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Abstract: The functional properties of multi-component materials are often determined by
a rearrangement of their different phases and by chemical reactions of their components. In this
contribution, a material model is presented which enables computational simulations and structural
optimization of solid multi-component systems. Typical Systems of this kind are anodes in batteries,
reactive polymer blends and propellants. The physical processes which are assumed to contribute
to the microstructural evolution are: (i) particle exchange and mechanical deformation; (ii) spinodal
decomposition and phase coarsening; (iii) chemical reactions between the components; and (iv) energetic
forces associated with the elastic field of the solid. To illustrate the capability of the deduced coupled field
model, three-dimensional Non-Uniform Rational Basis Spline (NURBS) based finite element simulations
of such multi-component structures are presented.

Keywords: reaction-diffusion systems; chemical reaction; elasticity; multi-component system; finite
deformations; phase decomposition; phase field model

1. Introduction

Specifically designed multi-component materials become more and more important in many
technical applications. The functional material properties are often provided by means of chemical
reactions. In fact, there is a huge range of desired and undesired chemical reactions in multi-component
systems, e.g., the corrosion of metal alloys, the combustion of propellants, the discharging process
in batteries or photochemical reactions in bio-chemistry, to name a few. Because the main feature
of chemical reactions is their ability to generate substances which have different properties than
their base products, some of these reactions can be exploited for micro-structural optimization of the
multi-component system.

The microstructural arrangement of the material determines the structural properties, the life
expectation and the reliability of the whole system. Therefore, there is a need for a profound knowledge
of the processes ongoing in multi-component reaction-diffusion systems. Many scientific approaches
to diffusive and reactive media are based on the pioneering works of Kolmogorov [1] and Fisher [2] on
non-linear diffusion equations and their solutions. The analysis of structure, formation and dynamics
of patterns in reactive media leads to specific rate equations and stability criteria [3,4]. The acquired
mathematical knowledge on such systems is too extensive to be discussed here, we refer to [5] and
references therein.

The aim of our work is to model solid mechanical structures which undergo elastic and inelastic
deformations coupled with diffusion processes and chemical reactions. Here, the knowledge on
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reaction-diffusion systems is rather rare and always restricted to small deformations and linearized
elasticity. A first formulation of diffusion equations expressing mass continuity under chemical
reactions can be found in the book of de Groot and Mazur [6], generalized diffusion models that
incorporate elasticity are typically based on Larchté and Cahn’s work [7]. To the best of the author’s
knowledge there is no work on reaction-diffusion systems undergoing large deformations.

For this reason, we propose here a chemo-mechanical model of diffusion in reactive
multi-component systems. For the derivation we stay within the framework of non-equilibrium
thermodynamics, cf. [6]. A useful tool to get insight into the complicated mechanisms of such coupled
systems are computational simulations. Therefore we focus on a thermodynamically sound and
efficient model which captures the essential features of the multi-field system but does not necessarily
include all aspects connected with specific chemical reactions.

The rest of the paper is organized as follows. In the next Section 2, we state the basic relations of
finite deformation elasticity and diffusive flux. In Section 3, the fundamentals of chemical reactions are
added and the coupled elastic multi-component reaction-diffusion system is formulated. Section 4
is devoted to sample computations performed with a Non-Uniform Rational Basis Spline (NURBS)
based finite element analysis. A short summary in Section 5 concludes the paper.

2. Mechanical Deformation and Diffusion

In this section we outline the coupled chemo-mechanical model of diffusion in reactive systems.
We begin with the kinematics of finite deformations and then provide the basic equations that govern
the elastic field, the diffusive flux and the chemical reactions.

2.1. Kinematics of Deformation

For definiteness, we assume the system to be solid-state. A point in its material configuration
Ω0 ⊂ IR3 is located at X = (X1, X2, X3)

T and after a period of time t ∈ IR+ the material point is located
at position x(X, t) of the current configuration Ωt ⊂ IR3. The corresponding deformation mapping
Φ(X, t) : Ω0 × [0, T ]→ Ωt is uniquely described by its material gradient,

F (X, t) = ∇Φ (X, t) . (1)

For the chemo-mechanical system we assume a state in which the action of the elastic field, the
transport of mass, the rearrangements of phases and chemical reactions may induce elastic and inelastic
deformations. Consequently, the deformation gradient (1) is composed of elastic and inelastic parts,
F = FeFi. This multiplicative decomposition is a convenient mathematical representation for a system
undergoing multiphysics processes in large deformations, cf. [8]. The local inelastic component Fi may
be a result of the intercalation of particles and of chemical reactions, which generate substances with
volume different from their reactants, whereas the elastic component Fe follows from the underlying
assumption of energy optimization in the system.

