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Abstract: The Organic Rankine Cycle (ORC) has been proved a promising technique to exploit waste
heat from Internal Combustion Engines (ICEs). Waste heat recovery systems have usually been
designed based on engine rated working conditions, while engines often operate under part load
conditions. Hence, it is quite important to analyze the off-design performance of ORC systems under
different engine loads. This paper presents an off-design Medium Cycle/Organic Rankine Cycle
(MC/ORC) system model by interconnecting the component models, which allows the prediction of
system off-design behavior. The sliding pressure control method is applied to balance the variation
of system parameters and evaporating pressure is chosen as the operational variable. The effect of
operational variable and engine load on system performance is analyzed from the aspects of energy
and exergy. The results show that with the drop of engine load, the MC/ORC system can always
effectively recover waste heat, whereas the maximum net power output, thermal efficiency and
exergy efficiency decrease linearly. Considering the contributions of components to total exergy
destruction, the proportions of the gas-oil exchanger and turbine increase, while the proportions of
the evaporator and condenser decrease with the drop of engine load.

Keywords: Medium Cycle/Organic Rankine Cycle (MC/ORC); waste heat recovery; engine load
effect; stationary CNG engine; exergy analysis

1. Introduction

At present, increasing global concerns over climate change and energy shortages have resulted in
a strong interest in energy development. In China, improving the proportion of natural gas (NG) in
the primary energy mix is the main energy conservation and emission reduction strategy in the near
future [1]. Natural gas, which is always used in distributed energy systems (DESs) and combined cold,
heat and power (CCHP), will become the major energy suppliers for industrial parks and new towns.

Stationary compressed natural gas (CNG) engines are among of the main consumers of NG.
However, most CNG engines in China are developed based on gasoline and diesel engines, hence,
the thermal efficiency of most CNG engine is about 30% lower than that of diesel engines due to the
restraints of engine structure [2], that is to say, a large amount of fuel energy (about 35%) is wasted
through the exhaust. The conversion of exhaust waste heat into useful output is a promising approach
which will improve overall thermal efficiency and save fuel. Previous researchers have shown that
among the various techniques for residual energy utilization, the Organic Rankine Cycle (ORC) is
a promising method for engine waste heat recovery [3,4].

Extensive studies had been conducted on waste heat recovery of internal combustion engines
(ICEs) using ORC, including working fluid selection [5–7], cycle configuration [7,8] and economic
analysis [9,10]. However, previous studies focused on the design conditions and carry out simulations
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based on simple thermodynamic models, whereas ORC systems fed by engine waste heat often operate
far from their design point due to the changes of engine load. Previous research has shown that the
available exhaust gas energy varies greatly depending on engine loads [8,11,12]. In fact, the exhaust gas
flow rate and temperature variations lead the evaporator to severe off-design conditions which modify
the inlet working fluid conditions until the ORC system becomes unfeasible [13]. The importance
of investigating the off-design performance of ORC systems with variable engine conditions was
remarked by Wang et al. [14]. The stationary ICE is widely used in distributed energy systems (DESs)
and combined cold, heat and power (CCHP) systems. The stationary ICE would operate at off-design
conditions when the electrical power demand decreases. According to the electricity load profiles of
different buildings in a typical day [15], it is confirmed that the stationary ICE would also operate
at off-design conditions for long periods of time. Regarding this, only a few works in the published
literature have presented the off-design performance of ORC systems.

Sun and Li [16] proposed a detailed off-design model of an ORC to predict system performance,
and their optimization study revealed the relationship between controlled (optimal relative working
fluid mass flow rate, the optimal relative condenser fan air mass flow rate) and uncontrolled variables
(the heat source temperature and the ambient dry bulb temperature) on maximal net power output
and thermal efficiency. Ibarra et al. [17] presented a steady-state part-load model for a small subcritical
ORC system featuring a scroll expander. The part-load model can simulate the off-design conditions
with the variation of four parameters: the maximum temperature of the cycle, the evaporation pressure,
the condensation temperature and the expander speed. However, the attention of the authors was only
focused to the off-design performance of the expander and pump without considering the off-design
simulation of the vapor generator, the heat source and the condensation system. Wang et al. [18]
developed an off-design static model for a solar-powered ORC system and investigated the system
behavior with the change of environment temperature, thermal oil mass flow rate and solar radiation.
Hu et al. [19] conducted a detailed design and off-design performance analysis based on a preliminary
design of a radial turbine and exchanger based on an ORC system for a geothermal heat source,
however, they identified the evaporation and condenser pressure as a control parameters and did not
study any parameters affecting them. Quolin et al. [20] proposed a dynamic ORC model to optimize
the working cycle conditions for a wide range of heat source and heat sink conditions. The study of
Bamgbopa et al. [21] extended the findings of Quolin et al. [20] and set the evaporation temperature
as a consequence of evaporator, however, the condenser was simply selected as a unit to complete
the cycle at the low pressure side. In summary, the above studies mainly focused on medium-low
temperature ORC systems, such as solar and geothermal powered ORC systems.

