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Abstract: We investigate the stochastic dynamics of a prey-predator type ecosystem with time
delay and the discrete random environmental fluctuations. In this model, the delay effect is
represented by a time delay parameter and the effect of the environmental randomness is modeled
as Poisson white noise. The stochastic averaging method and the perturbation method are applied
to calculate the approximate stationary probability density functions for both predator and prey
populations. The influences of system parameters and the Poisson white noises are investigated in
detail based on the approximate stationary probability density functions. It is found that, increasing
time delay parameter as well as the mean arrival rate and the variance of the amplitude of the
Poisson white noise will enhance the fluctuations of the prey and predator population. While the
larger value of self-competition parameter will reduce the fluctuation of the system. Furthermore,
the results from Monte Carlo simulation are also obtained to show the effectiveness of the results
from averaging method.

Keywords: predator-prey ecosystem; time delay; stochastic averaging; Poisson white noise

1. Introduction

In the real-world ecosystem, a time delay effect in the ecosystems is inevitable. Such as, in the
predator-prey type ecosystem, it takes time for the predator population to adjust any change of the prey
population. Thus, the ecosystems with time delay effects have received more and more attentions in
past decades. Several types of models considering the time delay effects are introduced. The dynamical
properties of the ecosystem with time delay, such as stability and bifurcations, have been studied [1–7].
It indeed can be found that the effect of the time delay can change the behavior of the ecosystem
substantially. However, the models in all these studies are deterministic. They are too idealistic
since the changes in the environment are not taken into consideration. As a matter of fact, random
perturbation is universal in the real world. Thus, the stochastic excitations describing the fluctuations
in the environment are added to the deterministic models. The dynamics of the ecosystem under
stochastic excitations have been widely investigated [8–20]. Especially, the stochastic dynamics of the
noise-induced predator-prey type ecosystems with time delay, including stochastic responses [9,19,21,22],
stochastic stability [23], stochastic resonance [16,24] and noise-delayed extinction [16], have been
investigated by some numerical and analytical methods.

It can be noted that the random perturbations in the environment in the previously mentioned
works are usually modelled as continuous stochastic processes, such as the Gaussian white noise or
Gaussian colored noise. However, the perturbations in the real-world environment are complicated.
There are some unavoidable sparse, drastic changes in the environment, for instance sudden natural
disasters, earthquakes, forest fires, floods [25–27]. These changes are pulse-type perturbations, which
cannot be characterized by the continuous stochastic processes properly. Therefore, the stochastic jump
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processes, such as Poisson white noise, are considered to model such pulse-type perturbations [28,29].
So far, studying the stochastic dynamics of ecosystem with stochastic jump process has attracted more
and more attention [30–34]. For example, Zhu and his coauthors have investigated the Lotka–Volterra
(LV) system under Poisson white noise by using the generalized cell mapping method [32] and the
stochastic averaging method [33]. Duan and Xu have studied the stochastic stability of a logistic model
subjected to Poisson white noise process via the Lyapunov exponent [34]. People can find that the
influence of Poisson white noise on the ecosystem is different from those of continuous stochastic
processes on ecosystem. However, the ecosystems studied in these works are all systems without time
delay effect. Consequently, it is necessary to study the stochastic dynamics of time-delayed ecosystems
driven by stochastic jump processes.

Inspired by this, we study the stochastic behaviors of a time-delayed predator-prey ecosystem
model under discrete random environmental fluctuations. The fluctuations are modeled as Poisson
white noises. Due to the existence of the Poisson white noises, it is difficult to obtain the probability
density functions (PDFs) of the species populations since the related dynamical equations contain
infinite terms. Thus, it is necessary to develop some methods to study this problem. In the present
paper, a procedure to calculate the stationary PDFs is formatted theoretically. The stochastic averaging
procedure is first applied to deduce the averaged generalized Fokker-Planck-Kolmogorov (GFPK)
equation governing the PDF of the first integral. Then, the stationary PDFs of prey and predator
populations are obtained by using a perturbation method. Finally, the influences of the time delay,
self-competition parameter and the Poisson white noises on the stochastic behaviors of the ecosystem
are discussed based on the stationary PDFs. In addition, the results from Monte Carlo simulation are
also carried out to show the effectiveness of proposed method.