In the following we assume the geometrical changes of the initial configuration induced by
particle diffusion, intercalation and chemical reactions to be purely volumetric and to solely depend
on the local concentration c ∈ [0, 1] in the multi-component system. This assumption excludes effects
of local thermal expansion as well as microscopic realignments as induced, e.g., by first order phase
transitions. We denote the corresponding volumetric component as Ji = det Fi. Then, the multiplicative
decomposition of the deformation gradient (1) into elastic and inelastic components simplifies to

F = Ji
1
3 Fe , (2)

and for the volumetric component of the deformation it follows J = det F = Je Ji.
The induced volume change can be approximated by the partial molar volume Vm of the

substances weighted with their concentration ck. Here, we normalize the partial molar volume of the
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kth specimen with the total one, Vk = Vm
k /( 1

n ∑n
k=1 Vm

k ) to obtain the volume change induced by the
rearrangements of the diffusing specimens. According to this definition, the volumetric deformation
component can be calculated by

Ji =
n

∑
k=1

Vkck. (3)

The isochoric part of the deformation equals that of the elastic deformation, F̄ = F̄e, and so does
the right Cauchy-Green tensor, C = FTF and its isochoric part,

C̄ = C̄e
= J−2/3FTF . (4)

2.2. Mass Balance

We consider a general multi-component system consisting of n components. Neglecting chemical
reactions at the moment, i.e., if the mass is conserved, the temporal evolution of the concentration
fields ck is driven by a diffusive mass current Jk according to

ρ
dck
dt

= −∇ · Jk k = 1, . . . , n (5)

with

ρ =
n

∑
k=1

ρk , (6)

where ρk is the mass density of the kth component and the mass concentration with respect to the
material configuration is defined as

ck =
ρk
ρ

. (7)

Please note that d (•) /dt = ∂ (•) /∂t + v · ∇ (•) denotes the substantial time derivative with the
barycentric velocity field v. The scalar fields ρk and ck characterize the mass and mass fractions of the
respective material components. For the transformation from the material into the spatial configuration
and vice versa the usual rules apply, e.g., two fictious co- and contravariant spatial vectors a and b
relate to their material counterparts by A = F−Ta and B = JF−1b, respectively.

In the case of the generalized Fickian diffusion Equation (5), the diffusive mass current Jk of
component k follows from the gradient of a chemical potential

Jk = −ρM∇µk , (8)

where M is a mobility tensor which, in general, differs for every component, phase and direction.
The chemical potential, in turn, is derived from the system’s Helmholtz free energy.

2.3. Helmholtz Free-Energy Density of the System

The Helmholtz free energy involves elastic, configurational and interfacial energy contribution

F0 (F, c1, c2, . . . , cn,∇c1,∇c2, . . . ,∇cn, T) = RTy0

∫
Ω0

(
Ψela + Ψcon + Ψint

)
dΩ (9)

and refers to the material configuration of the system. For simplicity we assume ambient conditions with
constant pressure which allows to formulate the free energy (9) in equivalence to the Gibbs free energy.
Expression (9) is normalized by the product of universal gas constant R, temperature T, and a reference
molar concentration y0, to render the overall energy density Ψ = Ψela + Ψcon + Ψint dimensionless.
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2.3.1. Elastic Energy Contribution

For the chemo-mechanical model we consider an elastic energy per unit undeformed volume,

Ψela = Ji
(

1
4

K∗
(

Je2 − 1− 2 ln Je
)
+

1
2

G∗
(
tr C̄e − 3

))
. (10)

Here, K∗ = K∗(c1, c2, . . . , cn, T) and G∗ = G∗(c1, c2, . . . , cn, T) denote normalized functions of the
elastic bulk modulus K and the shear modulus G, respectively. Both elastic moduli depend on the
concentration of the components and also on the temperature.

The elastic energy density (10) accounts for the elastic field as a consequence of particle diffusion.
Exemplary we recall here the process of charging and discharging of silicon anodes in lithium batteries,
where a volume expansion of more than 300% is observed due to the lithium ion intercalation [9,10].
Even if this case is extreme, a general approach to volume changes requires a finite-deformation
kinematic and a hyperelastic strain energy density as stated in (10).

2.3.2. Configurational Energy Contribution

The configurational free energy density Ψcon for a multiphase mixture is given by

Ψcon =
n

∑
i=1

g0
i (T) ci + θ (T)

n

∑
i=1

ci ln ci +
1
2 ∑

1≤i,j≤n
i 6=j

cicjχ
(0)
ij , (11)

where g0
i (T) are normalized Gibbs free energy densities of the pure ith component and the second term

accounts for energy contributions from the entropy of mixing. The entropy contribution is typically
weighted by the temperature dependent material parameter θ. The first two energy contributions
represent the classical Lewis-Randall ideal solution model. For the consideration of realistic solutions,
which generally show a non-ideal behavior, it is essential to include a third term, a Porter type excess
energy contribution, into the configurational energy representation [11]. The excess energy describes
the decomposition of a non-ideal mixture into distinct phases with material-specific and symmetric
interaction parameters χij.