The exhaust gas of an engine is usually at 500–900 ◦C which is higher than the decomposition
temperature of frequently-used working fluids like R245fa and R123. If the organic working fluids
are directly heated by the exhaust gas, it may cause local overheating and decomposition problems.
In this case, the medium cycle (MC), an intermediate heat-transfer loop, is generally adopted to lower
the exhaust temperature and ensure the safety of the working fluid [22]. The result of Li [23] showed
that MC can improve the stability of ORC systems and turn all step changes into ramp changes,
which makes control system more effective and robust. Gewald [22] applied an ORC with a thermal-oil
cycle to recover the waste heat of several large stationary engines. By using MC, the waste heat of
different engines can conveniently be recovered by an ORC system. The importance of medium cycle
to transfer heat from exhaust gas to an ORC system was also noted by Vaja [24]. MC cycles can also be
found in [25–27]. Previous studies stated that MC cycles can not only inhibit the thermal decomposition
of working fluids, but also stabilize the operation of the ORC system under transient conditions.
However, the off-design performance of MC/ORC under various engine loads is less studied.

The objective of this paper is to carry out an off-design performance analysis of an MC/ORC fed
by the waste heat from an ICE. R245fa is selected as working fluid due to its being non-flammable and
non-toxic and having relatively low environmental impact (low ODP and low GWP). The off-design
system model is built by assembling the models of each component through the inlet and outlet
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state. The sliding pressure control is applied to balance the variation of system parameters and
evaporating pressure is chosen as operational parameters. The effect of operational variables and
engine load on system performance is analyzed from the aspect of energy and exergy to show its
maximal working potential.

2. System Description

The internal combustion engine (ICE) selected in this paper is an eight-cylinder four-stroke
stationary CNG engine used in a generator set. The main specification of this engine are listed in
Table 1. As the engine runs in a power plant, its speed is constant (600 r/min) while its load varies
under different conditions. Seven conditions of the CNG engine are picked out according to the power
output range from 400 kW to 1000 kW in intervals of 100 kW. The heat balance of the engine is firstly
analyzed according to data from engine tests, as listed in Table 2. The temperature of the exhaust gas
is within 750–813 K and approximately 35% of the fuel energy is wasted in the exhaust gas. Therefore,
it is meaningful to recover waste heat from the exhaust gas to improve the engine efficiency and reduce
fuel consumption. Under the hypothesis of perfect combustion of natural gas, the composition of the
exhaust gas on mass basis has been calculated at: CO2 = 7.11%, H2O = 14.22%, N2 = 73.4%, O2 = 5.27%,
which is used to evaluate the gas properties.

Table 1. Specifications of the 8300ZLD-1 CNG engine.

Item Parameter Unit

Model 8300ZLD-1 -
Ignition method Spark plug ignition -
Cylinder number 8 -

Displacement 215 L
Bore × stroke 300 × 380 mm
Rated speed 600 rpm
Rated power 1000 kW
Max. power 1100 kW

Table 2. Experiment data of the stationary CNG engine under different load.

Parameter Value

Speed/(r/min) 600 600 600 600 600 600 600
Engine load 40% 50% 60% 70% 80% 90% 100%

Effective power/(kW) 400 500 600 700 800 900 1000
Heat consumption rate of gas/(MJ/kWh) 13.09 11.76 11.08 10.59 10.20 10.26 9.85

Exhaust temperature/(K) 751.15 768.15 782.15 793.15 803.15 809.15 813.15
Intake air volume flow rate/(m3/h) 1774 2145 2465 2748 3120 3510 4180
Exhaust volume flow rate/(m3/h) 1911 2310 2654 2959 3380 3800 4500

Exhaust mass flow rate/(kg/s) 0.7272 0.8020 0.9752 1.1112 1.1736 1.3194 1.5625
Engine thermal efficiency/(%) 27.5 30.6 32.3 34.0 35.3 35.0 36.5

Figures 1 and 2 show the schematic and the T-s diagram of the MC/ORC recovering exhaust
gas waste heat from the CNG engine. As shown in figure, the red line and blue line represent the
exhaust gas flow from the engine and cooling water from the water tower respectively. The black
line represents the ORC system. An intermediate heat-transfer loop (the green line) is used between
the exhaust gas and ORC circuit to prevent decomposition of the R245fa working fluid. The system
operates as follows: the high temperature exhaust rejects heat to the thermal oil and then releases it to
atmosphere. The thermal oil supplies the heat to the ORC system in the evaporator (state: a–b). At the
same time, the fluid is pumped into the evaporator (state: 7–1) and becomes superheated vapor (state:
1–4). Mechanical energy is produced in the turbine during the superheated vapor expansion (state:
4–5). Finally, it is condensed (state: 5–7) and the next cycle begins.
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Figure 2. T-s diagram of the MC-ORC.

