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Abstract: In the paper we propose, using the logical entropy function, a new kind of entropy
in product MV-algebras, namely the logical entropy and its conditional version. Fundamental
characteristics of these quantities have been shown and subsequently, the results regarding the logical
entropy have been used to define the logical mutual information of experiments in the studied case.
In addition, we define the logical cross entropy and logical divergence for the examined situation
and prove basic properties of the suggested quantities. To illustrate the results, we provide several
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1. Introduction

In all areas of empirical research, it is very important to know how much information we gain by
the realization of experiments. As it is known, the measure of information is entropy, the standard
approach being based on Shannon entropy [1]. The standard mathematical model of an experiment in
information theory [2] is a measurable partition of a probability space. Let us remind that a measurable
partition of a probability space (X, S, P) is a sequence A = {A1, . . . , An} of measurable subsets of X
such that ∪n

i=1 Ai = X and Ai ∩ Aj = ∅ whenever i 6= j. The Shannon entropy of the measurable
partition A = {A1, . . . , An} with probabilities pi = P(Ai), i = 1, . . . , n, of the corresponding elements,
is the number hS(A) = ∑n

i=1 S(pi), where S : [0, 1]→ < is the Shannon entropy function defined by
the formula:

S(x) =

{
− x log x, if x > 0;
0, if x = 0.

(1)

In classical theory, partitions are defined within the Cantor set theory. However, it has turned
out that, in many cases, the partitions defined in the context of fuzzy set theory [3] are more suitable
for solving real problems. Hence, numerous suggestions have been put forward to generalize the
classical partitions to fuzzy partitions [4–10]. Fuzzy partitions provide a mathematical model of
random experiments the outcomes of which are unclear, inaccurately defined events. The Shannon
entropy of fuzzy partitions has been studied by many authors; we refer the reader to, e.g., [11–21].

The notion of an MV-algebra, originally proposed by Chang in [22] in order to give an algebraic
counterpart of the Łukasiewicz many-valued logic [23] (MV = many valued), generalizes some classes
of fuzzy sets. MV-algebras have been investigated by numerous international research groups [24–28].
A Shannon entropy theory for MV-algebras was created in [29,30]. The fuzzy set theory is a rapidly
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evolving field of theoretical and applied mathematical research. At present the subjects of intensive
study are also other algebraic structures based on the fuzzy set theory, such as D-posets [31–33], effect
algebras [34], and A-posets [35,36]. Some results concerning Shannon’s entropy on these structures
have been provided, e.g., in [37–39].

An important case of MV-algebras is the so-called product MV-algebra (see, e.g., [40–45]). This
notion was proposed independently by two authors: Riečan [40] and Montagna [41]. A Shannon
entropy theory for product MV-algebras was provided in [30,46,47]. We note that in the recently
published paper [48], the results regarding the Shannon entropy of partitions in product MV-algebras
were exploited to define the notions of Kullback-Leibler divergence and mutual information of
partitions in product MV-algebras. The Kullback-Leibler divergence (often shortened to K-L
divergence) was proposed in [49] as the distance between two probability distributions and it is
currently one of the most basic quantities in information theory.

When addressing some special issues instead of Shannon entropy, it is preferable to use an
approach based on the conception of logical entropy [50–56]. If A = {A1, . . . , An} is a measurable
partition with probabilities p1, . . . , pn of the corresponding elements, then the logical entropy of A
is defined by the formula hl(A) = ∑n

i=1 l(pi), where l : [0, 1]→ [0, 1] is the logical entropy function
defined by:

l(x) = x(1− x). (2)

In [50], the author gives a history of the logical entropy formula hl(A) = 1 − ∑n
i=1 p2

i . It is
interesting that Alan Turing, who worked during the Second World War at the Bletchley Park facility in
England, used the formula ∑n

i=1 p2
i in his famous cryptanalysis work. This formula was independently

used by Polish crypto-analysts in their work [57] on the Enigma. The relationship between the Shannon
entropy and the logical entropy is examined in [50]. In addition, the notions of logical cross entropy
and logical divergence have been proposed in the cited paper. For some recent works related to the
concept of logical entropy on algebraic structures based on fuzzy set theory, we refer the reader to (for
example) [58–65].

The purpose of this article is to extend the study of logical entropy provided in [50] to the case of
product MV-algebras. The remainder of the article is structured as follows. In Section 2 we present
basic concepts, terminology and the known results that are used in the article. The results of the paper
are given in the succeeding three sections. In Section 3, we define the logical entropy of partitions in
product MV-algebras and its conditional version and examine their properties. In the following section,
the results of Section 3 are exploited to define the concept of logical mutual information for the studied
situation. Using the notion of logical conditional mutual information, we present chain rules for logical
mutual information in product MV-algebras. In Section 5, we define the logical cross entropy and
the logical divergence of states defined on product MV-algebras and we examine properties of these
quantities. The results are explained with several examples to illustrate the theory developed in the
article. The final section contains a brief overview. It is shown that by replacing the Shannon entropy
function (Equation (1)) by the logical entropy function (Equation (2)) we obtain the results analogous
to the results given in [48].