2. Delayed-Type Predator-Prey System with Poisson White Noises

2.1. The Deterministic Model with Time Delay Terms

Without considering the random fluctuations in the environment, the time-delayed predator-prey
type ecosystem can be described by following integral-differential equation [9]:

.
x1 = a1x1 − sx2

1 − bx1x2,
.
x2 = −cx2 + f x2

∫ t
−∞ F(t− τ)x1(τ)dτ.

(1)

The second equation of Equation (1) can also be written as following equivalent form [3]

.
x2 = −cx2 + f x2

∫ ∞

0
F(τ)x1(t− τ)dτ. (2)

where x1 and x2 are the population densities of prey and predator, respectively. The parameters
a1, s, b, c and f are positive constants. a1 is the birth rate of the preys. c is the death rate of the predators.
The term −sx2

1 denotes the prey self-competition. The terms −bx1x2 and f x2
∫ t
−∞ F(t− τ)x1(τ)dτ

provide a balance between the prey and predator populations. The integral term represents the time
delay effect of the prey population on the predator population. It means that the change of the prey
population affects the predator population after a time lag. And this time delay depends on an average
over past populations, not only on the population at some particular instant in the past. F(·) in the
integrand is called the delay function and normalized as follows:∫ ∞

0
F(t)dt = 1.
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Macdonald has presented two ways to reduce the system (1) in [3]. The first one is exact, but,
it depends on the choice of a simple form of the time delay function F(·). The other one does not need
to specify the time delay function, but needs its moments, i.e.:

γ =
∫ ∞

0
τF(τ)dτ (3)

Equation (3) can be viewed as a measure of the average delay time. Two reasonable choices for
F(t) provieded by Cai and Lin [9] are:

F(t) =
1
γ

e−t/γ and F(t) =
4

γ2 te−2t/γ.

To avoid specifying time delay function, the second way is used to reduce the system (1) in the
present paper. As pointed out in [3], this method is valid for small γ. Substituting the first-order
approximation of the Taylor expansion of x1(t− τ) about τ = 0 into Equation (2) and applying
Equation (3), the first-order approximation of Equation (2) can be derived as:

.
x2 = −cx2 + f x1x2 − f γx2

.
x1 (4)

Together with the first equation of Equation (1), the original Equation (1) can be rewritten as:

.
x1 = a1x1 − sx2

1 − bx1x2
.
x2 = −cx2 + f (1− γa1)x1x2 + s f γx2

1x2 + b f γx1x2
2

(5)

Let a = a1 − sc/ f . Then the system can be converted to:

.
x1 = x1[a− bx2 − s

f ( f x1 − c)]
.
x2 = x2[(−c + f x1)(1 + sγx1) + f γx1(bx2 − a)]

(6)

The system (6) can be used to investigate the effect of the time delay on the populations of the prey
and predator. It is easy to check that system (6) has the same equilibrium point x10 = c/ f , x20 = a/b
as that of the Lotka–Volterra model without time-delay and stochastic excitations [8,9]. In addition,
it is pointed in Cai and Lin’s work [9] that, for a physically meaningful and stable ecological system,
the choice of the parameters must make the ecosystem stable. All the parameters in the present paper
meet this requirement.