3. Mathematical Model

The off-design performance simulation procedure is basically shown in Figure 3. The mathematical
model in this paper includes two parts: system design model and off-design simulation model. Firstly,
the ORC thermodynamic cycle is built according to the external design parameters and the main
components of the ORC system are designed in the system design model. Then the above design
parameters are adopted as the inputs of our off-design simulation model to analyze the system
performance with variation of engine load.
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3.1. System Design Model

3.1.1. Thermodynamic Cycle Design

The first step of the design procedure is to define the thermodynamic cycle under design
conditions. The MC/ORC system is designed based on the engine rated conditions (100% engine load
in Table 2), the thermodynamic cycle design process can be briefly described as follows: as the basis
of cycle design, the condensation temperature can be determined to be 10 ◦C higher than the cooling
water temperature. Given the condensation temperature, previous studies [5,28] presented that cycle
efficiency and net power output increase first and then begin to flatten off near the critical pressure with
the rise of evaporating pressure as shown in Figure 4. However, the importance of limiting evaporating
pressure is remarked by many studies. Drescher et al. [29] mentioned 2000 kPa due to the safety and
cost concerns. Kuo et al. [30] argued for a limit of 2500 kPa in order to keep material costs down. In this
paper, 2000 kPa is set as the evaporating pressure design value. Superheat contributes negatively to the
cycle efficiency and net power output for dry fluids, and is not recommended [31]. In order to avoid
blade liquid corrosion, a superheating degree of 10 K is considered for design conditions. The mass
flow rate of working fluid and cooling water can be determined by the Pinch Point Temperature
Difference (PPTD) method. The main design parameters of MC/ORC system are summarized in
Table 3.

Table 3. The main design parameter of the MC/ORC system.

Items Unit Value

Environment temperature K 298.15
Environment pressure kPa 101.3

Hot source
Temperature of exhaust gas from CNG engine K 813.15
Mass flow rate of exhaust gas kg/s 1.5625
Acid dew point of exhaust gas K 373.15
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Table 3. Cont.

Items Unit Value

Thermal oil circuit
Working fluid type [32] - Dowtherm Q
Thermal oil temperature of evaporator inlet K 523.15
Mass flow rate of thermal oil kg/s 2.3

ORC circuit
Working fluid type - R245fa
Evaporating pressure kPa 2000
Condensation temperature ◦C 35
Mass flow rate of working fluid kg/s 2.6
Superheated degree of evaporator K 10
Expander isentropic efficiency - 0.8
Pump isentropic efficiency - 0.7
Pinch point temperature difference of evaporator K 30
Pinch point temperature difference of condenser K 10

Cold sink
Mass flow rate of cooling water kg/s 23.0
Cooling water temperature of condenser inlet ◦C 25
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3.1.2. Heat Exchangers Design

In this section, the main heat exchanger is designed to fulfill all design specifications provided
by the thermodynamic cycle at design conditions. In this paper, the TEMA E type shell-tube
heat exchanger is selected due to its satisfactory pressure-bearing capacity and highly general use.
The TEMA E type is the most basic types, with a single shell pass and with the inlet and outlet at the
opposite ends of the shell. In gas-oil exchangers, the thermal oil flows on the tube side while exhaust
gas flows on the shell side. In the evaporator, the working fluid flows on the tube side while the
thermal oil flows on the shell side. As for the condenser, the working fluid flows on the shell side while
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the cooling water flows on the tube side. The geometric parameters of shell-tube exchangers are listed
in Table 4. The heat transfer coefficient and pressure drop are determined by numerical correlations as
follows: the total heat transfer coefficient based on the tube-outside surface is obtained by:

1
U

=
1

hshell
+

1
htube

· do

di
+

do

2λ
ln
(

do

di

)
(1)

where λ is thermal conductivity of tube material, set as 16.3 W/mK. Then, the heat transfer area can be
determined by:

A =
Q

U · ∆T · Ft
(2)

here the ∆T is the log mean temperature different between the hot side and the cold side, Ft is the
temperature corrected factor. The limit pressure drop in heat exchangers is set as 10 kPa, which is the
convergence condition for design process.

Table 4. Heat exchangers design data.

Exchanger Data Unit Gas-Oil Exchanger Evaporator Condenser

Types - BEM BEM BEM
Tube inside fluid - Thermal-oil R245fa Water
Tube outside fluid - Exhaust gas Thermal-oil R245fa
Baffle type - Single segmental Single segmental Single segmental
Tube pattern ◦ 60 60 60
Tube-side passes Nt 2 2 2
Shell-side passes Ns 1 1 1
Tube outside diameter do/mm 12 14 16
Tube thickness th/mm 2 2 1
Pitch between tubes st/mm 30 20 20
Number of tube nt 800 240 120
Tube length mm 1230 1180 1870
Shell diameter Dshell/mm 921 342 245
Baffle space mm 460 171 122
Baffle cut mm 230 85 61

3.1.3. Heat Transfer Coefficient and Pressure Drop

Tube side

For the cases where no phase change occurs (thermal oil in gas-oil heat exchanger, single-phase
R245fa in evaporator and water in condenser), the convective heat transfer coefficient of tube-side is
calculated by the Petukhov and Popov correlation [33]:

Re =
ρ · v · Deq

µ
(3)

Pr =
Cp · µ

k
(4)

f = (0.782 · lgRe− 1.51)−2 (5)

Nu =
( f /8) · Re · Pr[

12.7 · ( f /8)0.5 ·
(

Pr2/3 − 1
)
+ 1.07

] (6)

h =
Nu · k

di
(7)
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When boiling of R245fa occurs in the evaporator, the Liu and Winterton correlation [34] is used
for the convective heat transfer coefficient in two-phase zone:

h =

√
(Fhl)

2 +
(

Shpool

)2
(8)

F =

[
1 + xPrl

(
ρl
ρv
− 1
)]0.35

(9)

S =
(

1 + 0.055F0.1Re0.16
l

)−1
(10)

hl = 0.023
(

λl
d

)
Re0.8

l Pr0.4
l (11)

hpool = 55p0.12
r q2/3(−lgpr)

−0.55M−0.5 (12)

where F, S, hl and hpool represents the forced convective heat transfer enhancement factor,
the suppression factor, liquid heat transfer coefficient and pool boiling heat transfer coefficient.