2. Preliminaries

The aim of the section is to provide basic concepts, terminology and the known results used in
the paper.

Definition 1 [25]. An MV-algebra is an algebraic structure M = (M,⊕,⊗,⊥, 0, 1), where ⊕ is a
commutative and associative binary operation on M, ⊗ is a binary operation on M,⊥ is a unary operation on M,

0, 1 ∈ M, such that a⊕ 0 = a; a⊕ 1 = 1; (a⊥)⊥ = a; 0⊥ = 1; a⊕ a⊥ = 1; (a⊥ ⊕ b)⊥⊕ b = (a⊕ b⊥)⊥⊕ a;
a⊗ b = (a⊥ ⊕ b⊥)⊥.
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Example 1. Let M be the unit real interval [0, 1], a⊥ = 1− a, a⊕ b = min(a+ b, 1), a⊗ b = max(a+ b− 1, 0).
Then the system (M,⊕,⊗,⊥ , 0, 1) is an MV-algebra.

Example 2. Let (L,+,≤) be a commutative lattice ordered group (shortly l-group), i.e., (L,+) is a commutative
group, (L,≤) is a partially ordered set being a lattice and a ≤ b =⇒ a + c ≤ b + c. Let u ∈ L be a strong
unit of L (i.e., to each a ∈ L there exists a positive integer n satisfying the condition a ≤ nu) such that u > 0,
where 0 is a neutral element of (L,+). Put [0, u] = {a ∈ L; 0 ≤ a ≤ u}, a⊥ = u− a, a⊕ b = (a + b) ∧ u,
a ⊗ b = (a + b− u) ∨ 0, 1 = u. Then the systemM0(L, u) = ([0, u],⊕,⊗,⊥, 0, 1) is an MV-algebra.
Evidently, if a, b ∈ L such that a + b ≤ u, then a⊕ b = a + b Moreover, it can be seen that the condition
a⊗ b = 0 is equivalent to the condition that a + b ≤ u.

By the following Mundici representation theorem, every MV-algebraM can be identified with
the unit interval [0, u] of a unique (up to isomorphism) commutative lattice ordered group L with a
strong unit u. We say that L is the l-group corresponding toM.

Theorem 1 [66]. LetM be an MV-algebra. Then there exists a commutative lattice ordered group L with a
strong unit u such thatM =M0(L, u), and (L, u) is unique up to isomorphism.

Definition 2 [47]. Let M = (M,⊕,⊗,⊥, 0, 1) be an MV-algebra. A partition in M is an n-tuple
α = (a1, . . . , an) of elements of M with the property a1 + . . . + an = u, where + is an addition in the
l-group L corresponding toM and u is a strong unit of L.

In the paper we shall deal with product MV-algebras. The definition of product MV-algebra
(cf. [40,41]), as well as the previous definition of partition in MV-algebra, is based on Mundici’s theorem,
i.e., the MV-algebra operation ⊕ in the following definition, and in what follows, is substituted by
the group operation + in the commutative lattice ordered group L that corresponds to the considered
MV-algebraM. Analogously, the element u is a strong unit of L and ≤ is the partial-ordering relation
in L.

Definition 3 [40]. A product MV-algebra is an algebraic structure (M,⊕,⊗, ·,⊥, 0, 1) where
(M,⊕,⊗,⊥, 0, 1) is an MV-algebra and · is a commutative and associative binary operation on M with
the following properties:

(i) for every a ∈ M, u · a = a;
(ii) if a, b, c ∈ M such that a + b ≤ u, then c · a + c · b ≤ u, and c · (a + b) = c · a + c · b.

For brevity, we will write (M, · ) instead of (M,⊕,⊗, ·,⊥, 0, 1) Further, we consider a state defined
on (M, · ) which plays the role of a probability measure on M. We note that a relevant probability
theory for the product MV-algebras was developed in [44], see also [27,45].

Definition 4 [44]. A state on a product MV-algebra (M, · ) is a map s : M→ [0, 1] with the properties:

(i) s(u) = 1;
(ii) if a, b ∈ M such that a + b ≤ u, then s(a + b) = s(a) + s(b).