2.2. Stochastic Model

In the present paper, we suppose that there are some unavoidable sparse, drastic changes in the
environment. These changes are modeled as the Poisson white noises. They will cause random jump
in the prey growth rate and the predator death rate. Thus, the stochastic model has following form:

.
X1 = X1

[
a− bX2 − s

f ( f X1 − c)
]
+ X1W1(t)

.
X2 = X2[(−c + f X1)(1 + sγX1) + f γX1(bX2 − a)] + X2W2(t)

(7)

where W1(t) and W2(t) are two independent Poisson white noises, which can be defined as [35,36]

Wi(t) =
Ni(t)

∑
k=1

Yikδ(t− tik), i = 1, 2 (8)

where the δ(•) is the Dirac delta function; Ni(t) is a Poisson counting process with mean arrival
rate λi > 0 and gives the number of the pulses arriving in the time interval [0, t]; Yik represents the
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amplitude of the Poisson white noises, which is independent of the pulse arrival time tik. In the present
paper, Yik is Gaussian distribution with mean value 0 and variance E[Y2

i ] [32,33].
It is hard to obtain the exact solution of Equation (7) analytically, even for the Gaussian white

noise case. Therefore, some methods have been developed to solve this problem. Among which,
the stochastic averaging method is an analytical efficient method. It has been successfully applied to
analyze the stochastic behaviors of the ecosystem under stochastic continuous excitations [18,19,22,37].
In recent years, the stochastic averaging method has been generalized to investigate the nonlinear
system with random jump excitations [38–41]. In the following section, we will employ the stochastic
averaging method to study stochastic dynamics of the ecosystem (7).

To proceed further analysis, the following assumptions about the system are in order. First,
the coefficient s in self-competition term is generally small. It means that the self-competition term
has small influence when the prey population density is small. Second, the parameter γ is small,
corresponding to shorter time-delay effect. Finally, the noise intensities of W1(t) and W2(t) are small,
indicating small random fluctuations in the system dynamics. These assumptions are generally valid
for the real-world ecosystem [8,9]. For the convenience of the further theoretical analysis, in the
following part, the parameter s, γ and λiE[Y2

i ] in Equation (7) are replaced by: ε2s, ε2γ and λiε
2E[Y2

i ],
respectively, where ε is a small parameter. Thus, Equation (7) can be rewritten as:

.
X1 = X1

[
a− bX2 − ε2s

f ( f X1 − c)
]
+ εX1W1(t)

.
X2 = X2

[
(−c + f X1)

(
1 + ε4sγX1

)
+ ε2 f γX1(bX2 − a)

]
+ εX2W2(t)

(9)

Equation (9) is usually modeled as the Stratonovich stochastic differential equation (SDE) [9,13,18].
By adding some correction terms [13,35,36], it can be converted to following equivalent Itô SDE:

dX1 = X1

[
a− bX2 − ε2s

f ( f X1 − c)
]
dt + X1dC1(t) + X1

∞
∑

i=1

1
i! (εdC1(t))

i

dX2 = X2
[
(−c + f X1)

(
1 + ε4sγX1

)
+ ε2 f γX1(bX2 − a)

]
dt + X2

∞
∑

i=1

1
i! (εdC2(t))

i
(10)

The terms X1
∞
∑

i=2

1
i! (εdC1(t))

i and X2
∞
∑

i=2

1
i! (εdC2(t))

i in Equation (10) are the correction terms from

Stratonovich SDE to Itô SDE. Then, Equation (10) can be converted to following equivalent stochastic
integro-differential equation (SIDE) [42]:

dX1 = X1

[
a− bX2 − ε2s

f ( f X1 − c)
]
dt +

∫
Y1

h11P1(dt, dY1)

dX2 = X2
[
(−c + f X1)

(
1 + ε4sγX1

)
+ ε2 f γX1(bX2 − a)

]
dt +

∫
Y2

h22P2(dt, dY2)
(11)

in which:

h11 = X1

∞

∑
i=1

εi

i!
(Y1)

i; h22 = X2

∞

∑
i=1

εi

i!
(Y2)

i (12)

and P1(dt, dY1) (i = 1, 2) are the Poisson random measures; Yi(i = 1, 2) are Poisson mark spaces [42].