The pressure drop of tube side is given as [35]:

∆Ptube = ∆Pa + ∆PN (13)

∆Pa is the pressure drop along tube pass, for single phase zone:

∆Pa =
2 fp · G2 · L

ρ · Deq
(14)

Re < 105, fp = 0.316
Re0.25

Re ≥ 105, fp = 1
[0.79lg(Re)−0.64]2

For a two phase zone:
X = 18.65(ρv/ρl)

0.5 · (1− x/x) ·
(

Re0.1
v /Re0.5

l

)
(15)

φ = 1 +
12
X

+
1

X2 (16)

∆Pa,two-phase = φ · ∆Pa,liquid-phase (17)

where ∆Pa,liquid-phase is the pressure drop in the cases of the mixture flow as liquid, calculated as above.
∆PN is the pressure drop of the inlet and outlet connecting tube, which is given by:

∆PN = 1.5
ρv2

2
(18)

Shell side

The geometry of the shell side is more complex than the tube side. When calculating the shell
side heat transfer coefficient and pressure drop, the Delaware–Bell method is usually applied [35,36],
which adopts correction factors to modify the transfer factor of an ideal tube bundle. In this paper,
the baffle space is equal on the shell side, and the effect of adverse temperature gradient in laminar
flow is neglected. The correction factors for the effect generated by cross flow, leak flow and bypass
flow at the shell side are considered. For the single-phase fluid flowing in the shell-side, the heat
transfer coefficient is calculated by:

hl = jH · jc · jl · jb ·
G · Cp

Pr1/3 ·
(

µbulk
µwall

)0.14
(19)



Entropy 2018, 20, 137 9 of 23

where jH , jc, jl , jb are correction factors for heat transfer factor of ideal tube bundle, baffle configuration,
baffle leakage and bundle and pass partition bypass, respectively. The subscripts “bulb” and “wall”
represent the working fluid properties at wall-temperature and bulk-temperature. In the condenser,
the condensation heat transfer coefficient for two-phase fluid can be calculated by the correlation
as follows: the heat transfer coefficient of the shell side for single phase flow can be calculated as
follows [35]:

Rel =
G · Deq · (1− x)

µl
(20)

Prl =
Cpl · µl

kl
(21)

hl = jH Prl
1/3
(

µl
µw

)0.14( k
Deq

)
(22)

jH = 0.5(1 + B/ds)
(

0.08Re0.6821 + 0.7Re0.1772
)

(23)

Xtt =

(
1− x

x

)0.9
·
(

ρv

ρl

)0.5
·
(

µl
µv

)0.1
(24)

h
hl

= 1.22X−0.78
tt (25)

where subscripts “l” and “v” represent the liquid and vapor states of the fluid; x is the vapor quality;
B and ds represent the baffle space and inside diameter of shell, respectively.

The pressure drop of shell side can be calculated by [35,36]:

∆Pbk = 4 fbk
m2Nc

2A2
c ρ

(
µ

µwall

)
(26)

∆Pwk =
m2

2Ab Acρ
(2 + 0.6Ncw) (27)

∆Pshell = [(Nb − 1) · ∆Pbk · Rb + Nb · ∆Pwk] · Rl + 2∆Pbk · Rb ·
(

1 +
Ncw

Nc

)
(28)

3.2. Off-Design Simulation Model

In this section, the off-design models of the main components are built and linked together
through inlet and outlet state to evaluate the off-design performance of the MC/ORC system. Before
establishing these mathematical models, some assumptions are given as below: (1) the system is
operating in a steady state; (2) the pressure drops in the heat exchangers and pipes are ignored; (3) the
mass losses of the components are neglected in the simulation program.

3.2.1. Heat Exchanger Off-Design Model

In general, three modeling methods can be applied to predict the performance of heat exchangers:
discretization model, moving boundary model and finite volumes model. When phase changes occur,
the finite volumes model is inappropriate since the assumption of constant specific heat doesn’t
hold. The moving boundary model treats the evaporator as a three-zone heat transfer unit, including
super-heat zone, two phase zone and sub-cool zone. Then the finite volumes model can be applied
in each zone. A robust iterative algorithm is required to solve the heat transfer surface area of each
zone. The discretization model divides the evaporator into segments along the flow direction. In each
segment, the finite volumes model can be adopted to calculate the heat and mass balance [16]. However,
the discretization model is not suitable for system modeling due to higher computation cost. Therefore,
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the moving boundary model is utilized for the evaporator and condenser while the finite volumes
model is used for the gas-oil heat exchanger.