Exemplary we consider a binary mixture with two equilibrium phases at the concentration
cα (α-phase) and cβ (β-phase). With c ≡ c2 = 1− c1, θ = 1, and a similar Gibbs free energy of the
components, the configurational free energy density simplifies to

Ψcon = c ln(c) + (1− c) ln(1− c) + χc(1− c) . (12)

For a Flory–Huggins interaction parameter χ < 2 the mixing energy (12) is convex and
corresponds to the energy of a homogeneous solution. Phase separation will be observed only
for χ > 2, when the configurational energy turns into a double-well function, i.e., it has two relative
minima and a concave (spinodal) region in between. The concentrations cα and cβ, i.e., the binodal
points, can be determined by the common tangent rule, ∂cΨcon(cα) = ∂cΨcon(cβ). The situation is
illustrated for different values of χ in Figure 1.
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Figure 1. Configurational energy density (12) for different Flory–Huggins interaction parameters χ

with g0
1 = 0.1 and g0

2 = 0.5. For χ = 2.5 the common tangent indicates the equilibrium concentrations
cα and cβ.

2.3.3. Interfacial Energy Contribution

The co-existence of phases causes additional energy contributions. This interfacial free energy
density Ψint accounts for the nonlocal effect of surface tension which is related to surface energy
density contained within the interfacial regions between different phases. It is formally given by

Ψint =
n

∑
i=1

κi
2
‖∇ci‖2 , (13)

where the material parameters κi are related to surface energy density and thickness of the interfacial
layers between the phases.

2.4. Mechanical Stresses and Chemical Potential

With contributions (10), (11) and (13) the system’s free energy (9) reads

F0 = RTy0

∫
Ω0

Ψ (F, T, c1, . . . , cn,∇c1, . . . ,∇cn) dΩ

and the chemical potential of the kth component follows from its variation with respect to the
corresponding concentration δck F0. We remark that the molar chemical potential expresses the
free energy gain for adding one mole of component k to the system, thus being the same for any
configuration. Here, we will continue to use a non-dimensional formulation, viz.,

µk = δck Ψ (F, T, c1, . . . , cn,∇c1, . . . ,∇cn) . (14)

In turn, the mechanical stresses are the work conjugate of the deformation, δFF0.
From Equation (9) and with the additional constraint ∑n

i=1 ci = 1, it follows

µk = ∂ck Ψcon −∇ ·
(

∂∇ck Ψint
)
+ ∂ck Ψela

= g0
k − g0

n + θ (T) ln
ck
cn

+ ∑
1≤i≤n−1

i 6=k

ci

(
χ
(0)
ik − χ

(0)
in

)
+ (cn − ck) χ

(0)
kn − κk4ck − κn

n−1

∑
j=1
4cj

+
1
4

(
(Vk −Vn)K∗ + JiK,k

) (
Je2 − 1− 2 ln Je

)
+

1
2

(
(Vk −Vn)G∗ + JiG,k

) (
tr C̄e − 3

)
+

1
2
(Vk −Vn)K∗(1− Je2),

(15)
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where K,k abbreviates the derivative of the overall elastic bulk modulus function K∗(c1, . . . , cn, T),
with respect to the corresponding concentration ck; the same holds also for G,k. These terms vanish
for constant elastic parameters. Obviously, the last line in (15) comprises the coupling of the mass
diffusion and the elastic field.

The first Piola-Kirchhoff stress tensor follows from the free energy with contributions (10)–(13) as

P = Ji
(

K∗

2

(
Je2 − 1

)
F−T + G∗ J−

2
3

(
F− 1

3 tr(C) F−T
))

. (16)

Please note that the elastic stresses are pulled back to the material configuration. The Cauchy
stress σ in the current configuration can be obtained by a push-forward σ = J−1FPT , cf. [12]. The
coupling of diffusion and elasticity manifests itself in the concentration dependent elastic moduli.
Specifically, we formulate for a binary mixture of components A and B a Vergard’s mixture rule:

K∗ =
KB

RTy0

(
c +

KA
KB

(1− c)
)

, K,k =
KB − KA

RTy0
, (17)

G∗ =
GB

RTy0

(
c +

GA
GB

(1− c)
)

, G,k =
GB − GA

RTy0
. (18)

3. Chemical Reactions

A chemical reaction is defined as a process that provokes an interconversion of chemical species.
Such reactions may be elementary or stepwise, when reactions encompass at least one reaction
intermediate and involve consecutive elementary reactions, [13] (p. 1167). The symbolic representation
of a chemical reaction is typically written as an ’equation’ in which the reactant entities, multiplied
by stoichiometric coefficients, are summarized on the left hand side and the product entities are
written on the right hand side. Different symbols are used to connect the reactants, e.g., the symbol→
specifies a net forward reaction and symbol ⇀↽ is used for the stoichiometric relation of an equilibrated
chemical reaction.