2.3. Stochastic Averaging Approach

In this subsection, a stochastic averaging procedure is derived to simplify the original system. For
future use, we choose the following deterministic conservative system for the stochastic averaging [9,18]:

.
x1 = x1(a− bx2)
.
x2 = x2(−c + f x1)

(
1 + ε4sγx1

) (13)
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The system (13) has the same equilibrium point as that of system (9) without the Poisson white
noises. System (13) possesses a first integral [9]

r(x1, x2) = f x1 − c− c ln
(

f x1

c

)
+ bx2 − a− a ln

(
bx2

a

)
− ε4csγx1 +

ε4

2
f sγx2

1 +
ε4c2sγ

2 f
(14)

This first integral can be view as an extension of first integral for the standard LV system [8,43].
It can be seen that r(x1, x2) = 0 at the equilibrium point (c/ f , a/b). And for each positive constant
K, r(x1, x2) = K represents a periodic trajectory surrounding the equilibrium point. For illustrative
purpose, Figure 1 shows the equilibrium point O and three different periodic trajectories for system (13)
with ε = 0.1, a = 0.9, b = 1.0, c = 0.5, f = 0.5, ε2s = 0.2, ε2γ = 0.2. In this figure, the equilibrium point
corresponds to K = 0, and the trajectories correspond to K = 0.892, 1.146, 1.565. And the period of the
trajectory can be determined from

T(K) =
∮

K
dt =

∮
K

dx2

x2(−c + f x1)(1 + ε4sγx1)
=
∮

K

dx1

x1(a− bx2)
(15)

in which the integration symbol means integration along the trajectory r(x1, x2) = K.
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Figure 1. Equilibrium and periodic trajectories of the deterministic system (13).

Replace x1 and x2 by the stochastic processes X1(t) and X2(t), the stochastic counterpart of
Equation (14) R(t) = R(X1(t), X2(t)) can be given as:

R(t) = f X1 − c− c ln
(

f X1

c

)
+ bX2 − a− a ln

(
bX2

a

)
− ε4csγX1 +

ε4

2
f sγX2

1 +
ε4c2sγ

2 f
(16)

Based on the stochastic jump-diffusion chain rule [42] and Equation (11), the SIDE for R(t) is:

dR =
[
− ε2s

f ( f X1 − c)2(1 + ε4sγX1
)
+ ε2 f γX1(bX2 − a)2

]
dt

+
∫
Y1

{(
f − ε4csγ

)
h11 +

ε4

2 f sγ
(
2X1h11 + γ2

11
)
− c ln

(
1 + h11

X1

)}
P1(dt, dY1)

+
∫
Y2

{
bh22 − a ln

(
1 + h22

X2

)}
P2(dt, dY2)

(17)
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In order to possess the stochastic averaging method, consider the Taylor expansion of
ln(1 + h11/X1) and ln(1 + h22/X2) in Equation (17), and then substitute Equation (12) to Equation (17).
After collecting the terms of same order of ε, Equation (17) can be written as:

dR =
[
− ε4s

f ( f X1 − c)2(1 + ε4sγX1
)
+ ε2 f γX1(bX2 − a)2

]
dt

+
∫
Y1

[
εA11Y1 + ε2 A12Y2

1 + ε3 A13Y3
1 + ε4 A14Y4

1 + · · ·
]
P1(dt, dY1)

+
∫
Y2

[
εA21Y2 + ε2 A22Y2

2 + ε3 A23Y3
2 + ε4 A24Y4

2 + · · ·
]
P2(dt, dY2)

(18)

where:
A11 = ( f X1 − c)

(
ε4sγX1 + 1

)
; (19)

A12 =
1
2

[
( f X1 − c)

(
ε4sγX1 + 1

)
+
(

ε4 f sγX2
1 + c

)]
; (20)

A13 =

[
1
6
( f X1 − c)

(
ε4sγX1 + 1

)
+

1
2

(
ε4 f sγX2

1 + c
)
− c

3

]
; (21)

A14 =

[
1

24
( f X1 − c)