Notice that the disjointness of the elements a, b ∈ M is expressed in the previous definition by the
condition a + b ≤ u (or equivalently by a ≤ u− b). According to the Mundici theorem this condition
can be formulated in the equivalent way as a + b ∈ M or also as a⊗ b = 0. As is customary, we will
write ∑n

i=1 ai instead of a1 + . . . + an. Let s : M→ [0, 1] be a state. Applying induction we get that for
any elements a1, . . . , an ∈ M such that ∑n

i=1 ai ≤ u, it holds s(∑n
i=1 ai) = ∑n

i=1 s(ai).
In the system of all partitions of (M, · ), we define the refinement partial order� in a standard way

(cf. [23]). If α = (a1, . . . , an), and β = (b1, . . . , bm) are two partitions of (M, · ), then we write β � α (and
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we say that β is a refinement of α), if there exists a partition {I(1), I(2), . . . , I(n)} of the set {1, 2, . . . , m}
such that ai = ∑j∈I(i) bj, for i = 1, . . . , n. Further, we define α∨ β = (ai · bj; i = 1, . . . , n, j = 1, 2, . . . , m).

Since ∑n
i=1 ∑m

j=1 ai · bj = (∑n
i=1 ai) ·

(
∑m

j=1 bj

)
= u · u = u, the system α ∨ β is a partition of (M, · ).

The partition α ∨ β represents a combined experiment consisting of a realization of the considered
experiments α and β. If α1, α2, . . . , αn are partitions in a product MV-algebra (M, · ), then we put
∨n

i=1αi = α1 ∨ α2 ∨ . . . ∨ αn.

3. Logical Entropy of Partitions in Product MV-Algebras

In this section we define the logical entropy and the logical conditional entropy of partitions in a
product MV-algebra and derive their properties.

Definition 5. Let α = (a1, . . . , an) be a partition in a product MV-algebra (M, · ), and s : M→ [0, 1] be a
state. Then we define the logical entropy of α with respect to state s by the formula:

hl
s(α) =

n

∑
i=1

s(ai) (1− s(ai)). (3)

Remark 1. Evidently, the logical entropy hl
s(α) is always nonnegative, and it has the maximum value 1− 1

n for
the state s uniform over α = (a1, . . . , an). Since ∑n

i=1 s(ai) = s(∑n
i=1 ai) = s(u) = 1, Equation (3) can also

be written in the following form:

hl
s(α) = 1−

n

∑
i=1

(s(ai))
2. (4)

Example 3. Let (M, · ) be a product MV-algebra and s : M→ [0, 1] be a state. If we put ε = (u), then ε is a
partition of (M, · ) with the property α � ε, for every partition α of (M, · ). Its logical entropy is hl

s(ε) = 0.
Let a ∈ M with s(a) = p, where p ∈ (0, 1). It is obvious that the pair α = (a, u− a) is a partition of (M, · ).
Since s(u− a) = 1− p, the logical entropy hl

s(α) = 2p(1− p). If we put p = 1
2 , then we have hl

s(α) =
1
2 .

In the proofs we shall use the following propositions.

Proposition 1. Let α = (a1, . . . , an) be a partition of (M, · ). Then, for every b ∈ M, we have:

s(b) =
n

∑
i=1

s(ai · b).

Proof. According to Definitions 2, 3, and 4 we obtain:

s(b) = s(u · b) = s((
n

∑
i=1

ai) · b) = s(
n

∑
i=1

ai · b) =
n

∑
i=1

s(ai · b).

�

Proposition 2. For arbitrary partitions α, β of (M, · ), it holds α ∨ β � α.

Proof. Let us suppose that α = (a1, . . . , an), β = (b1, . . . , bm). Put I(i) = {(i, 1), . . . , (i, m)}, for
i = 1, . . . , n. Since we have:

ai = ai · u = ai ·
(

m

∑
j=1

bj

)
=

m

∑
j=1

ai · bj = ∑
(l,j)∈I(i)

al · bj,
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for i = 1, . . . , n, we conclude that α ∨ β � α. �

Proposition 3. Let α, β be partitions of (M, · ) such that β � α. Then for an arbitrary partition γ, it holds
β ∨ γ � α ∨ γ.

Proof. Let α = (a1, . . . , an), β = (b1, . . . , bm), γ = (c1, . . . , cr), β � α. Then there is a partition
{I(1), I(2), . . . , I(n)} of the set {1, 2, . . . , m} such that ai = ∑j∈I(i) bj, for i = 1, . . . , n. A partition α ∨ γ

= (ai · ck; i = 1, . . . , n, k = 1, . . . , r) is indexed by {(i, k); i = 1, . . . , n, k = 1, . . . , r}, therefore we put
I(i, k) = {(j, k); j ∈ I(i)}, for i = 1, . . . , n, k = 1, . . . , r. We obtain:

ai · ck =

 ∑
j∈I(i)

bj

 · ck = ∑
j∈I(i)

bj · ck = ∑
(j, l)∈I(i, k)

bj · cl ,

for i = 1, . . . , n, k = 1, . . . , r. This implies that β ∨ γ � α ∨ γ. �

Definition 6. If α = (a1, . . . , an) and β = (b1, . . . , bm) are partitions of (M, · ), then the logical conditional
entropy of α given β is defined by:

hl
s(α/β) =

n

∑
i=1

m

∑
j=1

s(ai · bj) · (s(bj)− s(ai · bj)). (5)