3.1. Kinetics of Chemical Reactions

Exemplary we consider a typical binary chemical reaction

nA A + nBB J→ nCC + nDD , (19)

in which nA moles of molecules of type A and nB moles of molecules labeled B react to produce
nC moles of molecules of type C and nD moles of molecules labeled D. In this example, the coefficients
ni represent the stoichiometric coefficients for molecules A, B, C and D. The reaction rate of the
respective chemical reaction is symbolized by the (positive) parameter J which gives information
on the kinetics of a chemical reaction. For example, corrosion (oxidation) of an alloy under ambient
conditions can take many years and has a low reaction rate, whereas combustion is an extremely fast
reaction with high values of J .

The reaction rate is usually modeled by a phenomenological rate law, which expresses J as a
function of the amount of each reactant in a reacting mixture, giving for our model reaction (19) the
rate equation:

J = k [A]α [B]β , (20)

where [A] and [B] express the amount of concentration of the species A and B, respectively. The positive
proportionality constant k, independent of [A] and [B], is referred to as rate coefficient. The constant
exponents α and β are independent of concentration and time, cf. [13] (p. 1147). According to [14] (p. 111)
the exponents in the rate equation of an elementary reaction are given by the corresponding
stoichiometry factors. Thus, if we assume our reaction (19) to be elementary, it holds α = nA and β = nB.
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In general α and β cannot be identified with the respective stoichiometric coefficients of the balanced
stoichiometric relation. Instead all parameters of the rate equation have to be determined experimentally.

Here we will focus on elementary equilibrium reactions of type

n1 A1 + n2 A2 + . . . + nm Am
J ′
⇀↽ n′1C1 + n′2C2 + . . . + n′qCq , (21)

where J ′ denotes the overall reaction rate which follows from the difference between the forward and
backward reaction rates according to

J ′ = k+1

m

∏
i=1

[Ai]
ni − k−1

q

∏
j=1

[
Cj
]n′j . (22)

According to this notation k+1 is the rate coefficient characterizing the reaction that consumes the
species Ai to produce the species Cj; whereas k−1 characterizes the rate coefficient for the backward
reaction, which consumes the quantities Cj and in return it produces Ai (for i = 1, . . . , m and j = 1, . . . , q).

3.2. Thermodynamical Model for Reaction-Diffusion Systems

In a reaction-diffusion system the evolution of the concentration is driven by two competitive
mechanisms, namely chemical reactions and the transport processes. On the one hand, chemical
reactions alter the local concentrations of their reactants and products, following the concentration
dependent rate law (22). On the other hand, diffusion decreases the spatial gradients of concentration
profiles in such a manner that mass transport takes place from regions of high concentration to regions
of smaller concentration values.

In opposition to the mass conservation approach stated in Equation (5), we focus here on the
effect of the chemical reaction. Neglecting the diffusive flux at the moment, the corresponding source
term for an n-component system, which undergoes r reactions, has the form:

ρ
dck
dt

=
r

∑
j=1

vkjJ̄j, k = 1, . . . , n . (23)

Mass density ρ and concentration ck are defined above, in Equations (6)–(7). J̄j is a generalized
reaction rate of the jth chemical reaction.

Please note that an application of the mass concentration as evolution variable to describe the
local composition of our system, demands the classical reaction rate J , which is originally formulated
in molar concentrations, to be adjusted in its dimension. To do so, a few prerequisite calculations
are required.

The coefficient vkj divided by the molecular mass Mk of component k is proportional to the
stoichiometric coefficient of the kth chemical substance in the jth chemical reaction. By convention,
coefficients vkj are counted positive if the kth chemical substance is produced within the jth chemical
reaction; and negative if the kth substance is consumed in the reaction j. Since mass conservation has
to be guaranteed in each separate chemical reaction, one must require

n

∑
k=1

vkj = 0, j = 1, 2, . . . , r . (24)

Again, we normalize the coefficients vkj in such a manner that for the reactants
(
k = 1, 2, . . . , qj

)
of each reaction j

qj

∑
k=1

vkj = −1, j = 1, 2, . . . , r (25)
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holds. In view of the mass conservation (24) and the normalization (25) we obtain a normalization for
the products

(
k = qj + 1, qj + 2, . . . , n

)
given by

n

∑
k=qj+1

vkj = 1, j = 1, 2, . . . , r . (26)

According to Equation (6) we may rewrite the kinetic quantities of chemical reactions in terms of
(mass) concentration. To this end we employ the relation

[yi] =
ρi
Mi

=
ρci
Mi

, (27)

where [yi] is the molar concentration of the ith component (in units of mol/m3), ρi denotes the partial
density of component i (in units of kg/m3) and Mi is the respective molar mass of constituent i (in units
of kg/mol). An application of (27) gives the true stoichiometric coefficients nkj and the conventional
reaction rates Jj

nkj =
ajvkj

Mk
and Jj =

J̄j

aj
, (28)

where the proportionality constants aj (in units of kg/mol) can be deduced from the normalization
conditions (25) and (26) as

aj =
n

∑
k=qj+1

nkj Mk = −
qj

∑
k=1

(
−nkj

)
Mk . (29)

