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Abstract: The evaluation of complexity in univariate signals has attracted considerable attention in
recent years. This is often done using the framework of Multiscale Entropy, which entails two basic
steps: coarse-graining to consider multiple temporal scales, and evaluation of irregularity for each of
those scales with entropy estimators. Recent developments in the field have proposed modifications
to this approach to facilitate the analysis of short-time series. However, the role of the downsampling
in the classical coarse-graining process and its relationships with alternative filtering techniques has
not been systematically explored yet. Here, we assess the impact of coarse-graining in multiscale
entropy estimations based on both Sample Entropy and Dispersion Entropy. We compare the classical
moving average approach with low-pass Butterworth filtering, both with and without downsampling,
and empirical mode decomposition in Intrinsic Multiscale Entropy, in selected synthetic data and
two real physiological datasets. The results show that when the sampling frequency is low or high,
downsampling respectively decreases or increases the entropy values. Our results suggest that, when
dealing with long signals and relatively low levels of noise, the refine composite method makes
little difference in the quality of the entropy estimation at the expense of considerable additional
computational cost. It is also found that downsampling within the coarse-graining procedure may
not be required to quantify the complexity of signals, especially for short ones. Overall, we expect
these results to contribute to the ongoing discussion about the development of stable, fast and
robust-to-noise multiscale entropy techniques suited for either short or long recordings.

Keywords: complexity; multiscale dispersion and sample entropy; refined composite technique;
intrinsic mode dispersion and sample entropy; moving average; Butterworth filter; empirical mode
decomposition; downsampling

1. Introduction

A system is complex when it entails a number of components intricately entwined altogether
(e.g., the subway network of the New York City) [1]. Following Costa’s framework [2,3], the complexity
in univariate signals denotes “meaningful structural richness”, which may be in contrast with regularity
measures defined from entropy metrics such as sample entropy (SampEn), permutation entropy,
(PerEn), and dispersion entropy (DispEn) [3–6]. In fact, these entropy techniques assess repetitive
patterns and return maximum values for completely random processes [3,5,7]. However, a completely
ordered signal with a small entropy value or a completely disordered signal with maximum entropy
value is the least complex [3,5,8]. For instance, white noise is more irregular than 1/ f noise (pink noise),
although the latter is more complex because 1/ f noise contains long-range correlations and its 1/ f
decay produces a fractal structure in time [3,5,8].

From the perspective of physiology, some diseased individuals’ recordings, when compared
with those for healthy subjects, are associated with the emergence of more regular behavior, thus
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leading to lower entropy values [3,9]. In contrast, certain pathologies, such as cardiac arrhythmias, are
associated with highly erratic fluctuations with statistical characteristics resembling uncorrelated noise.
The entropy values of these noisy signals are higher than those of healthy individuals, even though
the healthy individuals’ time series show more physiologically complex adaptive behavior [3,10].

In brief, the concept of complexity for univariate physiological signals builds on the following
three hypotheses [3,5]:

• The complexity of a biological or physiological time series indicates its ability to adapt and
function in an ever-changing environment.

• A biological time series requires operating across multiple temporal and spatial scales and so its
complexity is similarly multiscaled and hierarchical.

• A wide class of disease states, in addition to ageing, which decrease the adaptive capacity of the
individual, appear to degrade the information carried by output variables.

Therefore, the multiscale-based methods focus on quantifying the information expressed by the
physiological dynamics over multiple temporal scales.

To provide a unified framework for the evaluation of impact of diseases in physiological signals,
multiscale SampEn (MSE) [3] was proposed to quantify the complexity of signals over multiple
temporal scales. The MSE algorithm includes two main steps: (1) coarse-graining technique—i.e.,
combination of moving average (MA) filter and downsampling (DS) process—; and (2) calculation of
SampEn of the coarse-grained signals at each scale factor τ [3]. A low-pass Butterworth (BW) filter
was used as an alternative to MA to limit aliasing and avoid ripples [11]. To differentiate it from the
original MSE, we call this method MSEBW herein.

Since their introduction, MSE and MSEBW have been widely used to characterize physiological
and non-physiological signals [12]. However, they have several main shortcomings [12–14]. First, the
coarse-graining process causes the length of a signal to be shortened by the scale factor τ as a
consequence of the downsampling in the process. Therefore, when the scale factor increases, the
number of samples in the coarse-grained sequence decreases considerably [14]. This may yield
an unstable estimation of entropy. Second, SampEn is either undefined or unreliable for short
coarse-grained time series [13,14].