Remark 2. Since by Proposition 1, for j = 1, . . . , m, it holds
n
∑

i=1
s(ai · bj) = s(bj), Equation (5) can be written

in the following equivalent form:

hl
s(α/β) =

m

∑
j=1

(s(bj))
2 −

n

∑
i=1

m

∑
j=1

(s(ai · bj))
2. (6)

Remark 3. Since s(ai · bj) ≤ s(bj), for i = 1, . . . , n, j = 1, . . . , m, the logical conditional entropy hl
s(α/β) is

always nonnegative. Let us consider the partition ε = (u). It can be easily verified that hl
s(α/ε) = hl

s(α).

Theorem 2. For arbitrary partitions α, β of (M, · ), it holds:

hl
s(α ∨ β) = hl

s(α) + hl
s(β/α). (7)

Proof. Let us suppose that α = (a1, . . . , an), β = (b1, . . . , bm). Then by Equations (4) and (6) we obtain:

hl
s(α) + hl

s(β/α) = 1−∑n
i=1 (s(ai))

2 + ∑n
i=1 (s(ai))

2 − ∑n
i=1 ∑m

j=1 (s(ai · bj))
2

= 1−∑n
i=1 ∑m

j=1 (s(ai · bj))
2 = hl

s(α ∨ β).

�

Remark 4. Let α1, α2, . . . , αn be partitions of (M, · ). Using now Equation (7), considering the partition
∨n

i=1αi = α1 ∨ α2 ∨ . . . ∨ αn and applying induction, we get:

hl
s(α1 ∨ . . . ∨ αn) = hl

s(α1) +
n

∑
i=2

hl
s(αi/α1 ∨ . . . ∨ αi−1). (8)

Theorem 3. For arbitrary partitions α, β of (M, · ), it holds:
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(i) hl
s(α/β) ≤ hl

s(α);
(ii) hl

s(α ∨ β) ≤ hl
s(α) + hl

s(β).

Proof. Let us suppose that α = (a1, . . . , an), β = (b1, . . . , bm).

(i) Since by Proposition 1, for i = 1, . . . , n, it holds ∑m
j=1 s(ai · bj) = s(ai), we obtain:

∑m
j=1 s(ai · bj) · (s(bj)− s(ai · bj)) ≤

(
∑m

j=1 s(ai · bj)
) (

∑m
j=1 (s(bj)− s(ai · bj))

)
= s(ai)

(
∑m

j=1 s(bj)−∑m
j=1 s(ai · bj)

)
= s(ai)(1− s(ai)).

Therefore:

hl
s(α/β) =

n

∑
i=1

m

∑
j=1

s(ai · bj) · (s(bj)− s(ai · bj))≤
n

∑
i=1

s(ai)(1− s(ai)) = hl
s(α).

(ii) Combining Equation (7) and the previous property we obtain the claim (ii). �

In the following example, we illustrate the results of Theorem 3.

Example 4. Let us consider the measurable space ([0, 1],B), where B is the σ− algebra of all Borel subsets of
the unit interval [0, 1]. Put M = {IA; A ∈ B}, where IA is the indicator of the set A, and define, for every
IA, IB ∈ M, the operation · by the equality IA · IB = IA∩B. The system (M, · ) is a product MV-algebra with
the unit element u = IX. Let us define a state s : M→ [0, 1] by the equality s(IA) =

∫ 1
0 IA(x)dx, for any

element IA of M. The pairs α =
(

I[0, 1
2 ]

, I[ 1
2 , 1]

)
and β =

(
I[0, 1

3 ]
, I[ 1

3 , 1]

)
are partitions of (M, · ) with the

s-state values 1
2 , 1

2 and 1
3 , 2

3 of the corresponding elements, respectively. By Equation (4) we can easily calculate

their logical entropy: hl
s(α) =

1
2 , hl

s(β) = 4
9 . The partition α ∨ β =

(
I[0, 1

3 ]
, I[ 1

3 , 1
2 ]

, I[ 1
2 , 1], 0

)
has the s-state

values 1
3 , 1

6 , 1
2 , 0 of the corresponding elements, and the logical entropy:

hl
s(α ∨ β) = 1−

[
(

1
3
)

2
+ (

1
6
)

2
+ (

1
2
)

2
]
=

11
18

.