In conformity with the usual sign convention the stoichiometric coefficients of reactants are
counted as negative, to indicate that the corresponding substances are consumed during reaction. Now
we are able to employ the rate Equation (22) to obtain a general expression for the reaction rate of each
elementary reaction considered in our system

Jj = k+1,j

qj

∏
k=1

[yk]
nkj − k−1,j

n

∏
k=qj+1

[yk]
nkj . (30)

In contrast to the convention in Equation (29), there is no negative sign in the exponent of the
product of the reactant results. In this way it is guaranteed that the exponents in our rate law are
always positive as it was introduced in the general formalism (22). By means of relations (28)–(30) we
are able to give a consistent representation of the generalized chemical reaction rates J̄j and the scaled
stoichiometric coefficients vkj.

3.3. Formulation of the Problem

With the models (5) and (23) the temporal evolution of the concentration fields ck is captured by an
interplay between the corresponding diffusive mass current Jk, which also contains the contributions
of the elastic field, and a source term ∑r

j=1 vkjJ̄j due to chemical reactions.
Thus, the evolution equations for chemically active multicomponent mixtures read

ρ
dck
dt

= ∇ · (ρM∇µk) +
r

∑
j=1

vkjJ̄j in Ω× [0, T ] , (31)

for k = 1, . . . , n. The boundary conditions are given such that

Jk · n = 0 on ∂Ω× [0, T ] , (32)

and
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∇ck · n = 0 on ∂Ω× [0, T ] , (33)

where n is the unit outward normal on ∂Ω. As initial boundary condition, we employ

ck (x, 0) = ck,0 (x) . (34)

This reaction-diffusion problem definition comprises the competition of chemical reaction,
elastic field and mass diffusion of a multicomponent system within generalized phenomenological
evolution equations. A similar form of reaction-diffusion equations, expressing mass continuity but no
deformation field, may also be found in [15] and in its original form in [6].

4. Computational Studies of Elastic Multicomponent Reaction-Diffusion Systems

In the following, we present two- and three-dimensional computational studies of binary and
ternary systems in order to illustrate the effect of interfacial chemical reaction coupled with diffusion
phenomena, such as phase separation, microstructural coarsening and swelling of the material. We will
consider representative systems with non-dimensional parameters which suffice to illustrate the
essential physics. It should be emphasized that simulations of multicomponent reaction-diffusion
systems are not common. To our knowledge, there does not exist a computational simulation of real
ternary or quaternary materials with chemically active phase-separation.

For our numerical solution we employ a NURBS based finite element approach for the spatial
discretization and a classical Crank-Nicolson scheme for the temporal discretization. To get insight
into the mathematical details of these discretization schemes the authors refer to their original papers
on the treatment of similar Cahn-Hilliard type phase-field problems, cf. [16–19].

We would like to note that as a consequence of chemical reactions the solution scheme requires a
fine resolution in time.

4.1. Evolution of a Ternary Reaction-Diffusion System

Although computational studies of binary reaction-diffusion systems can be performed, they
are rather academic because chemical reactions usually involve multiphase mixtures, [20]. Therefore
we simulate here a segregating ternary system subjected to interfacial chemical reactions and phase
coarsening. Such a kind of chemical reaction was experimentally studied by Horiuchi et al. [21] to
adjust morphologies in ternary immiscible polymer blends.

4.1.1. Modelling the System

We consider an evolution scenario within an unstable ternary system consisting of species A, B
and C, which is simultaneously subjected to the bimolecular reaction

nA A + nBB
k+1
⇀↽

k−1

nCC , (35)

where, according to our notation, k+1 and k−1 are the rate coefficients of the forward reaction
nA A + nBB→ nCC and the backward reaction nCC → nA A + nBB. The corresponding reaction rate
J1 follows from Equation (22) as

J1 = k+1 [A]nA [B]nB − k−1 [C]
nC . (36)

Following the ideas of [20] we consider a solid mixture which is quenched into a
thermodynamically unstable state and simultaneously undergoes the elementary chemical reaction (35).
This chemical reaction is regarded as an externally driven process induced, e.g., by irradiation.
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The microstructural evolution of the considered ternary mixture is described by the temporal
evolution of the mass fractions c1 := cA and c2 := cB. The mass concentration c3 := cC of component
C follows from overall mass conservation as

c1 + c2 + c3 = 1 ⇔ c3 = 1− (c1 + c2) .