To alleviate the first problem of MSE, intrinsic mode SampEn (InMSE) [15] and refined composite
MSE (RCMSE) [14] were developed [15]. The coarse-graining technique is substituted by an approach
based on empirical mode decomposition (EMD) in InMSE. The length of coarse-grained series obtained
by InMSE is equal to that of the original signal, leading to more stable entropy values. Nevertheless,
EMD-based approaches have certain limitations such as sensitivity to noise and sampling [16]. At the
scale factor τ, RCMSE considers τ different coarse-grained signals, corresponding to different starting
points of the coarse-graining process [14]. Therefore, RCMSE yields more stable results in comparison
with MSE. Nevertheless, both InMSE and RCMSE may lead to undefined values for short signals
as a consequence of using SampEn in the second step of their algorithms [13]. Additionally, the
SampEn-based approaches may not be fast enough for some real-time applications.

To deal with these deficiencies, multiscale DispEn (MDE) based on our introduced DispEn was
developed [13]. Refined composite MDE (RCMDE) was then proposed to improve the stability of the
MDE-based values [13]. It was found that MDE and RCMDE have the following advantages over MSE
and RCMSE: (1) they are noticeably faster as a consequence of using DispEn with computational cost
of O(N)—where N is the signal length—, compared with the O(N2) for SampEn; (2) they result in
more stable profiles for synthetic and real signals; (3) MDE and RCMDE discriminate different kinds of
physiological time series better than MSE and RCMSE; and (4) they do not yield undefined values [13].

The aim of this research is to contribute to the understanding of different alternatives to
coarse-graining in complexity approaches. To this end, we first revise the frequency responses
for the three main filtering processes (i.e., MA, BW, and EMD) used in such methods. The role
of downsampling in the classical coarse-graining process, which has not been systematically explored
yet, is then investigated in the article. We assess the impact of coarse-graining in multiscale entropy
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estimations based on both SampEn and DispEn. To compare these methods, several synthetic data and
two real physiological datasets are employed. For the sake of clarity, a flowchart of the alternatives to
the coarse-graining method in addition to the datasets used in this article is shown in Figure 1.

Synthetic Signals: Multi-harmonic Signals - Lorenz Series - White Noise - Pink Noise

Real Signals Focal and Non-focal EEG Signals - Young and Old Subjects’ Stride Interval Fluctuations

Butterworth (BW) Filter
Moving Average (MA) 

Filter
Empirical Mode 

Decomposition (EMD)

Complexity Evaluation with: Sample Entropy (SampEn) – Dispersion Entropy (DispEn)  

Downsampling

Figure 1. Flowchart of the alternatives to the coarse-graining method and the datasets used in this study.

2. Multiscale Entropy-Based Approaches

The MSE- and MDE-based methods include two main steps: (1) coarse-graining process; and
(2) calculation of SampEn and DispEn at each scale τ. For simplicity, we detail only the DispEn-based
complexity algorithms. Likewise, the SampEn-based algorithms are defined.

2.1. MDE Based on Moving Average (MA) and Butterworth (BW) Filters with and without
Downsampling (DS)

2.1.1. Coarse-Graining Approaches

A coarse-graining technique with DS denotes a decimation by scale factor τ. Decimation is defined
as two steps [17,18]: (1) reducing high-frequency time series components with a digital low-pass filter;
and (2) DS the filtered time series by τ; that is, keep only one every τ sample points.

Assume that we have a univariate signal of length L: u = {u1, u2, . . . , ui, . . . , uL}. In the
coarse-graining process, the original signal u is first filtered by an MA—a low-pass finite-impulse
response (FIR) filter—as follows:

v`(τ) =
1
τ

τ−1

∑
k=0

u`+k, 1 ≤ ` ≤ L− τ + 1. (1)

The frequency response of the MA filter is as follows [19]:∣∣∣H (ej2π f
)∣∣∣ = 1

τ

sin(π f τ)

sin(π f )
, (2)

where f denotes the normalized frequency ranging from 0 to 0.5 cycles per sample (normalized Nyquist
frequency). The frequency response of the MA filter has several shortcomings: (1) a slow roll-off of the
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main lobe; (2) large transition band; (3) and important side lobes in the stop-band. To alleviate these
problems, a low-pass BW filter was proposed [11]. This filter provides a maximally flat (no ripples)
response [19]. The squared magnitude of the frequency of BW filter is defined as follows:∣∣∣H (ej2π f

)∣∣∣2 =
1

1 + ( f / fc)2n , (3)

where fc and n denote the normalized cut-off frequency and filter order, respectively [11,19].
Herein, n = 6 and fc =

0.5
τ [11]. The original signal u is filtered by BW filter. In fact, the low-pass filters

eliminate the fast temporal scales (higher frequency components) to take into account progressively
slower time scales (lower frequency components).

Next, the time series filtered by either MA or BW is downsampled by the scale factor τ. Assume the
downsampled signal is x(τ) = {x(τ)j } (1 ≤ j ≤

⌊
L
τ

⌋
= N).

In this study, we consider the coarse-graining process with and without DS. MSE and MDE with
MA filter and without DS are respectively named MSEMA and MDEMA. MSEMA and MDEMA with DS
are termed MSE and MDE herein.

