
entropy

Article

Is Natural Language a Perigraphic Process?
The Theorem about Facts and Words Revisited

Łukasz Dębowski ID
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Abstract: As we discuss, a stationary stochastic process is nonergodic when a random persistent topic
can be detected in the infinite random text sampled from the process, whereas we call the process
strongly nonergodic when an infinite sequence of independent random bits, called probabilistic facts,
is needed to describe this topic completely. Replacing probabilistic facts with an algorithmically
random sequence of bits, called algorithmic facts, we adapt this property back to ergodic processes.
Subsequently, we call a process perigraphic if the number of algorithmic facts which can be inferred
from a finite text sampled from the process grows like a power of the text length. We present a simple
example of such a process. Moreover, we demonstrate an assertion which we call the theorem
about facts and words. This proposition states that the number of probabilistic or algorithmic facts
which can be inferred from a text drawn from a process must be roughly smaller than the number
of distinct word-like strings detected in this text by means of the Prediction by Partial Matching
(PPM) compression algorithm. We also observe that the number of the word-like strings for a sample
of plays by Shakespeare follows an empirical stepwise power law, in a stark contrast to Markov
processes. Hence, we suppose that natural language considered as a process is not only non-Markov
but also perigraphic.
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1. Introduction

One of the motivating assumptions of information theory [1–3] is that communication in natural
language can be reasonably modeled as a discrete stationary stochastic process, namely, an infinite
sequence of discrete random variables with a well defined time-invariant probability distribution.
The same assumption is made in several practical applications of computational linguistics, such as
speech recognition [4] or part-of-speech tagging [5]. Whereas state-of-the-art stochastic models of natural
language are far from being satisfactory, we may ask a more theoretically oriented question, namely:

What can be some general mathematical properties of natural language treated as
a stochastic process, in view of empirical data?

In this paper, we will investigate a question of whether it is reasonable to assume that natural
language communication is a perigraphic process.

To recall, a stationary process is called ergodic if the relative frequencies of all finite substrings
in the infinite text generated by the process converge in the long run with probability one to some
constants—the probabilities of the respective strings. Now, some basic linguistic intuition suggests
that natural language does not satisfy this property, cf. ([3], Section 6.4). Namely, we can probably
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agree that there is a variation of topics of texts in natural language, and these topics can be empirically
distinguished by counting relative frequencies of certain substrings called keywords. Hence, we expect
that the relative frequencies of keywords in a randomly selected text in natural language are random
variables depending on the random text topic. In the limit, for an infinitely long text, we may further
suppose that the limits of relative frequencies of keywords persist to be random, and if this is true then
natural language is not ergodic, i.e., it is nonergodic.

In this paper, we will entertain first a stronger hypothesis, namely, that natural language
communication is strongly nonergodic. Informally speaking, a stationary process will be called
strongly nonergodic if its random persistent topic has to be described using an infinite sequence
of probabilistically independent binary random variables, called probabilistic facts. Like nonergodicity,
strong nonergodicity is not empirically verifiable if we only have a single infinite sequence of data.
However, replacing probabilistic facts with an algorithmically random sequence of bits, called
algorithmic facts, we can adapt the property of strong nonergodicity back to ergodic processes.
Subsequently, we will call a process perigraphic if the number of algorithmic facts which can be inferred
from a finite text sampled from the process grows like a power of the text length. It is a general
observation that perigraphic processes have uncomputable distributions.

It is interesting to note that perigraphic processes can be singled out by some statistical properties of
the texts they generate. We will exhibit a proposition, which we call the theorem about facts and words.
Suppose that we have a finite text drawn from a stationary process. The theorem about facts and words
says that the number of independent probabilistic or algorithmic facts that can be reasonably inferred
from the text must be roughly smaller than the number of distinct word-like strings detected in the
text by some standard data compression algorithm called the Prediction by Partial Matching (PPM)
code [6,7]. It is important to stress that in this theorem we do not relate the numbers all facts and all
word-like strings, which would sound trivial, but we compare only the numbers of independent facts
and distinct word-like strings.

Having the theorem about facts and words, we can also discuss some empirical data. Since the
number of distinct word-like strings for texts in natural language follows an empirical stepwise power
law, in a stark contrast to Markov processes, consequently, we suppose that the number of inferrable
random facts for natural language also follows a power law. That is, we suppose that natural language
is not only non-Markov but also perigraphic.