Then, the general evolution equations for multiphase reaction-diffusion systems (31) reduce to
three ternary evolution equations

∂c1

∂t
= ∇ · (M∇µ1)− nA MA k̄+1cnA

1 cnB
2 + nA MA k̄−1 (1− (c1 + c2))

nC , (37)

∂c2

∂t
= ∇ · (M∇µ2)− nB MB k̄+1cnA

1 cnB
2 + nB MB k̄−1 (1− (c1 + c2))

nC , (38)

∂c3

∂t
= ∇ · (M∇µ3) + nC MC k̄+1cnB

1 cnA
2 − nC MC k̄−1cnC

3 , (39)

subjected to the mass conservation constraint. Since c3 directly follows from the concentration fields c1

and c2, only Equations (37) and (38) need to be solved.

4.1.2. Choice of Parameters

In our example we employ an averaged overall mobility M = M · I that captures the kinetics
of the diffusion contribution within the evolution equations. The coefficients k̄+1 and k̄−1 denote
scaled rate coefficients, which follow from the normalization conditions (25) and (26). The gradient
coefficients of the individual phases κi are considered to be approximately equal and therefore they
are represented by an overall gradient coefficient κ. The same holds for the elastic moduli and so the
elastic field has no effect in this first example. Summarizing, we employ the following dimensionless
parameter set for the free-energy of the system:

M = 1, κ = 2.5 · 10−5, θ (T) = 0.35, χ
(0)
12 = χ

(0)
13 = χ

(0)
23 = 1.2 .

These material parameters represent a thermodynamically unstable mixture which will
decompose into three equilibrium phases. The corresponding shape of the configurational energy
within the Gibbs triangle is illustrated in Figure 2. Here the configurational energy has three local
minima, which can be connected by a common tangent plane. The position of these minima
characterizes the composition of the equilibrium phases.

For the parameters of the chemical reaction we choose, in the absence of experimental reference
data, rather academic values. The stoichiometric coefficients are

nA = nB = nC = 1 . (40)

Moreover, we assume that the molecular masses of substances A and B are similar (MA ≈ MB)

as it is often the case for chemically reactive polymer blends. From a computational point of view the
individual molar masses are simply included into the scaled rate coefficients

k̄′+1 := MA k̄+1 = MB k̄+1 and k̄′−1 := MA k̄−1 = MB k̄−1 . (41)

In our simulations we make use of equal forward and backward reaction rates and set k̄′+1 =

k̄′−1 = k̄′; we will vary this parameter later. We would like to mention that our model is capable to also
reproduce other settings for chemical reactions.
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(a) (b)

Figure 2. (a) Contour plot and (b) illustration of the shape of the configurational energy density Ψcon.
The blue color indicates low energy values and the red color marks high energy values.

4.1.3. Results of the Two-Dimensional Simulations

The morphological evolution of our representative ternary reaction-diffusion system is displayed
in Figure 3 for different values of k̄′. All simulations start from a homogeneous state with slightly
perturbed concentration profiles cA,0 = c1,0 ≈ 0.22, cB,0 = c2,0 ≈ 0.21 and cC,0 = c3,0 ≈ 0.57, i.e., the
system is arranged outside the chemical equilibrium. As known from other diffusion problems, the
system’s microstructural evolution is dominated by the tendency to reach a stable state in the course
of time. This trend is illustrated in the overall concentration evolution of the substances A, B and
C in Figure 4. We observe here a complete rearrangement of the system’s composition. While the
overall concentration of the reaction product C decreases, the concentrations of A and B increase in
time. The equilibration of chemical reactions takes place in a time interval which strongly depends
on the reaction rates, e.g., between t̄ = 0 up to t = 0.5 for the fastest reaction with k̄′+1 = k̄′−1 = 600,
smaller reaction rates need longer times to reach a chemical equilibrium.

4.1.4. Results of the Three-Dimensional Simulations

Additionally, a ternary reaction-diffusion system with the same material parameters as above has
been simulated in a fully three-dimensional setting. The morphology evolution is displayed in Figure 5.
The computed unit cube has periodic boundary conditions with no external flux, i.e., the initial state
with cA ≈ 0.22, cB ≈ 0.21 and cC ≈ 0.57 is quenched in a thermodynamically unstable state. Therefore,
the initially homogeneous mixture rearranges for all analyzed systems into chemical equilibrium at first.
Next, separation into three equilibrium phases takes place where the final morphology, as well as the
time till a stable decomposed state is reached, depend on the reaction rate, cf. Figure 4.