Since there are three iteration parameters in our off-design simulation model, a triple nested
iteration method is used in this paper, which has a heavy computational burden. For the convenience
of calculation, the heat transfer coefficient at off-design conditions can be simply calculated by
Equation (29). According to [17,37], under off-design conditions, when the mass flow rate of heat
exchanger deviates from the design value, the heat transfer coefficient at off-design condition should
be modified as follows:

h = hdes ·
( .
m/

.
mdes

)n (29)

where n depends on the heat exchanger configuration and hdes is the heat transfer coefficient in the
design phase. In this paper, the exponent n is set as 0.66 according to [37].

The moving boundary model treats the evaporator as a three-zone heat exchanger as shown in
Figure 5.
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Figure 5. Computation process of the off-design evaporator model.

An iterative algorithm is required to solve the heat exchanger surface area of each one.
The computation procedure is shown in Figure 4. First, the outlet temperature of working fluid
T4 is assumed and then the thermodynamic properties of working fluid at state 1–4 are determined.
Second, the exhaust gas temperatures at state x, y, b are obtained according to the energy conservation.
Then, the heat transfer area for each zone can be calculated. If the summation of three zones area
does not equal the design area, the T4 is updated and a new iteration calculation is performed until
the error of these two are values is less than 1%. Especially, if the vapor quality at state 4 is below
1.0, the working fluid is not completely vaporized at the outlet of the evaporator and the calculation
is abandoned.

Regarding the condenser, based on the same methodology applied in [18,20], the subcooling of
R245fa at the condenser outlet is assumed be constant, which can be imposed in practice by using
a liquid receiver and a static pressure head between condenser and pump [20]. A similar procedure
can be applied and the condenser model allows the prediction of the condensing pressure at any
off-design condition.
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3.2.2. Turbine Off-Design Model

The turbine is the key component of the ORC system, which significantly influences the
performance of the cycle. In order to evaluate the off-design performance of the turbine, a swallow
capacity model based on Stodola’s equation is introduced in this paper. The rotational speed of the
turbine is set as 3000 rpm to ensure the stability of the electricity frequency, since the high-speed
rotational speed of a two-polar generator is generally 3000 rpm corresponding to a 50 Hz electricity
frequency. Stodola’s equation, which is shown as Equation (30), determines the mass flow rate of the
cycle as the function of inlet pressure, outlet pressure and the fluid density at the turbine inlet:

.
mt = KS

√√√√ρin pin

[
1−

(
pout

pin

)2
]

(30)

where Ks (Ks = Cd ·A) is Stodola’s coefficient, which is the product between the coefficient discharge
and the equivalent nozzle cross area at the inlet. In this expression, the Ks is a constant that is fitted at
the design condition. Therefore, the output power can be calculated as:

.
Wt =

.
mt(hin − hout) (31)

hout = hin − ηt,is(hin − hout.is) (32)

where hout.is is the enthalpy at the exit state of the isentropic process. The isentropic efficiency of the
turbine is calculated starting from the isentropic efficiency at design conditions (0.8) and multiplying it
by two correction factors. One correction factor (CF1) is related to the variation of u/c0 that results
from the variation of enthalpy drop under off-design conditions The term. u is the impeller tangential
speed and c0 is the spouting velocity (c0 =

√
2 · His). The other factor (CF2) is related to the variation of

the mass flow rate. The curve of CF1 and CF2 is obtained from [24]. This model has been widely used
by several authors [37–39] to predict the off-design performance of turbines. The main characteristics
of the expander are listed in Table 5.

ηt,is = CF1 · CF2 · ηt,is,des (33)

CF1 = a1(u/c0)
3 + b1(u/c0)

2 + c1(u/c0) + d1 (34)

CF2 = a2(
.

m/
.

mdes)
3
+ b2(

.
m/

.
mdes)

2
+ c2(

.
m/

.
mdes) + d2 (35)

3.2.3. Pump Off-Design Model

The efficiency of the pump at off-design conditions is determined by a third-degree polynomial
of the ratio of the inlet volumetric flow with respect to the design point [40]. The coefficients of the
polynomial are fitted according to the performance curve of a commercial pump [38]. The pump
maximum efficiency is set equal to 0.8 and it is assumed to occur at the design conditions. The main
characteristics of the pump are listed in Table 5. The power consumption related to the pump can be
calculated as well:

ηpp,is/ηpp,is,des = a
( .

V/
.

Vdes

)3
+ b
( .

V/
.

Vdes

)2
+ c
( .

V/
.

Vdes

)
+ d (36)

hout = hin + (hin − hout.is)/ηpp,is (37)
.

Wpp =
.

m(hin − hout) (38)

The pump has little influence on the system performance and this methodology is acceptable to
predict its performance.
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Table 5. Turbomachine design data.

Parameter Pump Turbine

Fluid R245fa R245fa
Design mass flow rate ṁdes/kg/s - 2.6

Design volume flow rate
.