2.1.2. Calculation of DispEn or SampEn at Every Scale Factor

The DispEn or SampEn value is calculated for each coarse-grained signal x(τ) = {x(τ)j }. It is worth
noting that MDE is more than the combination of the coarse-graining [3] with DispEn: the mapping
based on the normal cumulative distribution function (NCDF) used in the calculation of DispEn [6]
for the first temporal scale is maintained across all scales. That is, in MDE and RCMDE, µ and σ of
NCDF are respectively set at the average and standard deviation (SD) of the original signal and they
remain constant for all scale factors. This approach is similar to keeping the threshold r constant fixed
(usually 0.15 of the SD of the original signal) in the MSE-based algorithms [3]. In a number of studies
(e.g., [3,20]), it was found that keeping r constant is preferable to recalculating the threshold r at each
scale factor separately.

2.2. Refined Composite Multiscale Dispersion Entropy (RCMDE)

At scale factor τ, RCMDE considers τ different coarse-grained signals, corresponding to different
starting points of the coarse-graining process. Then, for each of these shifted series, the relative
frequency of each dispersion pattern is calculated. Finally, the RCMDE value is defined as the Shannon
entropy value of the averages of the rates of appearance of dispersion patterns of those shifted
sequences [13]. The MA filter used in RCMDE and RCMSE may be substituted by the BW filter,
respectively called RCMDEBW and RCMSEBW here.

2.3. Intrinsic Mode Dispersion Entropy (InMDE)

Due to the advantages of DispEn over SampEn for short signals, intrinsic mode DispEn (InMDE)
based on the algorithm of InMSE is proposed herein. The algorithm of InMDE includes the following
two key steps:

1. Calculation of the sum of the intrinsic mode functions (IMFs) obtained by EMD: In this step, the
original signal u is decomposed to IMFα (1 ≤ α ≤ τmax − 1) and a residual signal IMFτmax =

u − ∑τmax−1
α=1 IMFα. It is worth noting that the first IMF, IMF1, shows the highest frequency

component in a signal, while the last IMF, IMFτmax , reflects the trend of the time series. Next, the
cumulative sums of IMFs (CSI) for each scale factor τ are defined as follows [15]:

CSI(τ)(x) =
τmax

∑
λ=τ

IMFλ, (4)

where IMFλ denotes the λth IMF obtained by EMD. Thus, CSI(1) is equal to the original signal u.
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2. Calculation of DispEn of CSI(τ)(x) at each scale factor: The DispEn value is calculated at each
scale factor. Like MDE and RCMDE, µ and σ of NCDF are respectively set at the average and SD
of the original signal and they remain constant for all scale factors in InMDE.

It is worth noting that InMSE and InMDE do not downsample the filtered signals. That is, the
number of samples for each CSI(τ)(x) is equal to that for the original signal, leading to more reliable
results for higher scale factors. The complexity metrics for univariate signals and their characteristics
are summarized in Table 1. The Matlab codes used in this study are described in Appendix.

Table 1. Characteristics of the complexity metrics for univariate signals.

Methods Filtering Downsampling Applicability of
Refined Composite

MSE [2] and MDE [13] Moving average yes yes
MSEMA and MDEMA Moving average no no

MSEBW [11] and MDEBW Butterworth yes yes
MSEBW [11] and MDEBW without downsampling Butterworth no no

InMSE [15] and InMDE Cumulative sums of IMFs no no

2.4. Parameters of the Multiscale Entropy Approaches

For all the SampEn-based methods, we set d = 1, m = 2, and r = 0.15 of the SD of the original
signal [3]. For all the DispEn-based approaches, we set d = 1 and c = 6. For more information about c
and d, please refer to [6,13].

For the DispEn-based complexity measures without DS, as the length of coarse-grained signals is
equal to that of the original signal, it is advisable to follow cm < L. For the SampEn-based complexity
approaches without DS, it is recommended to have at least 10m (or preferably 20m) sample points for
the embedding dimension m [21,22].

For the DispEn-based multiscale approaches with DS, since the decimation process causes the
length of a signal decreases to

⌊
L

τmax

⌋
, cm <

⌊
L

τmax

⌋
is recommended. Similarly, for the SampEn-based

complexity techniques with DS, 10m <
⌊

L
τmax

⌋
[3] is recommended.

On the other hand, in RCDME, we consider τ coarse-grained time series with length
⌊

L
τmax

⌋
.

Therefore, the total sample points calculated in RCMDE is τ ×
⌊

L
τmax

⌋
≈ L. Thus, RCMDE follows

cm < L, leading to more reliable results, especially for short signals. Likewise, it is advisable to have at
least 10m (or preferably 20m) sample points for RCMSE with embedding dimension m.