Whereas in this paper we fill several important missing gaps and provide an overarching narration,
the basic ideas presented in this paper are not so new. The starting point was a corollary of Zipf’s law
and a hypothesis by Hilberg. Zipf’s law is an empirical observation that in texts in natural language,
the frequencies of words obey a power law decay when we sort the words according to their decreasing
frequencies [8,9]. A corollary of this law, called Heaps’ law [10–13], states that the number of distinct
words in a text in natural language grows like a power of the text length. In contrast to these simple
empirical observations, Hilberg’s hypothesis is a less known conjecture about natural language that the
entropy of a text chunk of an increasing length [14] or the mutual information between two adjacent
text chunks [15–18] obey also a power law growth. In Ref. [19], it was heuristically shown that,
if Hilberg’s hypothesis for mutual information is satisfied for an arbitrary stationary stochastic process,
then texts drawn from this process satisfy also a kind of Heaps’ law if we detect the words using
the grammar-based codes [20–23]. This result is a historical antecedent of the theorem about facts
and words.

Another important step was a discovery of some simple strongly nonergodic processes, satisfying
the power law growth of mutual information, called Santa Fe processes, discovered by Dębowski in
August 2002, but first reported only in [24]. Subsequently, in Ref. [25], a completely formal proof of
the theorem about facts and words for strictly minimal grammar-based codes [23,26] was provided.
The respective related theory of natural language was later reviewed in [27,28] and supplemented
by a discussion of Santa Fe processes in [29]. A drawback of this theory at that time was that strictly
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minimal grammar-based codes used in the statement of the theorem about facts and words are not
computable in a polynomial time [26]. This precluded an empirical verification of the theory.

To state the relative novelty, in this paper, we are glad to announce a new stronger version of the
theorem about facts and words for a somewhat more elegant definition of inferrable facts and the PPM
code, which is computable almost in a linear time. For the first time, we also present two cases of the
theorem: one for strongly nonergodic processes, applying Shannon information theory, and one for
general stationary processes, applying algorithmic information theory. Having these results, we can
supplement them finally with a rudimentary discussion of some empirical data.

The organization of this paper is as follows. In Section 2, we discuss some properties of ergodic
and nonergodic processes. In Section 3, we define strongly nonergodic processes and we present some
examples of them. Analogically, in Section 4, we discuss perigraphic processes. In Section 5, we discuss
two versions of the theorem about facts and words. In Section 6, we discuss some empirical data and
we suppose that natural language may be a perigraphic process. In Section 7, we offer concluding
remarks. Moreover, three appendices follow the body of the paper. In Appendix A, we prove the first
part of the theorem about facts and words. In Appendix B, we prove the second part of this theorem.
In Appendix C, we show that that the number of inferrable facts for the Santa Fe processes follows
a power law.

2. Ergodic and Nonergodic Processes

We assume that the reader is familiar with some probability measure theory [30]. For a real-valued
random variable Y on a probability space (Ω,J , P), we denote its expectation

E Y :=
∫

YdP. (1)

Consider now a discrete stochastic process (Xi)
∞
i=1 = (X1, X2, . . . ), where random variables Xi

take values from a set X of countably many distinct symbols, such as letters with which we write down
texts in natural language. We denote blocks of consecutive random variables Xk

j := (Xj, . . . , Xk) and

symbols xk
j := (xj, . . . , xk). Let us define a binary random variable telling whether some string xn

1 has
occurred in sequence (Xi)

∞
i=1 on positions from i to i + n− 1,

Φi(xn
1 ) := 1

{
Xi+n−1

i = xn
1

}
, (2)

where

1{φ} =
{

1, if φ is true,

0, if φ is false.
(3)

The expectation of this random variable,

E Φi(xn
1 ) = P(Xi+n−1

i = xn
1 ), (4)

is the probability of the chosen string according to the considered probability measure P, whereas the
arithmetic average of consecutive random variables 1

m ∑m
i=1 Φi(xn

1 ) is the relative frequency of the
same string in a finite sequence of random symbols Xm+n−1

1 .
Process (Xi)

∞
i=1 is called stationary (with respect to a probability measure P) if expectations

E Φi(xn
1 ) do not depend on position i for any string xn

1 . In this case, we have the following well known
theorem, which establishes that the limiting relative frequencies of strings xn

1 in infinite sequence
(Xi)

∞
i=1 exist almost surely, i.e., with probability 1:
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Theorem 1 (ergodic theorem, cf. e.g., [31]). For any discrete stationary process (Xi)
∞
i=1, there exist limits

Φ(xn
1 ) := lim

m→∞

1
m

m

∑
i=1

Φi(xn
1 ) almost surely, (5)

with expectations E Φ(xn
1 ) = E Φi(xn

1 ).