Vdes/m3/h 7.16 -
Stodola’s coefficient Ks - 0.0056

Design isentropic efficiency 0.7 0.8

Coefficients

a = −0.439 a1 = −1.519 a2 = 0.001
b = 0.466 b1 = 0.027 b2 = −0.776
c = 0.453 c1 = 2.123 c2 = 1.574
d = 0.519 d1 = 0.219 d2 = 0.203

3.2.4. System Integration

The off-design system model is built by interconnecting the off-design component models together
through the inlet and outlet state, which can reflect the real physic connections that occur between
the components of the power plant. When the operational conditions deviate from the design point,
the sliding pressure control is applied to balance the variation of system parameters and evaporating
pressure Peva is chosen as operational variable. The external inputs of the numerical ORC model
include the exhaust gas temperature Texh-in, exhaust gas flow rate ṁexh, cooling water flow rate ṁcw,
cooling water temperature Tcw-in. The flow chart of the simulation procedure is shown as Figure 6.Entropy 2017, 19, x FOR PEER REVIEW  13 of 24 
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Figure 6. Computation process of the off-design simulation of MC/ORC model.

To evaluate the performance of the system, the proposed criteria are as follows: firstly, the concept
of waste heat utilization rate (UR) is presented to clarify the heat recovery capability of MC/ORC
system. The waste heat utilization rate is the ratio of heat recovered from the certain source to the
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maximum heat available in this heat source. It should be noted that the maximum available heat from
exhaust gas is the heat rejected when the exhaust gas is cooled to the acid dew point:

Ug =

.
mg · Cp,g ·

(
Tg,in − Tg,out

)
.

mg · Cp,g ·
(

Tg,in − Tg,dew

) (39)

Then, the net power output and thermal efficiency are given:

.
Wnet =

.
Wt −

.
Wpp (40)

ηth =

.
Wnet

Qin
=

.
Wnet

cexh ·
.

mexh · (Texh-in − Texh-out)
(41)

Exergy analysis is carried out based on the second law of thermodynamics considering the
irreversibility of the system. The exergy value at any state i can be defined as:

.
Ei =

.
m[(hi − h0)− T0(si − s0)] (42)

where the subscript “0” refers to the ambient condition, which is set as 298.15 K and 101.3 kPa.
The irreversibility of each component can be expressed as:

.
Ii = ∑

.
Ein −∑

.
Eout −

.
Wi (43)

Hence, the exergy efficiency can be calculated as:

ηex =

.
Wnet

.
Eexh-in −

.
Eexh-out

(44)

4. Results and Discussion

In this paper, the MC/ORC system is designed based on the rated engine condition (100%
engine load) of the CNG engine. The sliding pressure control method is adopted since it has been
proven to provide high efficiency in part-load operations [18]. Sliding pressure control means that
the evaporating pressure is the main control variable to meet the steady operation of turbine, and the
regulation valve and stop valve at the turbine inlet are both fully opened to eliminate the throttling
loss. The evaporating pressure is chosen as the operational variable. The effect of the operational
variable and engine load on system performance is analyzed and the best operation scenarios are
defined to show the maximal working potential. To ensure safe operation, the feasible operation points
are subject to the following constraints: (a) the working fluid is completely vaporized at the outlet
of evaporator (superheat degree ∆T ≥ 0) to avoid blade liquid corrosion [41]. (b) the exhaust gas
temperature at the evaporator outlet should be higher than the acid dew temperature to avoid exhaust
gas acid corrosion.

4.1. Evaporating Pressure Effect on MC/ORC System Performance

Figure 7a shows how the thermodynamic cycle changes under off-design operations. When the
Peva decreases from 2000 kPa to 1900 kPa, the ṁR245fa is decreased by 13.4%, which brings a significant
increase of the superheating degree ∆T from 10.7 ◦C to 37.0 ◦C. Pcon in contrast is almost insusceptible
with a variation of less than 1.9%. Figure 7b–d show the heat transfer profiles of the the exhaust gas,
thermal oil and R245fa. When Peva decreases from 2000 kPa to 1900 kPa, the thermal oil temperature
Ta and Tb both rise slightly while the Tg-out increases from 424.0 Kto 429.4 K. This is due to the heat
transfer deterioration of the evaporator caused by the decline of working fluid mass rate. In particular,
when the Peva increases to 2040 kPa, the degree of superheating ∆T drops down to 0. If Peva increases
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further, the heat source is incapable of heating all the working fluid to a vapor state. From this research,
it can be concluded that the degree of superheating ∆T is sensitive to the variation of operational
variable (Peva), which can be a reliable control indicator for safety. In contrast, the condensing pressure
is almost immune to the variation of evaporating pressure. It would relieve the challenge of system
controller since Pcon is not susceptible to the variation of operational variable.

Figure 8 shows the variation of system performance with evaporating pressure. The absorbed
waste heat Qin decreases from 657.87 kW (design point) to 645.21 kW as Peva decreases from 2000 kPa
to 1840 kPa. It can be explained that the heat transfer coefficient of the working fluid side in the
evaporator decreases due to the decline of working fluid mass flow rate according to Equation (30).
Meanwhile, the exhaust gas utilization rate decreases from 88.44% to 86.73%.