3. Evaluation Signals

In this section, the synthetic and real signals used in this study to evaluate the behaviour of the
multiscale entropy approaches are described.

3.1. Synthetic Signals

White noise is more irregular than pink noise (1/ f noise), although the latter is more complex
because pink noise contains long-range correlations and its 1/ f decay produces a fractal structure
in time [3,5,8]. Therefore, white and pink noise are two important signals to evaluate the multiscale
entropy techniques [3,5,8,23–25].

In order to investigate the change in the behavior of a nonlinear system, the Lorenz attractor is
used. Further details can be found in [26,27]. To evaluate the effect of filtering and downsampling
processes on different frequency components of time series, multi-harmonic signals are employed [16].
Finally, to inspect the effect of noise on multiscale approaches, white noise was added to the Lorenz
and multi-harmonic time series.
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3.2. Real Biomedical Datasets

Multiscale entropy techniques are broadly used to characterize physiological recordings [2,3,12,25].
To this end, electroencephalograms (EEGs) [28] and stride internal fluctuations [29] are used to
distinguish different kinds of dynamics of time series.

3.2.1. Dataset of Focal and Non-Focal Brain Activity

The ability of complexity measures to discriminate focal from non-focal signals is evaluated by
the use of an EEG dataset (publicly-available at [30]) [28]. The dataset includes five patients and, for
each patient, there are 750 focal and 750 non-focal bivariate time series. The length of each signal was
20 s with sampling frequency of 512 Hz (10,240 samples). For more information, please, refer to [28].
All subjects gave written informed consent that their signals from long-term EEG might be used for
research purposes [28]. Before computing the entropies, the EEG signals were digitally band-pass
filtered between 0.5 Hz and 150 Hz using a fourth-order Butterworth filter.

3.2.2. Dataset of Stride Internal Fluctuations

To compare multiscale entropy methods, stride interval recordings are used [29,31]. The time
series were recorded from five young, healthy men (23–29 years old) and five healthy old adults
(71–77 years old). All the individuals walked continuously on level ground around an obstacle-free
path for 15 min. The stride interval was measured by the use of ultra-thin, force sensitive resistors
placed inside the shoe. For more information, please refer to [29].

4. Results and Discussion

4.1. Synthetic Signals

4.1.1. Frequency Responses of Cumulative Sums of IMFs (CSI), and Moving Average (MA) and
Butterworth (BW) Filters

To investigate the frequency responses of MA, BW, and CSI, we used 200 realizations of white
noise with length 512 sample points following [32,33]. The average Fourier spectra obtained by MA,
BW, and CSI at different scale factors (i.e., 2, 4, 6, 8, and 10) are depicted in Figure 2. The results
show that BW, MA, and CSI can be considered as low-pass filters with different cut-off frequencies.
The results for MA and BW filters are in agreement with their theoretical frequency responses shown
in Equations (2) and (3), respectively. The results for CSI are also in agreement with the fact that IMF1

corresponds to a half-band high-pass filter and IMFλ (λ ≥ 2) can be considered as a filter bank of
overlapping bandpass filters [33].

The magnitude of the frequency response for BW, compared with MA, is flatter in the passband,
side lobes in its stopband are not present, and the roll-off is faster. Therefore, the filter’s frequency
response leads to a more accurate elimination of the components with frequency above cut-off
frequencies. This fact reduces aliasing while the filtered signals are downsampled. The behavior of
the frequency response for CSI is similar to that for BW. However, the cut-off frequencies obtained by
CSI are considerably smaller than those for BW. This fact results in very low entropy values at high
scale factors.
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(a) Moving average (MA) filter
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(b) Butterworth (BW) filter
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(c) Cumulative sums of IMF (CSI)

Figure 2. Magnitude of the frequency response for (a) MA, (b) BW, and (c) CSI at different scale factors
(τ =2, 4, 6, 8, and 10) computed from 200 realizations of white noise with length 512 sample points.

4.1.2. Effect of Different Low-Pass Filters on Multi-Harmonic and Lorenz Series

To understand the effect of MA, BW, and CSI on multi-harmonic signals, we use bi = cos(2π10i) +
cos(2π20i) + cos(2π50i) with sampling frequency 200 Hz and length 20 s. The first second of the
signal b is depicted in Figure 3. To show the frequency components of b and their amplitude
values, we used the combination of Hilbert transform and recently introduced variational mode
decomposition (VMD). VMD is a generalization of the classic Wiener filter into adaptive, multiple
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bands [16]. After decomposing the original signals into its IMFs using VMD, we employ the Hilbert
transform to find the instantaneous frequency of each IMF [16,34].