In general, limits Φ(xn
1 ) are random variables depending on a particular value of infinite sequence

(Xi)
∞
i=1. It is quite natural, however, to require that the relative frequencies of strings Φ(xn

1 ) are almost
surely constants, equal to the expectations E Φi(xn

1 ). Subsequently, process (Xi)
∞
i=1 will be called ergodic

(with respect to a probability measure P) if limits Φ(xn
1 ) are almost surely constant for any string xn

1 .
The standard definition of an ergodic process is more abstract but is equivalent to this statement ([31],
Lemma 7.15).

The following examples of ergodic processes are well known:

1. Process (Xi)
∞
i=1 is called IID (independent identically distributed) if

P(Xn
1 = xn

1 ) = π(x1) . . . π(xn). (6)

All IID processes are ergodic.
2. Process (Xi)

∞
i=1 is called Markov (of order 1) if

P(Xn
1 = xn

1 ) = π(x1)p(x2|x1) . . . p(xn|xn−1). (7)

A Markov process is ergodic in particular if

p(xi|xi−1) > c > 0. (8)

For a sufficient and necessary condition, see ([32], Theorem 7.16).
3. Process (Xi)

∞
i=1 is called hidden Markov if Xi = g(Si) for a certain Markov process (Si)

∞
i=1 and

a function g. A hidden Markov process is ergodic in particular if the underlying Markov process
is ergodic.

Whereas IID and Markov processes are some basic models in probability theory, hidden Markov
processes are of practical importance in computational linguistics [4,5]. Hidden Markov processes as
considered there usually satisfy condition (8) and therefore they are ergodic.

Let us call a probability measure P stationary or ergodic, respectively, if the process (Xi)
∞
i=1 is

stationary or ergodic with respect to the measure P. Suppose that we have a stationary measure P that
generates some data (Xi)

∞
i=1. We can define a new random measure F equal to the relative frequencies

of blocks in the data (Xi)
∞
i=1. It turns out that the measure F is almost surely ergodic. Formally, we

have this proposition.

Theorem 2 (cf. ([33], Theorem 9.10)). Any process (Xi)
∞
i=1 with a stationary measure P is almost surely

ergodic with respect to the random measure F given by

F(Xn
1 = xn

1 ) := Φ(xn
1 ). (9)

Moreover, from the random measure F, we can obtain the stationary measure P by integration,
P(Xn

1 = xn
1 ) = E F(Xn

1 = xn
1 ). The following result asserts that this integral representation of measure

P is unique.
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Theorem 3 (ergodic decomposition, cf. ([33], Theorem 9.12)). Any stationary probability measure P can
be represented as

P(Xn
1 = xn

1 ) =
∫

F(Xn
1 = xn

1 )dν(F), (10)

where ν is a unique measure on stationary ergodic measures.

In other words, stationary ergodic measures are some building blocks from which we can construct
any stationary measure. For a stationary probability measure P, the particular values of the random
ergodic measure F are called the ergodic components of measure P.

Consider for instance, a Bernoulli(θ) process with measure

Fθ(Xn
1 = xn

1 ) = θ∑n
i=1 xi (1− θ)n−∑n

i=1 xi , (11)

where xi ∈ {0, 1} and θ ∈ [0, 1]. This measure will be contrasted with the measure of a mixture
Bernoulli process with parameter θ uniformly distributed on interval [0, 1],

P(Xn
1 = xn

1 ) =
∫ 1

0
Fθ(Xn

1 = xn
1 )dθ

=
1

n + 1

[(
n

∑n
i=1 xi

)]−1
. (12)

Measure (11) is a measure of an IID process and is therefore ergodic, whereas measure (12) is a mixture
of ergodic measures and hence it is nonergodic.

3. Strongly Nonergodic Processes

According to our definition, a process is ergodic when the relative frequencies of any strings in
a random sample in the long run converge to some constants. Consider now the following thought
experiment. Suppose that we select a random book from a library. In [34], it was observed that there
is hardly any book that contains both the word lemma and the word love, namely, there are some
keywords that are specific to particular topics of texts. We can pursue this idea one little step farther.
Counting the relative frequencies of keywords, such as lemma for a text on mathematics and love for
a romance, we can effectively recognize the topic of the book. Simply put, the relative frequencies of
some keywords will be higher for books concerning some topics, whereas they will be lower for books
concerning other topics. Hence, in our thought experiment, we expect that the relative frequencies of
keywords are some random variables with values depending on the particular topic of the randomly
selected book. Since keywords are just some particular strings, we may conclude that the stochastic
process that models natural language should be nonergodic.