For the chemically active mixtures the evolving microstructure is dominated by a lamellar pattern.
This structure follows from two equivalent A-rich and B-rich major phases. In the computational
micrographs shown in Figure 5 the A-rich phase is displayed in blue and the B-rich phases are
red. The third C-rich equilibrium phase (green domains) represents here the minor phase, which
accumulates at the interfacial regions between the A- and B-rich lamellae. The reason for this
accumulation of C-type phase at the interfaces, which leads to an encapsulation of the major phases,
is the chemical reaction. Since the bimolecular reaction (35) requires matter of A and B in order
to produce C, the chemical reaction is concentrated at the interfacial regions where A and B occur
simultaneously. In the bulk regions, where there is a persistently high amount of A and a lack of B
and vice versa, the chemical reaction is complicated by the missing other reactant. This special kind of
morphology formation was experimentally observed by [21].
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k̄′ = 600

k̄′ = 6

k̄′ = 0.6

k̄′ = 0.06

k̄′ = 0

t̄ = 0.08 t̄ = 9.12 t̄ = 94.48 t̄ = 852.06 t̄ = 10,000

Figure 3. Morphology evolution in a ternary reaction-diffusion system at early stages for different
reaction rates k̄′ and at different stages of evolution t̄. The instances of the morphological snapshots
correspond to the times marked with circles in Figure 4. Color coding: cA (red), cB (blue), cC (green).
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Figure 4. Temporal evolution of the averaged concentrations 〈cA〉 (blue), 〈cB〉 (red) and 〈cC〉
(green) of the chemical species A, B and C, respectively, for the two-dimensional simulation (a)
and the three-dimensional simulation (b). The maximum deviation between the average 2D and 3D
concentrations is less than 6.2× 10−3 for t̄ < 103.
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k̄′ = 600

k̄′ = 6

k̄′ = 0.6

k̄′ = 0.06

k̄′ = 0

t̄ = 0.08 t̄ = 9.12 t̄ = 94.48 t̄ = 852.06 t̄ = 10,000

Figure 5. Morphology evolution in a ternary reaction-diffusion system at early stages for different
reaction rates k̄′ and at different stages of evolution t̄. The instances of the morphological snapshots
correspond to the times marked with circles in Figure 4. Color coding: cA (red), cB (blue), cC (green).

If chemical reactions are absent, the resulting morphology is completely different. In this case we
observe two cobblestone-like phases embedded in a continuous matrix phase, see also [22].

4.1.5. Parametric Studies

Figure 6 shows the temporal evolution of the overall concentrations cA, cB and cC for different
interfacial energy contributions. Only the gradient energy coefficient of the first phase (κ1) is varied.
Please note that the gradient energy coefficient κ is related to the surface energy density γ and
the thickness l of the interfacial layers between the domains by κ = γl. The higher the surface
tension is, the longer it will take until the system branches from the plateau and reaches chemical
equilibrium. The formation of lamellar microstructures, however, is not affected by the surface tension.
Please note that due to the modification of only one of three gradient energy coefficient the whole
dynamical behavior changes and thus, it is hard to compare the obtained results with classical binary
decomposition problems, where a high surface tension accelerates the process of coarsening.
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Figure 6. Temporal evolution of the averaged concentrations 〈cA〉 (blue), 〈cB〉 (red) and 〈cC〉 (green) of
the chemical species A, B and C, for different values of gradient energy coefficient κ1 using k̄′ = 600.

As a further exemplary study of pattern formation, an externally driven chemical reaction is
sketched. Here we prescribe a locally varying reaction rate which may be induced, e.g., by a proper
catalyzer. To this end, we define domain dependent rate parameters k̄′+1 = k̄′−1 = k̄′ with

k̄′(x, y) = exp (−50|(x− 1/2)(y− 1/2)|) · 600 .

The corresponding distribution of k̄′ is displayed in Figure 7c with red and blue indicating high
and low values, respectively. The temporal evolution of the averaged concentrations indicates, that
neither a chemical equilibrium nor a stable state is reached. The evolving microstructure is controlled
by the rate of the chemical reactions.

t̄ = 0.08 t̄ = 9.12 t̄ = 94.48 t̄ = 852.06 t̄ = 10,000

(a) (b)

(c)

Figure 7. Evolution of a ternary reaction-diffusion system for locally varying k̄′. The overall
concentrations (a) and the corresponding morphology are presented at different stages (b) with the
corresponding spatial distribution of k̄′ (c).

Further computational studies with different initial settings have shown that the typical laminar
structures, where one phase is encapsulated by a thin layer of another phase, are invariant under
modifications of the initial concentration. This is not the case in classical, non-reactive phase-separating
mixtures where the microstructural formation commonly depends on their initial configuration.
As Anders and Weinberg have shown in [19] in a classical binary system with initial concentration
cA ≈ cB a lamellar structure forms. In contrast for significantly different initial concentrations cA and
cB spherical islands within a matrix appear. These results support the idea that chemical reactions can
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be employed to force the morphology of multicomponent systems out of its original arrangement into
a capsule formation or other types of desired microstructural formations.

4.2. Evolution of Elastic Phase-Separating Systems

In the following we present the evolution of multi-component systems with particular emphasis
on the effect of the elastic field. The two investigated specimens have a cylindrical shape with radius r
and length l.