The frequency components of b and their corresponding amplitudes are depicted in Figure 3a.
The Hilbert transform of b filtered by 4-sample MA (Figure 3b) illustrates that the harmonic cos(2π50i)
is completely eliminated, in agreement with the fact that MA is a low-pass filter with cut-off
frequency fs

2τ and completely eliminates the frequency component fz at fs
τ (here at 50 = 200

4 ) based on
Equation (2) [11].
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(b) Signal b filtered by 4-sample MA without downsampling

Figure 3. Hilbert transform of the decomposed VMD-based IMFs obtained from (a) bi = cos(2π10i) +
cos(2π20i) + cos(2π50i) and (b) b filtered by 20-sample MA (scale 20).

The MDE values for b, depicted in Figure 4a, show that the largest changes in entropy values
occur at temporal scale 4 and 10 (based on 50 = 200

4 and 20 = 200
10 —please see the red double arrows in

Figure 4). In fact, the largest changes in entropy values are related to the main frequency components of
a multi-harmonic time series. To investigate the effect of noise on MDE values, we created gi = bi + η,
where η denotes a uniform random variable between 0 to 1. The MDE values for g, plotted in Figure 4b,
illustrate a decrease at temporal scales from 1 to 19 and then the entropy values become approximately
constant. This is in agreement with the fact that the smaller scale factors correspond to higher frequency
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components, whereas smaller scales correspond to lower frequencies [35]. Comparing Figures 4a
and b shows that after filtering the effect of white noise by MA, the profiles for b and g are very close
(temporal scales 19 to 25). This suggests that white noise affects lower temporal scales. It is worth
noting that the behavior of MDEBW and that of MDEMA is similar.
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(a) MDE of the signal b
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(b) MDE of the signal g

Figure 4. MDE values for (a) bi = cos(2π10i)+ cos(2π20i)+ cos(2π50i) and (b) gi = bi + η. The largest
changes in entropy values (the red double arrows) occur at temporal scale 4 and 10 (respectively
correspond to 50 = 200

4 and 20 = 200
10 ).

However, the effect of CSI at scale 2 on b is shown in Figure 5. The results, compared with those
for MA (see Figure 4b), illustrate similar behavior of CSI at scale 2 and MA at scale 4 in terms of
the elimination of the highest frequency component of b. This is in agreement with the fact that, at
a specific scale factor, the cut-off frequency for CSI is considerably lower than that for MA or BW
(see Figure 2).
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Figure 5. Hilbert transform of the decomposed VMD-based IMFs obtained from the signal b for CSI at scale 2.

We also generated the Lorenz signal o with length 10,000 sample points and sampling frequency
( fs) 300 Hz. To have a nonlinear behavior, λ = 10, β = 8

3 , and ρ = 99.96 were set [26,27]. The signal o
and o filtered by MA at scale 10 are shown in Figure 6. The MDE-based values for o are depicted in
Figure 7a. The Nyquist frequency of the signal is ( 300

2 = 150) Hz and is close to its highest frequency
component (around 150 Hz). Note that choosing a lower sampling frequency may result in aliasing.
As the main frequency components of this time series are around 20–30 Hz, the MA filter is not able to
completely eliminate the main frequency components of this signal at scale 10. It leads to the amplitude
values of the filtered signal at scale 10 (without downsampling) being very close to those of the original
time series o.
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(b) Signal o filtered by MA at scale 10

Figure 6. Hilbert transform of the decomposed VMD-based IMFs obtained from (a) the Lorenz signal o
and (b) o filtered by MA at scale 10.
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Figure 7. MDE results for (a) the Lorenz signal o and (b) qi = oi + η.

To inspect the effect of additive noise on MDE values, we created qi = oi + η, where η is a random
variable between 0 to 1. The MDE values for q, plotted in Figure 7b, illustrate a decrease at low
temporal scale and then an increase at high time scale factors. It is also found that the MDE values of
o and q are approximately equal at scales between 18 to 25. This is also consistent with the fact that
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lower scale factors correspond to higher frequency components, whereas larger scales correspond to
lower frequencies [35].

4.1.3. Effect of Downsampling and Sampling Frequency on Multiscale Entropy Methods

To investigate the effect of downsampling (without low-pass filtering) on multiscale entropy
approaches, we created the signal si = cos(2πi) with length 300 sample points and sampling
frequency 10 Hz, and (b) wi = cos(2πi) with length 300 sample points and sampling frequency
100 Hz. The signals and their downsampled series by a factor of 12 are depicted in Figure 8.

When the sampling frequency of a time series is close to its main frequency components
(see s—Figure 8a), the downsampled signal may have a lower frequency component in comparison
with the original signal. It shows the effect of aliasing in the time series. Accordingly, the downsampled
signals are more regular (have smaller entropy values). It is confirmed by the fact that the DispEn of s
and its corresponding downsampled series are 2.0267 and 1.6058, respectively.

On the other hand, when the sampling frequency is high (see w—Figure 8b), the amplitude values
of downsampled signal are approximately equal to those of the original signal. However, as the number
of sample points decreases by 12, the rate of change along sample points is 12 times larger than that
for the original signal. Thus, the original signal is more regular than its corresponding downsampled
series. It is confirmed by the fact that the DispEn of w and its corresponding downsampled series are
respectively 1.9618 and 2.5539.