The above thought experiment provides another perspective onto nonergodic processes.
According to the following theorem, a process is nonergodic when we can effectively distinguish in
the limit at least two random topics in it. In the statement, function f : X∗ → {0, 1, 2} assumes values
0 or 1 when we can identify the topic, whereas it takes value 2 when we are not certain which topic
a given text is about.

Theorem 4 (cf. [24]). A stationary discrete process (Xi)
∞
i=1 is nonergodic if and only if there exists a function

f : X∗ → {0, 1, 2} and a binary random variable Z such that 0 < P(Z = 0) < 1 and

lim
n→∞

P( f (Xi+n−1
i ) = Z) = 1 (13)

for any position i ∈ N.
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A binary variable Z satisfying condition (13) will be called a probabilistic fact. A probabilistic fact
tells which of two topics the infinite text generated by the stationary process is about. It is a kind of
a random switch which is preset before we start scanning the infinite text; compare a similar wording
in [35]. To keep the proofs simple, here we only give a new elementary proof of the “ =⇒ ” statement
of Theorem 4. The proof of the “ ⇐= ” part applies some measure theory and follows the idea of
Theorem 9 from [24] for strongly nonergodic processes, which we will discuss in the next paragraph.

Proof. (only =⇒ ) Suppose that process (Xi)
∞
i=1 is nonergodic. Then, there exists a string xk

1 such that
Φ 6= E Φ for Φ := Φ(xk

1) with some positive probability. Hence, there exists a real number y such that
P(Φ = y) = 0 and

P(Φ > y) = 1− P(Φ < y) ∈ (0, 1). (14)

Define Z := 1{Φ > y} and f (Xi+n−1
i ) := Zin := 1{Φin > y}, where

Φin :=
1

n− k + 1

i+n−k

∑
j=i

Φj(xk
1). (15)

Since limn→∞ Φin = Φ almost surely and Φ satisfies (14), convergence limn→∞ Zin = Z also holds
almost surely. Applying the Lebesgue dominated convergence theorem, we obtain

lim
n→∞

P( f (Xi+n−1
i ) = Z) = lim

n→∞
E [ZinZ + (1− Zin)(1− Z)]

= E
[

Z2 + (1− Z)2
]
= 1. (16)

As for books in the natural language, we may have an intuition that the pool of available book
topics is extremely large and contains many more topics than just two. For this reason, we may need
not a single probabilistic fact Z but rather a sequence of probabilistic facts Z1, Z2, . . . to specify the
topic of a random book completely. Formally, stationary processes requiring an infinite sequence of
independent uniformly distributed probabilistic facts to describe the topic of an infinitely long text
will be called strongly nonergodic.

Definition 1 (cf. [24,25]). A stationary discrete process (Xi)
∞
i=1 is called strongly nonergodic if there exist

a function g : N×X∗ → {0, 1, 2} and a binary IID process (Zk)
∞
k=1 such that P(Zk = 0) = P(Zk = 1) =

1/2 and

lim
n→∞

P(g(k; Xi+n−1
i ) = Zk) = 1 (17)

for any position i ∈ N and any index k ∈ N.

As we have stated above, for a strongly nonergodic process, there is an infinite number of
independent probabilistic facts (Zk)

∞
k=1 with a uniform distribution on the set {0, 1}. Formally, these

probabilistic facts can be assembled into a single real random variable T = ∑∞
k=1 2−kZk, which is

uniformly distributed on the unit interval [0, 1]. The value of variable T identifies the topic of a random
infinite text generated by the stationary process. Thus, for a strongly nonergodic process, we have
a continuum of available topics which can be incrementally identified from any sufficiently long text.
Put formally, according to Theorem 9 from [24], a stationary process is strongly nonergodic if and only
if its shift-invariant σ-field contains a nonatomic sub-σ-field. We note in passing that in [24] strongly
nonergodic processes were called uncountable description processes.

In view of Theorem 9 from [24], the mixture Bernoulli process (12) is some example of a strongly
nonergodic process. In this case, the parameter θ plays the role of the random variable T = ∑∞

k=1 2−kZk.
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Showing that condition (17) is satisfied for this process in an elementary fashion is a tedious exercise.
Hence, let us present now a simpler guiding example of a strongly nonergodic process, which we
introduced in [24,25] and called the Santa Fe process. Let (Zk)

∞
k=1 be a binary IID process with

P(Zk = 0) = P(Zk = 1) = 1/2. Let (Ki)
∞
i=1 be an IID process with Ki assuming values in natural

numbers with a power-law distribution

P(Ki = k) ∝
1
kα

, α > 1. (18)

The Santa Fe process with exponent α is a sequence (Xi)
∞
i=1, where

Xi = (Ki, ZKi ) (19)

are pairs of a random number Ki and the corresponding probabilistic fact ZKi . The Santa Fe process is
strongly nonergodic since condition (17) holds for example for

g(k; xn
1 ) =


0, if for all 1 ≤ i ≤ n, xi = (k, z) =⇒ xi = (k, 0),

1, if for all 1 ≤ i ≤ n, xi = (k, z) =⇒ xi = (k, 1),

2, else.