Since 11
18 ≤

1
2 + 4

9 , the inequality hl
s(α ∨ β) ≤ hl

s(α) + hl
s(β) holds. The logical conditional entropy of α given

β is the number:

hl
s(α/β) =

2

∑
j=1

(s(bj))
2 −

2

∑
i=1

2

∑
j=1

(s(ai · bj))
2 = (

1
3
)

2
+ (

2
3
)

2
−
[
(

1
3
)

2
+ (

1
6
)

2
+ (

1
2
)

2
]
=

5
9
− 7

18
=

1
6

;

analogously we get the logical conditional entropy hl
s(β/α) = 1

2 −
7
18 = 1

9 . It can be verified that:

hl
s(α ∨ β) = hl

s(β) + hl
s(α/β) = hl

s(α) + hl
s(β/α).

Theorem 4. For arbitrary partitions α, β, γ of (M, · ), it holds:

hl
s(α ∨ β/γ) = hl

s(α/γ) + hl
s(β/α ∨ γ). (9)



Entropy 2018, 20, 129 7 of 14

Proof. Let us suppose that α = (a1, . . . , ap), β = (b1, . . . , bq), γ = (c1, . . . , cr). Using Equation (6) we
can write:

hl
s(α/γ) + hl

s(β/α ∨ γ)=
r

∑
k=1

(s(ck))
2 −

p

∑
i=1

r

∑
k=1

(s(ai · ck))
2 +

p

∑
i=1

r

∑
k=1

(s(ai · ck))
2 −

q

∑
j=1

p

∑
i=1

r

∑
k=1

(s(bj · ai · ck))
2

=
r

∑
k=1

(s(ck))
2 −

p

∑
i=1

q

∑
j=1

r

∑
k=1

(s(ai · bj · ck))
2 = hl

s(α ∨ β/γ).

�

Remark 5. Let α1, α2, . . . , αn, γ be partitions of (M, · ). Using the principle of mathematical induction, we get
the following generalization of Equation (9):

hl
s(α1 ∨ . . . ∨ αn/γ) = hl

s(α1/γ) +
n

∑
i=2

hl
s(αi/α1 ∨ . . . ∨ αi−1 ∨ γ). (10)

If we put γ = ε, as a special case of Equation (10) we get Equation (8).

Theorem 5. For arbitrary partitions α, β, γ of (M, · ), it holds:

(i) β � α implies hl
s(β) ≥ hl

s(α);
(ii) hl

s(α ∨ β) ≥ max [hl
s(α); hl

s(β)];
(iii) β � α implies hl

s(β/γ) ≥ hl
s(α/γ).

Proof.

(i) Let α = (a1, . . . , ak), β = (b1, . . . , bl). By the assumption that β � α there is a partition
{I(1), I(2), . . . , I(k)} of the set {1, 2, . . . , l} with the property ai = ∑j∈I(i) bj, for i = 1, . . . , k.
Therefore:

hl
s(α) = 1−∑k

i=1(s(ai))
2 = 1−∑k

i=1

(
s(∑j∈I(i) bj)

)2
= 1−∑k

i=1

(
∑j∈I(i) s(bj)

)2

≤ 1−∑k
i=1 ∑j∈I(i) (s(bj))

2= 1−∑l
j=1 (s(bj))

2 = hl
s(β).

We used the inequality
(

∑j∈I(i) s(bj)
)2
≥ ∑j∈I(i) (s(bj))

2 that follows from the inequality

(x1 + . . . + xn)
2 ≥ x2

1 + . . . + x2
n applicable for all nonnegative real numbers x1, . . . , xn.

(ii) According to Proposition 2 it holds α∨ β � α, and α∨ β � β, therefore, the property (ii) is a direct
consequence of the property (i).

(iii) Let β � α. Then by Proposition 3 we have β ∨ γ � α ∨ γ. Therefore, using Equation (7) and the
property (i) we get:

hl
s(β/γ) = hl

s(β ∨ γ)− hl
s(γ) ≥ hl

s(α ∨ γ)− hl
s(γ) = hl

s(α/γ).

�

In the following theorem, we prove the concavity of logical entropy hl
s(α) as a function of s.

By the symbol S(M) we will denote the family of all states defined on M. It is easy to verify that if
s1, s2 ∈ S(M), then, for every real number λ ∈ [0, 1], it holds that λ s1 + (1− λ) s2 ∈ S(M).

Theorem 6. Let α be a given partition of (M, · ). Then, for every s1, s2 ∈ S(M), and for every real number
λ ∈ [0, 1], it holds:

λ hl
s1
(α)+(1− λ) hl

s2
(α) ≤hl

λ s1+(1−λ)s2
(α).
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Proof. Let α = (a1, . . . , an). The function φ : < → < defined by φ(x) = x2, for every x ∈ <, is convex,
therefore, for every real number λ ∈ [0, 1] and i = 1, 2, . . . , n, we have:

(λ s1(ai) + (1− λ) s2(ai))
2 ≤ λ( s1(ai))

2 + (1− λ) (s2(ai))
2.