(
ε4sγX1 + 1

)
+

7
24

(
ε4 f sγX2

1 + c
)
− c

4

]
; (22)

A21 = (bX2 − a); A22 =
1
2
[(bX2 − a) + a]; (23)

A23 =
1
6
[(bX2 − a) + a]; A24 =

1
24

[(bX2 − a) + a]. (24)

It can be seen from Equation (18) that R(t) is a slowly varying stochastic process since ε is a small
parameter. According to the stochastic averaging method for the nonlinear system under the Poisson
white noise [33], the averaged GFPK equation can be derived as:

∂
∂t p(r, t) = − ∂

∂r
((

ε2 A11(r) + ε4 A12(r)
)

p(r, t)
)
+ 1

2!
∂2

∂r2

((
ε2 A21(r) + ε4 A22(r)

)
p(r, t)

)
− 1

3!
∂3

∂r3

(
ε4 A3 p(r, t)

)
+ 1

4!
∂4

∂r4

(
ε4 A4 p(r, t)

)
+ O

(
ε6) (25)

where O
(
ε6) contains the term of the order of ε6 and higher, and the coefficients for the GFPK equation

are given in Appendix A.
Note that the SIDE (18) contains infinite terms. To get the closed form of averaged equations,

truncation is needed during the averaging process. In the averaged GFPK Equation (25), only the
terms up to the fourth order of ε are considered for simplicity.

2.4. Stationary Probability Density Functions

The averaged GFPK equation can be solved with certain boundary and initial conditions.
The stationary PDF of R(t), denoted by p(r), can be obtained by solving the reduced GFPK equation:

0 = − ∂
∂r
((

ε2 A11(r) + ε4 A12(r)
)

p(r)
)
+ 1

2!
∂2

∂r2

((
ε2 A21(r) + ε4 A22(r)

)
p(r)

)
− 1

3!
∂3

∂r3

(
ε4 A3(r)p(r)

)
+ 1

4!
∂4

∂r4

(
ε4 A4(r)p(r)

)
+ O

(
ε6) (26)

with the following conditions:

p(r)|r→∞ = 0 and
∫ ∞

0
p(r)dr = 1. (27)

The perturbation method [33,44] is used to solve the reduced GFPK equation. The second order
perturbation solution p(r) = p0(r) + εp1(r) + ε2 p2(r) is adopted in our calculation. On substituting
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the second order perturbation solution into Equation (27) and grouping terms of the same order of ε,
the following set of differential equations is obtained:

In ε2,

− d
dr
(

A11 p0(r)
)
+

1
2

d2

dr2

(
A21 p0(r)

)
= 0 (28)

In ε3,

− d
dr
(
εA11 p1(r)

)
+

1
2

d2

dr2

(
εA21 p1(r)

)
= 0 (29)

In ε4,

− d
dr

(
ε2 A11 p2(r)

)
+

1
2

d2

dr2

(
ε2 A21 p2(r)

)
=

1
3!

d3

dr3

(
A3 p0(r)

)
− 1

4!
d4

dr4

(
A4 p0(r)

)
(30)

Equation (28) is a Fokker-Planck-Kolmogorov equation for Gaussian white noise excitation.
The exact solution can be obtained if the FPK Equation (28) belongs to the class of generalized
stationary potential [39]. The perturbation solutions p0(r), p1(r) and p2(r) can be obtained by solving
Equations (28)–(30) successively.

After getting p(r), the stationary PDFs of X1 and X2 can be calculated as follows [9,13]:

pX1X2(x1, x2) =
p(r)

x1x2T(r) , pX1(x1) =
∫ ∞

0 pX1X2(x1, x2)dx2,

pX2(x2) =
∫ ∞

0 pX1X2(x1, x2)dx1

(31)

where r is the function of x1 and x2 given in Equation (14) and T(r) is the quasi-period with the form
in Equation (15). The other statics can be easily derived from Equation (31).