(20)

Simply speaking, function g(k; ·) returns 0 or 1 when an unambiguous value of the second
constituent can be read off from pairs xi = (k, ·) and returns 2 when there is some ambiguity.
Condition (17) is satisfied since

P(g(k; Xi+n−1
i ) = Zk) = P(Ki = k for some 1 ≤ i ≤ n)

= 1− (1− P(Ki = k))n −−−→
n→∞

1. (21)

Some salient property of the Santa Fe process is the power law growth of the expected number of
probabilistic facts, which can be inferred from a finite text drawn from the process. Consider a strongly
nonergodic process (Xi)

∞
i=1. The set of initial independent probabilistic facts inferrable from a finite

text Xn
1 will be defined as

U(Xn
1 ) := {l ∈ N : g(k; Xn

1 ) = Zk for all k ≤ l} . (22)

In other words, we have U(Xn
1 ) = {1, 2, . . . , l}, where l is the largest number such that g(k; Xn

1 ) =

Zk for all k ≤ l. To capture the power-law growth of an arbitrary function s : N→ R, we will denote
the Hilberg exponent defined

hilb
n→∞

s(n) := lim sup
n→∞

log+ s(2n)

log 2n , (23)

where log+ x := log(x + 1) for x ≥ 0 and log+ x := 0 for x < 0, cf. [36]. In contrast to Ref. [36], for
technical reasons, we define the Hilberg exponent only for an exponentially sparse subsequence of
terms s(2n) rather than all terms s(n). Moreover, in [36], the Hilberg exponent was considered only
for mutual information s(n) = I(Xn

1 ; X2n
n+1), defined later in Equation (51). We observe that for the

exact power law growth s(n) = nβ with β ≥ 0 we have hilbn→∞ s(n) = β. More generally, the Hilberg
exponent captures an asymptotic power-law growth of the sequence. As shown in Appendix C, for the
Santa Fe process with exponent α, we have the asymptotic power-law growth

hilb
n→∞

E card U(Xn
1 ) = 1/α ∈ (0, 1). (24)



Entropy 2018, 20, 85 8 of 26

This property distinguishes the Santa Fe process from the mixture Bernoulli process (12), for which the
respective Hilberg exponent is zero, as we discuss in Section 6.

4. Perigraphic Processes

Is it possible to demonstrate by a statistical investigation of texts that natural language is really
strongly nonergodic and satisfies a condition similar to (24)? In the thought experiment described in
the beginning of the previous section, we have ignored the issue of constructing an infinitely long
text. In reality, every book with a well defined topic is finite. If we want to obtain an unbounded
collection of texts, we need to assemble a corpus of different books and it depends on our assembling
criteria whether the books in the corpus will concern some persistent random topic. Moreover, if we
already have a single infinite sequence of books generated by some stationary source and we estimate
probabilities as relative frequencies of blocks of symbols in this sequence, then, by Theorem 2, we will
obtain an ergodic probability measure almost surely.

In this situation, we may ask whether the idea of the power-law growth of the number of inferrable
probabilistic facts can be translated somehow to the case of ergodic measures. Some straightforward
method to apply is to replace the sequence of independent uniformly distributed probabilistic facts
(Zk)

∞
k=1, being random variables, with an algorithmically random sequence of particular binary

digits (zk)
∞
k=1. Such digits zk will be called algorithmic facts in contrast to variables Zk being called

probabilistic facts.
Let us recall some basic concepts. For a discrete random variable X, let P(X) denote the random

variable that takes value P(X = x) when X takes value x. We will introduce the pointwise entropy

H(X) := − log P(X), (25)

where log stands for the natural logarithm. The prefix-free Kolmogorov complexity K(u) of a string u is
the length of the shortest self-delimiting program written in binary digits that prints out string u ([37],
Chapter 3). K(u) is the founding concept of the algorithmic information theory and is an analogue of
the pointwise entropy. To keep our notation analogical to (25), we will write the algorithmic entropy

Ha(u) := K(u) log 2. (26)

If the probability measure is computable, then the algorithmic entropy is close to the pointwise
entropy. On the one hand, by the Shannon–Fano coding for a computable probability measure, the
algorithmic entropy is less than the pointwise entropy plus a constant which depends on the probability
measure and the dimensionality of the distribution ([37], Corollary 4.3.1). Formally,

Ha(Xn
1 ) ≤ H(Xn

1 ) + 2 log n + CP, (27)

where CP ≥ 0 is a certain constant depending on the probability measure P. On the other hand, since
the prefix-free Kolmogorov complexity is also the length of a prefix-free code, we have

EHa(Xn
1 ) ≥ EH(Xn

1 ). (28)

It is also true that Ha(Xn
1 ) ≥ H(Xn

1 ) for sufficiently large n almost surely ([38], Theorem 3.1). Thus,
we have shown that the algorithmic entropy is in some sense close to the pointwise entropy, for
a computable probability measure.