Hence, we obtain:

n

∑
i=1

(λ s1(ai) + (1− λ) s2(ai))
2 ≤ λ

n

∑
i=1

( s1(ai))
2 + (1− λ)

n

∑
i=1

(s2(ai))
2,

and, consequently:

1−
n

∑
i=1

(λ s1(ai) + (1− λ) s2(ai))
2 ≥ 1− λ

n

∑
i=1

( s1(ai))
2 − (1− λ)

n

∑
i=1

(s2(ai))
2.

Therefore, we can write:

λ hl
s1
(α)+(1− λ) hl

s2
(α) = λ

[
1−∑n

i=1( s1(ai))
2
]
+ (1− λ)

[
1−∑n

i=1(s2(ai))
2
]

= 1− λ∑n
i=1( s1(ai))

2 − (1− λ)∑n
i=1(s2(ai))

2

≤ 1−∑n
i=1(λ s1(ai) + (1− λ) s2(ai))

2

= 1−∑n
i=1(λ s1 + (1− λ) s2)(ai))

2= hl
λ s1+(1−λ)s2

(α).

The result proves that the logical entropy s 7→ hl
s(α) is concave on the class S(M). �

4. Logical Mutual Information in Product MV-Algebras

In this section, the previous results are exploited to introduce the concept of logical mutual
information of partitions in product MV-algebras and its conditional version and to derive their
properties. In particular, using the concept of logical conditional mutual information we formulate
chain rules for the examined situation.

Definition 7. Let (M, · ) be a product MV-algebra. The logical mutual information of partitions α and β in
(M, · ) is defined by:

Il
s(α, β) = hl

s(α)− hl
s(α/β). (11)

Remark 6. The inequality hl
s(α/β) ≤ hl

s(α) implies that the logical mutual information Il
s(α, β) is always

nonnegative. Since, by Equation (7), it holds hl
s(α/β) = hl

s(α∨ β)− hl
s(β), we also have the following identity:

Il
s(α, β) = hl

s(α) + hl
s(β)− hl

s(α ∨ β). (12)

Thereafter we can see that Il
s(α, β) = Il

s(β, α), and, due to the inequality hl
s(α) ≤ hl

s(α ∨ β) (Theorem 5,
(ii)), we have I l

s(α, β) ≤ min[hl
s(α); hl

s(β)].

Example 5. Put M = { f ; f : [0, 1]→ [0, 1] are Bore measurable }, and define in the class M the
operation · as the natural product of fuzzy sets. It is easy to see thatM is a product MV-algebra. Further,
we define a state s : M→ [0, 1] by the equality s( f ) =

∫ 1
0 f (x)dx, for every f ∈ M. Let us consider the

pairs α = (a1, a2), β = (b1, b2), where a1(x) = x, a2(x) = 1− x, b1(x) = x2, b2(x) = 1− x2, x ∈ [0, 1].
It is obvious that α and β are partitions of M. Elementary calculations will show that they have the s-state
values 1

2 , 1
2 and 1

3 , 2
3 of the corresponding elements, respectively, and the logical entropies hl

s(α) =
1
2 , hl

s(β) = 4
9 .
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The partition α ∨ β = (a1 · b1, a1 · b2, a2 · b1, a2 · b2) has the s-state values 1
4 , 1

4 , 1
12 , 5

12 of the corresponding
elements, and the logical entropy:

hl
s(α ∨ β) = 1−

[
(

1
4
)

2
+ (

1
12

)
2
+ (

1
4
)

2
+ (

5
12

)
2
]

.
= 0.694444 .

Simple calculations will show that hl
s(α/β)

.
= 0.555556− 0.305556 = 0.25 . By Equation (11) we obtain

the logical mutual information of partitions α and β :

Il
s(α, β) = 0.5− 0.25 = 0.25.

One can verify that:
Il
s(α, β) = hl

s(α) + hl
s(β)− hl

s(α ∨ β).

Remark 7. Let us remind that the product MV-algebra presented in the previous example represents an
important class of fuzzy sets; it is called a full tribe of fuzzy sets (cf. [21,24,25]).

Theorem 7. If partitions α and β of (M, · ) are statistically independent, i.e., s(a · b) = s(a) · s(b), for every
a ∈ α, b ∈ β, then:

Il
s(α, β) = hl

s(α) · hl
s(β).

Proof. Let α = (a1, . . . , ak), β = (b1, . . . , bl). Using Equations (12) and (4) we obtain:

Il
s(α, β) = 1−∑k

i=1 (s(ai))
2 + 1−∑l

j=1 (s(bj))
2 − 1 + ∑k

i=1 ∑l
j=1 (s(ai) · s(bj))

2

=
[
1−∑k

i=1 (s(ai))
2
]
·
[
1−∑l

j=1 (s(bj))
2
]
= hl

s(α) · hl
s(β).