Sample (number)

0 50 100 150 200 250 300

A
m

p
lit

u
d

e

-1

0

1
Original Signal

Sample (number)
1 6 11 16 21 25

A
m

p
lit

u
d

e

-1

0

1
Downsampled Signal
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Figure 8. Downsampling the signal (a) si = cos(2πi) with length 300 sample points and sampling
frequency 10 Hz, and (b) wi = cos(2πi) with length 300 sample points and sampling frequency 100 Hz.
The factor of downsampling is 12.

4.1.4. Multiscale Entropy Methods vs. Noise

All of the complexity methods are used to distinguish the dynamics of white from pink noise.
The mean and SD of results for the signals with length 8000 (long series) and 400 (short series) sample
points are respectively depicted in Figures 9 and 10. The results obtained by the complexity techniques
with DS show that the entropy values decrease monotonically with scale factor τ for white noise.
However, for pink noise, the entropy values become approximately constant over larger-scale factors.
These are in agreement with the fact that, unlike white noise, 1/ f noise has structure across temporal
scale factors [3,5]. The profiles for MDEMA and MSEMA without DS, MDEBW and MSEBW without DS,
InMSE, and InMDE decrease along the temporal scales as there is not a DS process to increase the rate
of changes to increase entropy values. It should be mentioned that, as the crossing point of profiles for
white and pink noise is at scale 23, τmax for the MA-based coarse graining is equal to 50. Furthermore,
τmax for InMSE and InMDE is 10, as the entropy values at high scales are close to 0.

Entropy values obtained by MSE, RCMSE, MSEBW, and RCMSEBW are undefined at high scale
factors. Comparing Figures 9 and 10 demonstrates that the longer the signals, the more robust the
multiscale entropy estimations. The results also show that InMDE, compared with InMSE, better
discriminates white from pink noise.
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Figure 9. Mean value and SD of results obtained by the complexity measures computed from 40
different realizations of pink and white noise with length 8000 samples. Red and blue demonstrate
white and pink noise, respectively.
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Figure 10. Mean value and SD of results obtained by the complexity measures computed from 40
different realizations of pink and white noise with length 400 samples. Entropy values obtained by
MSE, RCMSE, MSEBW, and RCMSEBW are undefined at several high scale factors. Red and blue
demonstrate white and pink noise, respectively.
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To compare the results obtained by the complexity algorithms, we used the coefficient of variation
(CV) defined as the SD divided by the mean. We use such a metric as the SDs of signals may increase
or decrease proportionally to the mean. The CV values at scale 10, as a trade-off between low and high
scale factors, for noise signals with length 8000 and 400 sample points are respectively illustrated in
Tables 2 and 3. Of note is that we consider scale 25 and 5 for the MSEMA and MDEMA, and InMSE and
InMDE profiles, respectively. The refined composite technique decreases the CVs for all the MSE- and
MDE-based algorithms, showing its advantage to improve the stability of results for short and long
noise. The smallest CVs for long pink and white noise are our developed MDEBW without DS and
RCMDEBW methods, respectively. The smallest CVs for short pink and white noise are achieved by
RCMDEBW and RCMDE, respectively. Overall, the smallest CVs are obtained by the DispEn-based
complexity measures.

Table 2. CV values obtained by the complexity measures at scale factor 10 for forty realizations of
pink and white noise with length 8000 sample points. Note that the scales 25 and 5 are considered for
MSEMA and MDEMA, and InMSE and InMDE, respectively.

Noise MDE RCMDE MDEMA (Scale 25) MDEBW RCMDEBW MDEBW without DS InMDE (Scale 5)

Pink 0.0058 0.0038 0.0069 0.0044 0.0038 0.0031 0.0091
White 0.0174 0.0124 0.0246 0.0166 0.0115 0.0182 0.0394

Noise MSE RCMSE MSEMA (Scale 25) MSEBW RCMSEBW MSEBW without DS InMSE (Scale 5)

Pink 0.0186 0.0105 0.0131 0.0176 0.0124 0.0130 0.0982
White 0.0201 0.0133 0.0135 0.0219 0.0203 0.0308 0.1330

Table 3. CV values obtained by the complexity measures at scale factor 10 for forty realizations of pink
and white noise with length 400 sample points. Note that the scales 25 and 5 are considered for MSEMA

and MDEMA, and InMSE and InMDE, respectively.