Next, we will discuss the difference between probabilistic and algorithmic randomness. Whereas
for an IID sequence of random variables (Zk)

∞
k=1 with P(Zk = 0) = P(Zk = 1) = 1/2 we have

H(Zk
1) = k log 2, (29)
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similarly an infinite sequence of binary digits (zk)
∞
k=1 is called algorithmically random (in the

Martin-Löf sense) when there exists a constant C ≥ 0 such that

Ha(zk
1) ≥ k log 2− C (30)

for all k ∈ N ([37], Theorem 3.6.1). The probability that the aforementioned sequence of
random variables (Zk)

∞
k=1 is algorithmically random equals 1—for example by ([38], Theorem 3.1),

so algorithmically random sequences are typical realizations of sequence (Zk)
∞
k=1.

Let (Xi)
∞
i=1 be a stationary process. We observe that generalizing condition (17) in an algorithmic

fashion does not make much sense. Namely, condition

lim
n→∞

P(g(k; Xi+n−1
i ) = zk) = 1 (31)

is trivially satisfied for any stationary process for a certain computable function g : N×X∗ → {0, 1, 2}
and an algorithmically random sequence (zk)

∞
k=1. It turns out so since there exists a computable

function ω : N×N→ {0, 1} such that limn→∞ ω(k; n) = Ωk, where (Ωk)
∞
k=1 is the binary expansion

of the halting probability Ω = ∑∞
k=1 2−kΩk, which is a lower semi-computable algorithmically random

sequence ([37], Section 3.6.2).
In spite of this negative result, the power-law growth of the number of inferrable algorithmic facts

corresponds to some nontrivial property. For a computable function g : N×X∗ → {0, 1, 2} and an
algorithmically random sequence of binary digits (zk)

∞
k=1, which we will call algorithmic facts, the set of

initial algorithmic facts inferrable from a finite text Xn
1 will be defined as

Ua(Xn
1 ) := {l ∈ N : g(k; Xn

1 ) = zk for all k ≤ l} . (32)

Subsequently, we will call a process perigraphic if the expected number of algorithmic facts which
can be inferred from a finite text sampled from the process grows asymptotically like a power of the
text length.

Definition 2. A stationary discrete process (Xi)
∞
i=1 is called perigraphic if

hilb
n→∞

E card Ua(Xn
1 ) > 0 (33)

for some computable function g : N× X∗ → {0, 1, 2} and an algorithmically random sequence of binary
digits (zk)

∞
k=1.

Perigraphic processes can be ergodic. The proof of Theorem A10 from Appendix C can be easily
adapted to show that some example of a perigraphic process is the Santa Fe process with sequence
(Zk)

∞
k=1 replaced by an algorithmically random sequence of binary digits (zk)

∞
k=1. To be very concrete,

the example of a perigraphic process can be process (Xi)
∞
i=1 with

Xi = (Ki, ΩKi ) (34)

where (Ωk)
∞
k=1 is the binary expansion of the halting probability and (Ki)

∞
i=1 is an IID process with Ki

assuming values in natural numbers with the power-law distribution (18). This process is not only
perigraphic but also IID and hence ergodic.

We can also easily show the following proposition.

Theorem 5. Any perigraphic process (Xi)
∞
i=1 has an uncomputable measure P.
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Proof. Assume that a perigraphic process (Xi)
∞
i=1 has a computable measure P. By inequalities (A25)

and (A26) from Appendix A, we have

hilb
n→∞

E card Ua(Xn
1 ) ≤ hilb

n→∞
E [Ha(Xn

1 )−H(Xn
1 )] . (35)

Since, for a computable measure P, we also have inequality (27), then

hilb
n→∞

E card Ua(Xn
1 ) = 0. (36)

Since we have obtained a contradiction with the assumption that the process is perigraphic,
measure P cannot be computable.