�

As it is known, one of the most significant properties of Shannon entropy is additivity: if
partitions A,B are statistically independent, then hS(A ∨ B) = hS(A) + hS(B). Here, A ∨ B =

{A ∩ B; A ∈ A, B ∈ B}. In the case of logical entropy, the following property applies.

Theorem 8. If partitions α and β of (M, · ) are statistically independent, then:

1− hl
s(α ∨ β) = (1− hl

s(α)) · (1− hl
s(β)).

Proof. As a consequence of Theorem 7 and Equation (12), we obtain:

(1− hl
s(α)) · (1− hl

s(β)) = 1− hl
s(α)− hl

s(β) + hl
s(α) · hl

s(β) = 1− hl
s(α)− hl

s(β) + Il
s(α, β)

= 1− hl
s(α)− hl

s(β) + hl
s(α) + hl

s(β)− hl
s(α ∨ β) = 1− hl

s(α ∨ β).

�

In the following two theorems, using the concept of logical conditional mutual information, chain
rules for logical mutual information in product MV-algebras are established.

Definition 8. Let α, β, γ be partitions of (M, · ). The logical conditional mutual information of α and β

assuming a realization of γ is defined by:

Il
s(α, β/γ) = hl

s(α/γ)− hl
s(α/β ∨ γ). (13)
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Remark 8. It is easy to show that:
Il
s(α, β/γ) = Il

s(β, α/γ).

Theorem 9. For arbitrary partitions α, β, γ of (M, · ), it holds:

Il
s(α ∨ β, γ) = Il

s(α, γ) + Il
s(β, γ/α).

Proof. Elementary calculations will show that:

Il
s(α, γ) + Il

s(β, γ/α) = hl
s(γ)− hl

s(γ/α) + hl
s(γ/α)− hl

s(γ/α ∨ β) = Il
s(α ∨ β, γ).

�

Theorem 10. Let α1, α2, . . . , αn, γ be partitions of (M, · ). Then:

Il
s(∨n

i=1αi, γ) = Il
s(α1, γ) +

n

∑
i=2

Il
s(αi, γ/α1 ∨ . . . ∨ αi−1).

Proof. It follows by applying Equations (11), (8), (10), and (13). �

Definition 9. Let α, β, γ be partitions of (M, · ). We say that α and γ are conditionally independent given β if
Il
s(α, γ/β) = hl

s(α/β) · hl
s(γ/β).

Theorem 11. Let α, β, γ be partitions of (M, · ). If α and γ are conditionally independent given β, then:

Il
s(α ∨ β, γ) = Il

s(β, γ) + hl
s(α/β) · hl

s(γ/β).

Proof. Using Theorem 9 we get:

Il
s(α ∨ β, γ) = Il

s(β, γ) + Il
s(α, γ/β) = Il

s(β, γ) + hl
s(α/β) · hl

s(γ/β).

�

5. Logical Cross Entropy and Logical Divergence in Product MV-Algebras

In this section, we define the notions of logical cross entropy and logical divergence in product
MV-algebras. The proposed notions are analogies of the concepts of logical cross entropy and logical
divergence introduced by Ellerman in [50]. For illustration, we provide some numerical examples.

Definition 10. Let α = (a1, . . . , an) be a partition in a product MV-algebra (M, · ), and s, t ∈ S(M). We
define the logical cross entropy of states s, t with respect to α by the formula:

hl
α(s‖t) =

n

∑
i=1

s(ai) (1− t(ai)).

Remark 9. Since ∑n
i=1 s(ai) = 1, we can also write:

hl
α(s‖t) = 1−

n

∑
i=1

s(ai)t(ai).
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Evidently, the logical cross entropy hl
α(s ‖ t) is symmetric and it is always nonnegative. If states s, t are

identical over α (i.e., s(ai) = t(ai), for i = 1, 2, . . . , n ), then hl
α(s ‖ t) = hl

s(α).

Definition 11. Let α = (a1, . . . , an) be a partition in a product MV-algebra (M, · ), and s, t ∈ S(M). We
define the logical divergence of states s, t with respect to α by the formula:

dl
α(s‖t) =

1
2

n

∑
i=1

(s(ai)− t(ai))
2 .

Remark 10. It is evident that dl
α(s ‖ t) = dl

α(t ‖ s), and dl
α(s ‖ t) ≥ 0 with the equality if and only if the

states s, t are identical over α. As in the case of K-L divergence, the logical divergence is not a distance metric
because it does not satisfy the triangle inequality (as shown in the example that follows). Notice that its square
root (with or without the 1

2 factor) is a natural distance metric.