Noise MDE RCMDE MDEMA (Scale 25) MDEBW RCMDEBW MDEBW without DS InMDE (Scale 5)

Pink 0.0317 0.0194 0.0473 0.0320 0.0141 0.0204 0.0522
White 0.0726 0.0415 0.1116 0.0929 0.0876 0.0726 0.1435

Noise MSE RCMSE MSEMA (Scale 25) MSEBW RCMSEBW MSEBW without DS InMSE (Scale 5)

Pink undefined 0.1327 0.0434 undefined 0.2008 0.0822 0.2351
White 0.2385 0.0738 0.0605 0.2024 0.1736 0.1060 0.3779

4.1.5. Effect of Refined Composite on Nonlinear Systems without Noise

To understand the effect of the refined composite technique on nonlinear signals without noise, we
created 40 realizations of two Lorenz signals with lengths of 450 and 4500 sample points and sampling
frequency ( fs) 150 Hz. To have a nonlinear behavior, the values of λ = 10, β = 8

3 , and ρ = 28 were used
in the Lorenz system [26,27]. The results obtained by MSE, MDE, RCMSE, and RCMDE are depicted
in Figure 11 and are in agreement with [25,27]. Of note is that the entropy values for RCMSEBW and
RCMDEBW are similar to those for RCMSE and RCMDE, respectively. Thus, these results are not
shown herein.

To investigate the effect of the refined composite technique on the stability of results, the CVs for
the multiscale approaches at scale 5 are calculated. The smallest CVs, illustrated in Table 4 are obtained
by MDE and RCMDE approaches. The results also suggest that the refined composite does not improve
the stability of profiles for the signal with length 4500 samples (long signals). For the Lorenz series
with length 450 sample points, RCMSE and RCMDE lead to smaller CV values in comparison with
MSE and MDE, in that order, showing the importance of the refined composite method to characterize
small time series.
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Figure 11. Mean and SD of the results obtained by the MSE, MDE, RCMSE, and RCMDE for the Lorenz
series with lengths 450 and 4500 sample points.

Table 4. CVs of MSE, RCMSE, MDE, and RCMDE values for the 40 different realizations of the Lorenz
signals with length 450 and 4500 samples at scale five.

Signal Length MSE MDE RCMSE RCMDE

450 sample points 0.1000 0.0898 0.0700 0.0309
4500 sample points 0.1156 0.0310 0.1134 0.0312

4.2. Real Signals

4.2.1. Dataset of Focal and Non-Focal Brain Activity

For the focal and non-focal EEG dataset, the results obtained by MSE, MDE, RCMSE, RCMDE,
MSEBW, MDEBW, InMSE, and InMDE, depicted in Figure 12, show that the non-focal signals are more
complex than the focal ones. This fact is in agreement with previous studies [28,36].

The results for RCMSEBW and RCMDEBW were respectively similar to those for MSEBW and
MDEBW. Thus, they are not shown herein. Note that, for MDE and RCMDE, τmax and m, respectively,
were 30 and 3. It should also be mentioned that the average entropy values over two channels for
these bivariate EEG signals are reported for the univariate complexity techniques.

To compare the results, the CV values obtained by the univariate multiscale approaches, except
InMSE and InMDE, are calculated at scale factor 15. These are shown in Table 5. The CV values for
MDE, RCMDE, MSE, and RCMSE illustrate that the refined composite approach does not enhance the
stability of the MDE and MSE profiles. Overall, the smallest CV values are achieved by DispEn-based
complexity methods.

Table 5. CVs of MSE, RCMSE, MSEBW, MDE, RCMDE, and MDEBW values for the focal and non-focal
EEGs at scale 15.

Signals MSE RCMSE MSEBW MDE RCMDE MDEBW

Focal EEGs 0.0229 0.0229 0.0224 0.0083 0.0089 0.0083
Non-focal EEGs 0.0178 0.0191 0.0172 0.0111 0.0121 0.0109
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Figure 12. Mean value and SD of results obtained by the MSE, MDE, RCMSE, RCMDE, MSEBW,
MDEBW, InMSE, and InMDE computed from the focal and non-focal EEGs.

4.2.2. Dataset of Stride Internal Fluctuations

In Figure 13, the mean and SD of the RCMDEBW, RCMDE, MDEMA, MDEBW without DS, InMDE,
RCMSEBW, RCMSE, MSEMA, MSEBW without DS, and InMSE values computed from young and old
subjects’ stride internal fluctuations are illustrated. As the number of samples for these time series are
between 400 to 800 sample points, we do not use MSE, MDE, MSEBW, and MDEBW.

For each scale factor, the average of entropy values for elderly subjects is smaller than that for
young ones, in agreement with those obtained by the other entropy-based methods [37] and the fact
that recordings from healthy young subjects correspond to more complex states because of their ability
to adapt to adverse conditions, whereas aged individuals’ signals present complexity loss [3,5,38].
The results also suggest that, when dealing with short signals, the complexity measures without
downsampling (i.e., MSEMA, MDEMA, and MSEBW and MDEBW without DS) are appropriate to
distinguish different kinds of dynamics of real signals.