As for the net power output and thermal efficiency, with the rise of evaporating pressure, the net
power output increases first and then becomes smooth while the thermal efficiency increases first and
then decreases. It can be explained that the rise of evaporating pressure surely results in an increase of
the thermal efficiency. However, when the evaporating pressure exceeds the design value, although
the turbine ratio is high, the isentropic efficiency of the turbine markedly decreases, which results in
a thermal efficiency drop. The net power output trend can be explained by a similar reason.
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Figure 7. Variation of the thermodynamic cycle with Peva under 100% engine load: (a) Thermodynamic
cycle variation; (b) Heat transfer profiles at Peva = 2000 kPa; (c) Heat transfer profiles at Peva=1950 kPa;
(d) Heat transfer profiles at Peva = 1900 kPa.
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Figure 8. Effect of evaporating pressure on system performance: (a) Net power output and absorbed
waste heat; (b) Thermal efficiency and exhaust gas utilization rate.

Figure 9 shows the effect of evaporating pressure on exergy efficiency. Like the thermal efficiency,
the exergy efficiency appears to increase first and then decrease with the rise of evaporating pressure.
It is clear that with the rise of the evaporating pressure, the exergy loss of the gas-oil exchanger and the
turbine increases while the exergy loss of condenser declines as shown in Figure 9b. Hence, the total
exergy loss of the system appears to decrease first and then increase. The minimum exergy loss of the
system can be obtained under design conditions.Entropy 2017, 19, x FOR PEER REVIEW  16 of 24 
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4.2. Engine Load Effect on Energy Performance of MC/ORC System

Similar calculations to those in Section 4.1 are done for all seven engine conditions in this section.
The feasible operation points under each engine load are obtained and the off-design performance
of MC/ORC is discussed when the engine switches from full load to partial loads. Figure 10 shows
the variations of degree of superheating with evaporating pressure under different engine loads.
Under all seven engine loads, the degree of superheating decreases constantly with the rise of
evaporating pressure. The maximum feasible evaporating pressure under each engine load is obtained
at the operation boundary limit of ∆T = 0. When the engine switches from 100% load to 40% load,
the maximum feasible evaporating pressure decreases from 2040 kPa to 1020 kPa. This happens
because the exhaust gas temperature and mass flow rate both decrease with the drop of engine load
(shown in Table 2), the working fluid mass rate should be reduced to ensure that working fluid is
completely vaporized at the outlet of the evaporator. Hence, the maximum feasible evaporating
pressure declines with a drop of engine load. The value of the maximum feasible evaporating pressure
under each engine load is noted in Figure 10.
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Figure 11 shows the effect of engine load on absorbed waste heat Qin. When the engine
switches from 100% load to 40% load, the temperature and mass rate of the exhaust gas decrease,
which inevitably results in a reduction of maximum Qin, from 664.4 kW to 298.2 kW. To further clarify
the heat recovery capability of the MC/ORC system, the maximum Ug values under different engine
loads are also shown in Figure 11. It is worth noting that the maximum Ug increases from 89.3% to
99.5% with the drop of engine load from 100% to 40%. This is because the heat exchanged in the
evaporator when the engine operates under a partial load is significantly smaller than the design
value, hence the Tg-out inevitably drops below the design value. Thanks to the high exhaust outlet
temperature under the design conditions, the system is free from acid corrosion of the exhaust gas.
It can be concluded that the MC/ORC system can recover waste heat effectively even if the engine
load decreases sharply.
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Figure 11. Effect of engine load on absorbed waste heat and exhaust gas utilization rate.

Figure 12 shows the effect of engine load on the thermal efficiency of the system. Under all engine
loads except 100% load, the thermal efficiency increases constantly with the rise of evaporating pressure
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and the maximum thermal efficiency occurs at the operation boundary limit of ∆T = 0. The maximum
thermal efficiency under each engine load is noted in Figure 12. It is clear that the maximum thermal
efficiency decreases as the engine load drops. This result can be explained as follows: although the
design evaporating pressure is 2000 kPa, the feasible evaporating pressure is lower than the design
value when the engine operates under partial load conditions as shown in Figure 10. The drop of
evaporating pressure surely results in a decrease of the thermal efficiency. In addition, the isentropic
efficiency of the turbine also drops since it deviates from the design conditions as shown in Figure 13.
Under 100% engine load, the turbine efficiency increases first and then decreases with the rise of
evaporating pressure and the maximum value (80%) is obtained under design conditions. When the
engine switches from full load to partial load, the turbine efficiency is significantly lower than the
design value due to the drop of evaporating pressure and working fluid flow rate, which also results
in a drop of the thermal efficiency.