3. Results

Some numerical results are presented in Figures 2 and 3 for ecosystem (7) with different noise
intensities. The parameters are shown in the captions of these figures. In these figures, the solid lines
are the results of ecosystem under Poisson white noises obtained by the proposed method. The dotted
lines are the results from Monte Carlo simulation. A good agreement between the theoretical and
simulation results in both figures shows the accuracy of the proposed method. For the purpose of
comparison, the stationary PDFs for the time-delayed ecosystem under Gaussian white noises with
the same intensity are also depicted in these figures. They are denoted by the dashed lines. One can
see that the approximate stationary PDFs for time-delayed ecosystem under Poisson white noise are
higher than those for system under Gaussian white noise. It means that, for the same noise intensity,
the influence of the Gaussian white noises on the ecosystem is stronger than that of the Poisson
white noises.

In the Monte Carlo simulation for ecosystem (7), the Runge-Kutta method for the Poisson white
noise excitation proposed by Di Paola and the triangular pulse model of the Poisson white noise
excitation are adopted [35]. It is important to note that the numerical simulation time should be long
enough to get the stationary responses. In present paper, for each set of system parameters, eight
samples are simulated. The time of Monte Carlo simulation is 400,000,000 units for each sample,
and the time step length is 0.001.

Cai and Lin [8] show that the stability of system (6) depends on the prey self-competition
parameter and the time-delay parameter. Thus, in the following sections, we will investigate the
influences of the parameters ε2s and ε2γ on the ecosystem (7). The stationary PDFs and the statics of
prey and predator populations for different values of these two parameters are given and discussed in
following sections.
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Figure 2. Probability density functions of prey and predator populations for parameters: ε = 0.1,
a = 0.9, b = 1.0, f = 0.5, c = 0.5, ε2s = 0.2, ε2γ = 0.1, λ1 = λ2 = 0.3, λ1ε2E[Y2

1 ] = λ2ε2E[Y2
2 ] = 0.015.
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Figure 3. Probability density functions of prey and predator populations for parameters: ε = 0.1,
a = 0.9, b = 1.0, f = 0.5, c = 0.5, ε2s = 0.2, ε2γ = 0.1, λ1 = λ2 = 0.4, λ1ε2E[Y2

1 ] = λ2ε2E[Y2
2 ] = 0.0075.

3.1. The Effects of the Time Delay Parameter ε2γ

In this subsection, we investigate the influence of the time delay on the ecosystem (7).
Figures 4 and 5 show the effects of the time delay parameter on the PDFs and relative fluctuations√

Var(Xi)/E(Xi) of the prey population and predator population.
Figure 4a,b depict the stationary PDFs of the prey population pX1(x1) and predator population

pX2(x2) for different values of time delay ε2γ, respectively. In these figures, the solid lines are the
theoretical results obtained by the proposed method. It can be found that, with increasing the time delay
ε2γ from 0.05 to 0.12, the peak values of both pX1(x1) and pX2(x2) become lower, and the probabilities
in both lower and higher population become higher. Besides, the results from Monte Carlo simulation
are also plotted to show the effectiveness of the proposed method. The other parameters of the system
are given as:ε = 0.1, b = 1.0, c = 0.5, f = 0.5, λ1 = λ2 = 1.0, ε2λ1E[Y2

1 ] = ε2λ2E[Y2
2 ] = 0.015.