The CV values at those scales whose profiles do not have an overlap are illustrated in Table 6. It is
found that MDEBW without DS leads to the smallest CV values.
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Figure 13. Mean value and SD of results obtained by the complexity measures computed from the
young and old subjects’ stride interval recordings.

Table 6. CV values obtained by the complexity measures for the stride interval recordings for young
and old subjects.

Signals RCMDEBW RCMDE MDEBW without DS RCMSEBW

Young subjects 0.0355 0.0410 0.0334 0.0644
Old subjects 0.0517 0.0540 0.0449 0.0723

5. Time Delay, Downsampling, and Nyquist Frequency

According the previous complexity-based approaches [2,3,13,15], the time delay was equal to 1 in
this study. Nevertheless, if the sampling frequency is considerably larger than the highest frequency
component of a signal, the first minimum or zero crossing of the autocorrelation function or mutual
information can be used for the selection of an appropriate time delay [39].

Alternatively, a signal may be downsampled before calculating the complexity-based entropy
approaches to adjust its highest frequency component to its Nyquist frequency ( fs/2) [40]. Accordingly,
when the coarse-graining process starts, the low-pass filtering will affect the highest frequency
component of the signal at low temporal scale factors. It is worth noting that if the main frequency
components of the signal are considerably lower than its highest frequency component (e.g., the
signal o - please see Figure 7), the filtering process may make only a little change in the amplitude
values of the signal at even large scales.
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6. Future Work

Wavelet transform, which is a powerful filter bank broadly used for analysis of non-stationary
recordings, can be employed to decompose a signal to several series with specific frequency bands [41].
Accordingly, the wavelet-based filter bank could be used as a complexity approach. VMD can also be
used as an alternative to EMD in InMSE and InMDE. VMD, unlike EMD, provides a solution to the
decomposition problem that is theoretically well founded and more robust to noise than EMD [16].
A recent development in the field has tried to generalize multivariate and univariate multiscale
algorithms to a family of statistics by using different moments (e.g., variance, skewness, and kurtosis)
in the univariate and multivariate coarse-graining process [25,42–44]. It is recommended to compare
these techniques in the context of signal processing and to investigate their interpretations. As the
existing univariate and even multivariate coarse-graining processes filter only series in each channel
separately [38,43,45], there is a need to propose new multivariate filters dealing with the spatial and
time domains at the same time.

7. Conclusions

In summary, we have compared existing and newly proposed coarse-graining approaches for
univariate multiscale entropy estimation. Our results indicate that, as expected due to the filter bank
properties of the EMD [33] in comparison with moving average and Butterworth filtering, the cut-off
frequencies at each temporal scale τ of the former are considerably smaller than those for the latter.
Therefore, InMSE and our developed InMDE have entropy values very close to 0 for relatively low
values of temporal scales due to the exponential, rather than linear, dependency of the bandwidth at
each scale. We also inspected the effect of the downsampling in the coarse-graining process in the
entropy values, showing that it may lead to increased or decreased values of entropy depending on
the sampling frequency of the time series.

Our results confirmed previous reports indicating that, when dealing with short or noisy signals,
the refined composite approach [14,25] may improve the stability of entropy results. On the other hand,
for long signals with relatively low levels of noise, the refined composite method makes little difference
in the quality of the entropy estimation at the expense of a considerable additional computational cost.
In any case, the use of dispersion entropy over sample entropy in the estimations led to more stable
results based on CV values and ensured that the entropy values were defined at all temporal scales.

Finally, the profiles obtained by the multiscale techniques with and without downsampling led
to similar findings (e.g., pink noise is more complex than white noise based on all the complexity
methods) although the specific values of entropy may differ depending on the coarse-graining used.
This suggests that downsampling within the coarse-graining procedure may not be needed to quantify
the complexity of signals, especially for short ones. In fact, these kinds of techniques still eliminate the
fast temporal scales to deal with progressively slower time scales as τ increases and take into account
multiple time scales inherent in time series.

On the whole, it is expected that these findings contribute to the ongoing discussion regarding
the development of stable, fast, and less sensitive-to-noise complexity approaches appropriate for
either short or long time series. We recommend that future studies explicitly justify their choices
for coarse-graining procedure in the light of the characteristics of the signals under analysis and the
hypothesis of the study, and that they discuss their findings on the light of the behaviour of the selected
entropy metric and coarse-graining procedure.
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Appendix. Matlab Codes used in this Article

The Matlab codes of DispEn and MDE are available at https://datashare.is.ed.ac.uk/handle/10283/
2637. The codes of SampEn and MSE can be found at https://physionet.org/physiotools/matlab/wfdb-
app-matlab/. The code of EMD is also available at http://perso.ens-lyon.fr/patrick.flandrin/emd.html.
For the Butterworth filter, we used the functions “butter” and “filter” in Matlab R2015a.
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