5. Theorem about Facts and Words

In this section, we will present a result about stationary processes, which we call the theorem
about facts and words. This proposition states that the expected number of independent probabilistic
or algorithmic facts inferrable from the text drawn from a stationary process must be roughly less
than the expected number of distinct word-like strings detectable in the text by a simple procedure
involving the PPM compression algorithm. This result states, in particular, that an asymptotic power
law growth of the number of inferrable probabilistic or algorithmic facts as a function of the text length
produces a statistically measurable effect, namely, an asymptotic power law growth of the number of
word-like strings.

To state the theorem about facts and words formally, we need first to discuss the PPM code.
The general idea of the PPM code comes from Refs. [6,7], developed independently. This compression
scheme was called the PPM code in [7], which stands for “Prediction by Partial Matching” and prevails
in the literature, whereas it was called measure R in [6,39]. Whereas Ref. [7] focused on practical
applications to data compression and earned most of the fame, in Refs. [6,39], one can find a few
results that matter for theoretical considerations. Let us denote strings of symbols xk

j := (xj, . . . , xk),

adopting an important convention that xk
j is the empty string for k < j. In the following, we consider

strings over a finite alphabet, say, xi ∈ X = {1, . . . , D}. We define the frequency of a substring wk
1 in

a string xn
1 as

N(wk
1|xn

1 ) :=
n−k+1

∑
i=1

1
{

xi+k−1
i = wk

1

}
. (37)

Now, we will define the PPM probabilities in a way that is closer to the conventions of paper [6,39]
than to the conventions of Ref. [7]. In particular, in Equation (38), we consider frequencies of strings
xi

i−k and xi−1
i−k in different strings, xi−1

1 and xi−2
1 , respectively, in the numerator and in the denominator

to guarantee the proper normalization according to our definition of N(wk
1|xn

1 ).

Definition 3 (cf. [6,7]). For xn
1 ∈ Xn and k ∈ {−1, 0, 1, . . .}, we put

PPMk(xi|xi−1
1 ) :=


1
D

, i ≤ k,

N(xi
i−k|x

i−1
1 ) + 1

N(xi−1
i−k |x

i−2
1 ) + D

, i > k.
(38)

Quantity PPMk(xi|xi−1
1 ) is called the conditional PPM probability of order k of symbol xi given string

xi−1
1 . Next, we put

PPMk(xn
1 ) :=

n

∏
i=1

PPMk(xi|xi−1
1 ). (39)
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Quantity PPMk(xn
1 ) is called the PPM probability of order k of string xn

1 . Finally, we put

PPM(xn
1 ) :=

6
π2

∞

∑
k=−1

PPMk(xn
1 )

(k + 2)2 . (40)

Quantity PPM(xn
1 ) is called the (total) PPM probability of the string xn

1 .

Quantity PPMk(xn
1 ) is an incremental approximation of the unknown true probability of the

string xn
1 , assuming that the string has been generated by a Markov process of order k. In contrast,

quantity PPM(xn
1 ) is a mixture of such Markov approximations for all finite orders. In general, the PPM

probabilities are probability distributions over strings of a fixed length. That is:

• PPMk(xi|xi−1
1 ) > 0 and ∑xi∈X PPMk(xi|xi−1

1 ) = 1,
• PPMk(xn

1 ) > 0 and ∑xn
1∈Xn PPMk(xn

1 ) = 1,
• PPM(xn

1 ) > 0 and ∑xn
1∈Xn PPM(xn

1 ) = 1.

In the following, we define an analogue of the pointwise entropy

HPPM(xn
1 ) := − log PPM(xn

1 ). (41)

Quantity HPPM(xn
1 ) will be called the length of the PPM code for the string xn

1 . By nonnegativity
of the Kullback–Leibler divergence, we have for any random block Xn

1 that

EHPPM(Xn
1 ) ≥ EH(Xn

1 ). (42)

The length of the PPM code or the PPM probability, respectively, have two notable properties.
First, the PPM probability is a universal probability, i.e., in the limit, the length of the PPM code
consistently estimates the entropy rate of a stationary source. Second, the PPM probability can be
effectively computed, i.e., the summation in definition (40) can be rewritten as a finite sum. Let us state
these two results formally.

Theorem 6 (cf. [39]). The PPM probability is universal in expectation, i.e., we have

lim
n→∞

1
n

EHPPM(Xn
1 ) = lim

n→∞

1
n

EH(Xn
1 ) (43)

for any stationary process (Xi)
∞
i=1.

For stationary ergodic processes, the above claim follows by an iterated application of the ergodic
theorem as shown, e.g., in Theorem 1.1 from [39] for the measure R, which is a slight modification
of the PPM probability. To generalize the claim for nonergodic processes, one can use the ergodic
decomposition theorem, but the exact proof requires too large of a theoretical overload to be presented
within the framework of this paper.