As for the net power output shown in Figure 14, the blue point in Figure 14 represents the Wnet

(87.2 kW) under design conditions. The maximum net power outputs at 100% to 40% engine load are
87.8, 71.9, 59.9, 54.4, 42.1, 28.9 and 22.1 kW, respectively. The net power output under partial load of
the engine is always lower than the design value. The trend of net power output is caused by the joint
influence of absorbed waste heat and turbine efficiency.Entropy 2017, 19, x FOR PEER REVIEW  18 of 24 
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4.3. Engine Load Effect on Exergy Performance of MC/ORC System

Figure 15 shows the effect of the engine load on the exergy efficiency of the system. Like the
thermal efficiency, under all engine loads except 100% load, the exergy efficiency increases with the rise
of evaporating pressure. From 100% engine load to 40% engine load, the maximum exergy efficiencies
are 25.9%, 25.0%, 23.8%, 23.3%,21.2%,18.3% and 16.3%, respectively.
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In order to get a better understanding of the irreversibility of the MC/ORC system, the exergy 
losses and of each component are plotted in Figure 16. Among the five components, the 
irreversibility in the gas-oil exchanger and evaporator are higher than those of the others. The 
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In order to get a better understanding of the irreversibility of the MC/ORC system, the exergy
losses and of each component are plotted in Figure 16. Among the five components, the irreversibility
in the gas-oil exchanger and evaporator are higher than those of the others. The exergy losses
of the gas-oil heat exchanger and evaporator both decrease with the drop of engine load. This is
due to the fact that the exergy entering the system decreases sharply with the drop of engine load.
Under 60%–100% engine load, the exergy loss of the condenser is higher than that of the turbine.
However, under 40%–50% engine load, the exergy loss of the turbine is larger than that of the condenser.
The exergy loess of the pump is negligible.
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Figure 17 gives the relative contributions of the components to the total exergy destruction under
each engine load. When the engine switches from 100% to 40% engine load, the proportion of the
gas-oil heat exchanger increases from 41.9% to 54.5%, while the proportion of the evaporator decreases
from 36.7% to 20.6%. This is because the evaporating pressure and working fluid mass rate both
decline with the drop of engine load, which results in a decrease of the thermal-oil temperature
at the evaporator inlet and outlet. Hence, the temperature difference in the evaporator decreases
relatively. For the turbine, the proportion of exergy destruction increases from 8.6% to 13.2% since the
drop of turbine efficiency results in severe irreversibility during the expansion process. In contrast,
the proportion of the condenser declines from 12.1% to 11.1%. This is because the cooling load of the
system decreases with the drop of engine load, which results in a decline of the condensing pressure.
Hence, the temperature difference in the condenser also decreases.
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5. Conclusions

In this paper, a Medium Cycle/Organic Rankine Cycle (MC/ORC) system was designed based
on a stationary CNG engine at rated load to recover exhaust gas waste heat. An off-design MC/ORC
system model was presented by interconnecting the component models, which allows the prediction
of the off-design behavior of the MC/ORC. The effect of operational variables and engine load on
system performance is analyzed from the aspects of energy and exergy. The main conclusions that can
be drawn are as follows:

1. The degree of superheating ∆T is sensitive to the operational variables, which can be a reliable
control indicator for an actual MC/ORC system for safety. In contrast, the condensing pressure
was almost immune to the variation of the operational variables. This would relieve the
challenge of the system controller. This conclusion is helpful for the design of control systems in
engineering practice.

2. For heat recovery capability, the exhaust utilization rate increases from 89.4% to 99.5% with the
drop of engine load from 100% to 40%. The MC/ORC system can recover waste heat effectively
even if the engine load decreases sharply, however, the maximum net power output, thermal
efficiency and exergy efficiency decrease nearly linearly with the drop of engine load.

3. The exergy losses in the gas-oil heat exchanger and evaporator are always the main causes of
exergy destruction. Considering the contribution of components to the total exergy destruction,
the proportions of the gas-oil exchanger and turbine increase while the proportions of evaporator
and condenser decrease with the drop of engine load.

The analytical methods used in this paper could be applied to other waste heat recovery cases
with unstable heat sources.
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Nomenclature

CCHP Combined cool heat and power
CNG Combined cool heat and power
DES Distributed energy system
ICE Internal combustion engine
NG Natural gas
MC/ORC Medium Cycle/organic rankine cycle
UR Utilization ratio
U Heat transfer coefficient (Kw/m2 K)
A Area (m2)
cp Constant pressure specific heat (kJ/kg·K)
d Diameter (m)
E Exergy (W)
f Friction factor
g Gravity acceleration (m/s2)

G Mass flux of the working fluid (kg/m2 s)
h Enthalpy (KJ/kg)
h Heat transfer coefficient (W/(m2·K))
Ks Stodola’s coefficient
L,l Length (m)
ṁ Mass flow rate (kg/s)
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P Pressure (kPa)
Pr Prandtl number
Q Heat flux (kW)
r Latent heat (kJ/kg)
Re Reynolds number
s Specific entropy (kJ·kg−1·K−1)
T Temperature (K)
∆T Superheat degree (K)
v Velocity (m/s)
.

V Volumetric flow rate (m3/h)
W Output work (kJ)
x Steam quality
λ Thermal conductivity (W/(m·K))
η Efficiency
ρ Density (kg/m3)
µ Dynamic viscosity
con Condenser
cw Cooling water
des Design value
g Exhaust gas
eva Evaporator
l Liquid
shell Shell side
tube Tube side
t Turbine
i Inside
in Inlet
is Isentropic
o Outside
oil Thermal oil
out Outlet
pp Pump
v Vapor
wf Working fluid
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