Figure 5 shows the relative fluctuations of the prey population and predator population changing
versus the values of the time delay parameter ε2γ for different self-completion parameter ε2s. In this
figure, the results obtained by the Monte Carlo simulation are represented by point lines, while the
results obtained by the proposed method are shown by solid or dashed lines. Each curve of relative
fluctuation increases monotonously with the increase of time delay. It means that the fluctuations of
the prey population and predator population increase when the time delay is relatively large. Namely,
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the longer time delay will lead to a wider range distribution of the population, indicating that the
ecosystem becomes less stable.
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3.2. The Effects of the Self-Competition Parameter ε2s

In this subsection, we will investigate the influence of the self-competition parameter ε2s.
In Figure 6, the stationary PDFs of prey population and predator population for different values
of ε2s are given. Figure 7 shows the dependence of the relative fluctuations

√
Var(Xi)/E(Xi) on the

self-competition parameter ε2s for different values of time delay parameter ε2γ.
In Figure 6, it can be seen that, for fixed value of other parameters, with the increasing value of

ε2s, the PDFs become more concentrated, and the peak value of the PDFs become higher. This implies
that the system will become more stable when increasing ε2s from 0.08 to 0.15. In addition, the results
obtained from the Monte Carlo simulation are also calculated to show the validity of the proposed
method in the figure. The other system parameters are: ε = 0.1, a = 0.9, b = 1.0, f = 0.5, c = 0.5,
λ1 = λ2 = 1.0, ε2E[Y2

1 ] = εE[Y2
2 ] = 0.015.

Figure 7 shows the relative fluctuations of the prey population and the predator population versus
the self-competition parameter ε2s for different values of time delay ε2γ. Compared with Figure 5,
the trends of the relative fluctuations curves are different. For each value of the time delay parameter
ε2γ, the curve of the relative fluctuations of both prey population and predator population decrease
monotonously with the increase of the self-competition parameter ε2s. It reveals that the fluctuations
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of the system will decrease when increase ε2s, which indicates that the system becomes more stable for
larger ε2s.
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Figure 6. Probability density functions of prey and predator populations for different values of
parameter ε2s.
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Figure 7. Relative fluctuations versus the time self-competition parameter ε2s for different values of
parameter ε2γ. The other parameters are the same as those in Figure 6.

3.3. The Effects of the Poisson White Noise

It is known that the mean arrival rate λ and the variance of the noise amplitude E[Y2] are two
key parameters for the Poisson white noise. In the following section, the influences of λ and E[Y2] are
investigated respectively.

Figure 8 shows the effects of the mean arrival rate λ1 = λ2 = λ on the stationary PDFs. The results
are calculated with following parameters: ε = 0.1, a = 0.9, b = 1.0, c = 0.5, f = 0.5, ε2s = 0.2,
ε2γ = 0.1. It can be seen that, when fix the value ε2E[Y2

1] = ε2E[Y2
2] = ε2E[Y2] = 0.01, with increasing

the mean arrival rate λ from 0.5 to 2.0, the range of the vibration of the predator population and prey
population become larger, and the peak values of the PDFs become lower. And the probabilities in
both lower and higher population become higher, indicating a less stable system. This is reasonable.
A larger mean arrival rate of the Poisson white noise implies more pulses per unit time. The more the
number of pulses is, the more unstable the ecosystem will be. The same conclusion can be obtained
from Figure 9, which shows the relative fluctuation of the predator population and prey population
versus the mean arrival rate λ. As shown in this figure, the curves of the relative fluctuations for both
the predator population and prey population increase monotonously as increasing the mean arrival
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rate λ. This implies that the system has become unstable. The other parameters are the same as those
in Figure 8. Also depicted in Figures 8 and 9 are results obtained from the Monte Carlo simulation.
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Figure 9. Relative fluctuations of the predator population and prey population for different values of
parameter λ.

In Figures 10 and 11, the influences of ε2E[Y2] = ε2E[Y2
1 ] = ε2E[Y2

2 ] on the ecosystem are calculated
with system parameters: ε = 0.1, a = 0.9, b = 1.0, c = 0.5, f = 0.5, ε2s = 0.2, ε2γ = 0.1, λ1 = λ2 = 0.8.
Figures 10 and 11 depict the dependence of the stationary PDFs and relative fluctuations of the predator
population and prey population. We can arrive at similar conclusions obtained from Figures 8 and 9.
As increasing the variance of the impulses ε2E[Y2], the ecosystem becomes less stable. This agrees
with the intuitive consideration. When increase the value of ε2E[Y2], the fluctuation of the pulses will
become larger, which will result in bigger fluctuation of ecosystem. Besides, the results from Monte
Carlo simulation represented by dotted lines are also shown in these two figures.