4.2.1. A Rod under to Incoming Flux

A slim rod, consisting of a uniform elastic material A, is subjected to an incoming diffusive flux
from one side. For symmetry reasons only one quarter of the cylindrical rod with 2 µm in diameter
and 10 µm edge length is meshed, using 32× 256 hexahedral NURBS elements of polynomial order
p = 2. A normal mass flux jn of component B is prescribed at the top end, while the lateral surface
and the bottom are flux-free, jn = 0. The mechanical boundary conditions are chosen in such a way,
that only rigid-body movements are prevented, otherwise the rod is free to deform. The normal flux
jn = 64× 10−3 is applied for a system time period of t = 2800, and after its removal the system will
evolve until t = 5000.

The initial concentration is cA = 0.75, cB = 0.25 and cC = 0. The system follows the evolution
Equations (31) with configurational energy (11) and overall equal material parameters,

M = cAcB, κ = 10−10, θ (T) = 1, χ
(0)
12 = χ

(0)
13 = χ

(0)
23 = 2.5 .

As we have shown in our previous examples, a bimolecular chemical reaction (35) can only take
place at the interface between phases A and B. Therefore the chemical phase C has basically no effect
on the microstructural evolution here and we can proceed setting cC ≈ 0. It follows cB ≈ 1− cA;
however, the mass of the system is not conserved. The equilibrium phases are found at cB = 0.145 and
cB = 0.855.

The elastic energy (10) employs concentration dependent material parameters. Thus the
concentration independent elastic moduli are set within (17) and (18) to be KA = GA = 10 GPa
and KB = GB = 9 GPa, respectively. Please note that in this model the material softens with rising
concentration cB; an opposite model is possible as well. Furthermore, we adapt the International
Union of Pure and Applied Chemistry (IUPAC) definition of standard conditions for temperature and
pressure, i.e., T = 298.15 K, a universal gas constant R = 8.314 J/(mol K) and employ a maximum
concentration y0 = 2.29× 104 mol/m3 [23] (p. 339).

Figure 8 shows the distribution of the concentration cB at different system times. The amount
of incoming flux is rather low, so that the concentration evolves directly into segregated phases of
minimum free energy. The interface between the phases moves towards the free end. Once the flux stops,
the system will evolve to the equilibrium state which, in our case, does not bring significant changes.

Figure 8. Diffusion of component B in a rod of material A at different times.

The two phases can easily be recognized by its deformation. The top side is loaded and swollen
whereas the remaining rod is close to the initial concentration. The rod is free to expand and, therefore,
stresses are observed only in the transition region between the two phases. The major effect of
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the stresses concerns the equilibrium concentrations. Here we observe a stable state at cA = 0.145,
cB = 0.855 and cC = 0.

4.2.2. Phase Decomposition in an Elastic Rod

In a final example we simulate a rod with r = 1 µm and l = 10 µm each. The full rod is now
meshed with 25× 25 finite elements. Note that there is a homeomorphism between the topological
spaces of the rod and a cube and by a careful geometrical modelling of the NURBS based open-knot
system we made sure, that there are no spurious concentration or stress effects at the edges of the
descendant cube. In particular, the initial mesh configuration has been verified to be stress free.

For the configurational energy the material parameters are chosen as in the previous example.
Now there is no external flux applied. The rod is supported along its axis; in radial direction it is free
to deform and the flux-free boundary condition (32) holds everywhere.

We choose an initial concentration of cA ≈ cB = 0.5 and let the system evolve in time.
The initial state has a uniform concentration and a certain swelling which, of course, is homogeneous.
The chemical reaction rate is k̄′ = 0 and so we set c ≡ cB = 1− cA. The result can be seen in Figure 9.
Then the concentration changes toward the equilibrium phases and the phases decompose. As above,
the stress-free equilibrium phases are cα = 0.145 and cβ = 0.855 but the latter reduces as a consequence
of the elastic field. The swelling changes accordingly and we get differently deformed regions of the
rod, indicating high and low values of concentration. The elastic stresses are also displayed and we
see that the maximum von Mises stress of about 5RTy0 (yellow in Figure 9, left) is located at places
with minimum concentration cB whereas at high values of cB the material is relaxed. Although a
quantitative analysis would require reliable material parameters, this example illustrates nicely the
interplay of elasticity and phase decomposition.

c(t = 0)

(a)

c(t = 100)

(b)

σvM(t = 100)

(c)

Figure 9. Phase decomposition in an elastic rod: initial state (a) concentration distribution after 100
time steps (b), and corresponding von Mises stress (c).

5. Summary

The functional properties of multi-component materials are often connected with chemical
reactions. To enable computational simulations and structural optimization of such materials, we
presented a material model for reactive multi-component solid mechanical systems. The physical
processes which are assumed to contribute are: mechanical deformation of the system, phase
decomposition and coarsening, chemical reactions between the multiple components and the energetic
forces associated with the elastic field of the solid. After deriving the chemo-mechanical model
in a thermodynamically consistent way, for the first time numerical simulation of reactive, ternary
phase-separating systems undergoing large elastic deformations are presented. The computations are
performed with a NURBS based finite element analysis.
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