Example 6. Consider any product MV-algebra (M, · ) and states s1, s2, s3 defined on it. Let a ∈ M with
s1(a) = p1, s2(a) = p2, s3(a) = p3, where p1, p2, p3 ∈ (0, 1). Then s1(u− a) = 1− p1, s2(u− a) = 1− p2,
and s3(u− a) = 1− p3. Put p1 = 1

2 , p2 = 1
3 , p3 = 1

4 , and consider the partition α = (a, u− a) of (M, ·).
Let us calculate:

dl
α(s1‖s2) =

1
2
(s1(a)− s2(a))2 +

1
2
(s1(u− a)− s2(u− a))2 = (p1 − p2)

2 =
1

36
.

Analogously:

dl
α(s1‖s3) = (p1 − p3)

2 =
1
16

, and dl
α(s2‖s3) = (p2 − p3)

2 =
1

144
.

Evidently,
dl

α(s1‖s3) > dl
α(s1‖s2)+ dl

α(s2‖s3).

The result means that the triangle inequality of the logical divergence in product MV-algebras does not apply,
in general.

Theorem 12. Let α be a partition of a product MV-algebra (M, · ). Then, for every states s, t defined on (M, · ),
it holds:

dl
α(s‖t) = hl

α(s‖t)−
1
2
(hl

s(α) + hl
t(α)).

Proof. Assume that α = (a1, . . . , an). Let us calculate:

hl
α(s‖t)− 1

2 (h
l
s(α) + hl

t(α)) = 1−∑n
i=1 s(ai)t(ai)− 1

2

(
1−∑n

i=1 (s(ai))
2
)
− 1

2

(
1−∑n

i=1 (t(ai))
2
)

= 1
2 ∑n

i=1 (s(ai)− t(ai))
2 = dl

α(s ‖t).

�

Remark 11. As a simple consequence of the previous theorem and the logical information inequality
dl

α(s ‖ t) ≥ 0 (with the equality if and only if the states s, t are identical over α) we get that
hl

α(s ‖ t) ≥ 1
2 (h

l
s(α) + hl

t(α)) with the equality if and only if the states s, t are identical over α.

Example 7. Consider the product MV-algebra (M, · ) from Example 4 and the real functions F1, F2 defined by
F1(x) = x, F2(x) = x2, for every x ∈ [0, 1]. We define on the product MV-algebra (M, · ) two states s1, s2

by the formulas:

s1(IA) =
∫ 1

0
IA(x)dF1(x) =

∫ 1

0
IA(x)dx,
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s2(IA) =
∫ 1

0
IA(x)dF2(x) =

∫ 1

0
IA(x)2xdx,

for any element IA of M. The partition α =
(

I[0, 1
2 ]

, I[ 1
2 , 1]

)
has the s1-state values 1

2 , 1
2 of the corresponding

elements, and the s2-state values 1
4 , 3

4 of the corresponding elements. Elementary calculations will show that
hl

s1
(α) = 1

2 , and hl
s2
(α) = 3

8 . Further we get:

hl
α(s1‖s2) =

2

∑
i=1

s1(ai) (1− s2(ai)) =
1
2

, and dl
α(s1‖s2) =

1
2

2

∑
i=1

(s1(ai)− s2(ai))
2 =

1
16

.

It is now possible to verify that:

dl
α(s1‖s2) = hl

α(s1‖s2)−
1
2
(hl

s1
(α) + hl

s2
(α)),

and
hl

α(s1‖s2) ≥
1
2
(hl

s1
(α) + hl

s2
(α)).

6. Conclusions

In [48], the authors introduced the concepts of mutual information and K-L divergence in product
MV-algebras and derived the fundamental properties of these quantities. Naturally, the presented
theory is based on the Shannon entropy function (Equation (1)). The aim of this paper was to construct a
relevant theory on product MV-algebras for the case when the Shannon entropy function is replaced by
the logical entropy function (Equation (2)). The main results of the paper are contained in Sections 3–5.

In Section 3, we have proposed the concepts of logical entropy and logical conditional entropy
of partitions in product MV-algebras and examined their properties. Among others, the concavity of
logical entropy has been proved. In Section 4, the notions of logical entropy and logical conditional
entropy have been exploited to define the logical mutual information for the examined case of product
MV-algebras. We have shown basic properties of these quantities. Moreover, chain rules for logical
entropy and logical mutual information for the studied case of product MV-algebras were derived.
In the final section, the notions of logical cross entropy and logical divergence in product MV-algebras
were proposed. To illustrate the developed theory, several numerical examples are included in
the paper.

As already mentioned in Section 4 (see Example 5), an important case of product MV-algebras is
the full tribeM of fuzzy sets. We note that in [21] (see also [24,25]) the entropy of Shannon type on
the full tribeM of fuzzy sets was examined. In a natural way, all results, based on the logical entropy
function (2), provided by the theory developed in the paper may be applied also to the case of a full
tribe of fuzzy sets.
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