Shown in Figure 12 are the stationary PDFs of the prey and predator populations for different
mean arrival rates of the Poisson white noises, corresponding to the same noise intensity λiε

2E[Y2
i ].

The results presented in this figure are all obtained by using the proposed method. It is seen that, as
increasing the value of the mean arrival rate of the Poisson white noises from 0.3 to 5.0, the approximate
stationary PDFs of prey and predator populations of proposed ecosystem under Poisson white noises
become closer to those of ecosystem under Gaussian white noises with the same intensity. This implies
that the non-Gaussian behavior depends on the mean arrival rate of the Poisson white noise. The other
system parameters are given in the caption of this figure.
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Figure 12. Probability density functions of prey and predator populations for different values of mean
arrival rates. The system parameters are ε = 0.1, a = 0.9, b = 1.0, f = 0.5, c = 0.5, ε2s = 0.2, ε2γ = 0.1.

4. Conclusions

This paper investigates the stochastic behaviors of a time-delayed predator-prey ecosystem
under pulse-type stochastic environment fluctuations. In this model, the stochastic fluctuations
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are characterized by the Poisson white noises, and the time delay in the interaction between the
prey and predator is described approximately by a time delay parameter. The original ecosystem
is first modeled as the Stratonovich SDE and then transferred to Itô SDE. Under some reasonable
hypothesises, the stochastic averaging method is applied to simplify the original system. Finally,
the approximate stationary PDFs of the prey and predator populations are obtained by using the
perturbation method. To verify the accuracy of the proposed method, the results from Monte Carlo
simulation are also calculated.

Based on the approximate stationary PDFs of prey and predator populations, the influences of
the prey self-competition parameter, the time-delay parameter and the Poisson white noise excitation
on the system are investigated in detail. The results show that, increasing time delay parameter as
well as the mean arrival rate and the variance of the impulse of the Poisson white noise will enhance
the fluctuations of the prey and predator population and make the ecosystem less stable. While the
larger value of self-competition parameter will reduce the fluctuations of the system and increase the
stability of the ecosystem.

In our present paper, only the effects of some system parameters are studied. Similar approaches
may be adopted to study the influences of other system parameters. In the present investigation,
the amplitudes of the Poisson white noises are assumed to be Gaussian distribution. They can be other
types of distributions depending on the realistic situation.
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Appendix

The coefficients of GFPK equation are:

A11(r) =
〈[
− s

f
( f X1 − c)2 + f γX1(bX2 − a)2

]〉
t
+

〈
f X1

2

〉
t
λ1E[Y1

2] +

〈
bX2

2

〉
t
λ2E[Y2

2];

A12(r) =
〈

f X1

24

〉
t
λ1E[Y1

4] +

〈
bX2

24

〉
t
λ2E[Y2

4];

A21(r) =
〈
( f X1 − c)2

〉
t
λ1E[Y1

2] +
〈
(bX2 − a)2

〉
t
λ2E[Y2

2];

A22(r) =
〈

f
12

X1(7 f X1 − 4c)
〉

t
λ1E[Y1

4] +

〈
b

12
X2(7bX2 − 4a)

〉
t
λ2E[Y2

4];

A4(r) =
〈

ε4( f X1 − c)4
〉

t
λ1E[Y1

4] +
〈

ε4(bX2 − a)4
〉

t
λ2E[Y2

4];

where 〈[]〉t denotes the time average in one quasiperiod, defined as

〈[]〉t =
1
T

∮
r
[]dt =

1
T

∮
r

[]dx2

x2( f x1 − c)(1 + ε4sγx1)
=

1
T

∮
r

[]dx1

x1(a− bx2)
(A1)

and T(•) is the period given in Equation (15).
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