see that for
z ∈ [0, 1] \ (a0, b0) and i ≥ 1, we have ( f1)

i(z) = f i
1(z). Obviously, ( f1)

0(z) = z = f 0
1 (z). The proof

of (10) is complete.
Notice that for any n ∈ N and ε1 > 0, the set M ⊂ [0, 1] is (n, ε1)-separated for the system f1,∞

if and only if M is (n, ε1)-separated for f1. Indeed, let M be an (n, ε1)-separated set for f1. Then, for
any distinct points x, y ∈ M, there exists i ∈ {0, . . . , n− 1} such that ρ(( f1)

i(x), ( f1)
i(y)) > ε1. By (10),

we obtain ρ( f i
1(x), f i

1(y)) > ε1, which means that M is an (n, ε1)-separated set for the system f1,∞.
The proof of the converse implication runs in a similar way.

As a consequence, we have sn( f1, [0, 1], ε1) = sn( f1,∞, [0, 1], ε1), so log m = h( f1) = h( f1,∞).
Let U be an arbitrary neighborhood of zero. We will show that H(A, f1,∞, U) = log m. Clearly, by

Theorem 1, we have:

H(A, f1,∞, U) ≤ h( f1,∞) = log m. (11)

Let n ∈ N. Consider the interval [xn+1, xn]. There exists a sequence of points xn+1 < an,1 <

bn,1 < an,2 < bn,2 < · · · < an,m < bn,m < xn such that f1([an,i, bn,i]) = [an,i, bn,i] for i ∈ {1, . . . , m}. Put
An

i = [an,i, bn,i] for i ∈ {1, . . . , m}. Then, An = (An
1 , . . . , An

m) ∈ Θ(A) and:

for any k ∈ N and any i, j ∈ {1, . . . , m} we have An
i →fk

An
j . (12)

Obviously, for any k ∈ N, the trace tr(Mk
f1,∞

(An)) is equal to the number of (k + 1)-paths with the
first and the last node at An

i for i = 1, . . . , m. By (12), we conclude that the number of such paths is
equal to mk. Hence, 1

k log tr(Mk
f1,∞

(An)) = log m, and therefore:

H f1,∞(A
n) = log m. (13)

Let n0 ∈ N be such that [xn0+1, xn0 ] ⊂ U. Then, by (13), we obtain H f1,∞(A
n0) = log m,

so H(A, f1,∞, U) ≥ log m. From this and (11), we get H(A, f1,∞, U) = log m. As a consequence,
d(A, f1,∞, U) = 1, which gives E(A, f1,∞, 0) = 1, so zero is a A-focal entropy point of f1,∞.

Simultaneously, zero is not an asymptotical A-focal entropy point of f1,∞, because for any
neighborhood U of zero, we have H(A, f1,∞, U) = log m and h∗( f1,∞) = lim

n→∞
h( fn,∞) = log(m + 2).

Therefore, d∗(A, f1,∞, U) =
log m

log(m+2) , which means that E∗(A, f1,∞, 0) = log m
log(m+2) < 1.

4. Conclusions

In the paper, the notions of a focal entropy point and an asymptotical focal entropy point for
nonautonomous dynamical systems are introduced. The definitions adopted in the paper specify the
notions that express the complexity of a system around these points and moreover, the complexity
of a system around such points does not depend on the behavior of the system in other parts of
its domain. Each asymptotical focal entropy point of an NDS is its focal entropy point. In the case
of periodic dynamical systems these notions coincide. For a periodic NDS consisting of continuous
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functions defined on the closed unit interval there exists an asymptotical focal entropy point. Moreover,
there exists a dynamical system with a focal entropy point which is not its asymptotical focal entropy
point. In the case of some periodic dynamical systems consisting of continuous functions defined on
a topological manifold one can disturb a system to obtain a system “lying close” to the given one and
having an asymptotical focal entropy point.
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