Theorem 7. The PPM probability can be effectively computed, i.e., we have

PPM(xn
1 ) =

6
π2

L(xn
1 )

∑
k=0

PPMk(xn
1 )

(k + 2)2 +

1− 6
π2

L(xn
1 )

∑
k=0

1
(k + 2)2

D−n, (44)

where

L(xn
1 ) = max

{
k : N(wk

1|xn
1 ) > 1 for some wk

1

}
(45)

is the maximal repetition of string xn
1 .



Entropy 2018, 20, 85 12 of 26

Proof. We have N(xi−1
i−k |x

i−2
1 ) = 0 for k > L(xi

1). Hence, PPMk(xn
1 ) = D−n for k > L(xn

1 ) and, in view
of this, we obtain the claim.

Maximal repetition as a function of a string was studied, e.g., in [40,41]. Since the PPM probability
is a computable probability distribution, then, by (27) for a certain constant CPPM, we have

Ha(Xn
1 ) ≤ HPPM(Xn

1 ) + 2 log n + CPPM. (46)

Let us denote the length of the PPM code of order k,

HPPMk (xn
1 ) := − log PPMk(xn

1 ). (47)

As we can easily see, the code length HPPM(xn
1 ) is approximately equal to the minimal code length

HPPMk (xn
1 ) where the minimization goes over k ∈ {−1, 0, 1, . . .}. Thus, it is meaningful to consider this

definition of the PPM order of an arbitrary string.

Definition 4. The PPM order GPPM(xn
1 ) is the smallest G such that

HPPMG (xn
1 ) ≤ HPPMk (xn

1 ) for all k ≥ −1. (48)

Theorem 8. We have GPPM(xn
1 ) ≤ L(xn

1 ).

Proof. It follows by PPMk(xn
1 ) = D−n = PPM−1(xn

1 ) for k > L(xn
1 ).

Let us divert for a short while from the PPM code definition. The set of distinct substrings of
length m in string xn

1 is

V(m|xn
1 ) :=

{
ym

1 : xt+m
t+1 = ym

1 for some 0 ≤ t ≤ n−m
}

. (49)

The cardinality of set V(m|xn
1 ) as a function of substring length m is called the subword complexity of

string xn
1 [40]. Now let us apply the concept of the PPM order to define some special set of substrings of

an arbitrary string xn
1 . The set of distinct PPM words detected in xn

1 will be defined as the set V(m|xn
1 )

for m = GPPM(xn
1 ), i.e.,

VPPM(xn
1 ) := V(GPPM(Xn

1 )|xn
1 ). (50)

Let us define the pointwise mutual information

I(X; Y) := H(X) +H(Y)−H(X, Y) (51)

and the algorithmic mutual information

Ia(u; v) := Ha(u) +Ha(v)−Ha(u, v). (52)

Now, we may write down the theorem about facts and words. The theorem states that the Hilberg
exponent for the expected number of initial independent inferrable facts is less than the Hilberg
exponent for the expected mutual information and this is less than the Hilberg exponent for the
expected number of distinct detected PPM words plus the PPM order. (The PPM order is usually much
less than the number of distinct PPM words.)
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Theorem 9 (facts and words I, cf. [25]). Let (Xi)
∞
i=1 be a stationary strongly nonergodic process over a finite

alphabet. We have inequalities

hilb
n→∞

E card U(Xn
1 ) ≤ hilb

n→∞
E I(Xn

1 ; X2n
n+1)

≤ hilb
n→∞

E [GPPM(Xn
1 ) + card VPPM(Xn

1 )] . (53)

Proof. The claim follows by conjunction of Theorem A2 from Appendix A and Theorem A8 from
Appendix B.

Theorem 9 also has an algorithmic version, for ergodic processes in particular.

Theorem 10 (facts and words II). Let (Xi)
∞
i=1 be a stationary process over a finite alphabet. We have inequalities

hilb
n→∞

E card Ua(Xn
1 ) ≤ hilb

n→∞
E Ia(Xn

1 ; X2n
n+1)

≤ hilb
n→∞

E [GPPM(Xn
1 ) + card VPPM(Xn

1 )] . (54)

Proof. The claim follows by conjunction of Theorem A3 from Appendix A and Theorem A8 from
Appendix B.

The theorem about facts and words previously proven in [25] differs from Theorem 9 in three
aspects. First of all, the theorem in [25] did not apply the concept of the Hilberg exponent and
compared lim infn→∞ with lim supn→∞ rather than lim supn→∞ with lim supn→∞. Second, the number
of inferrable facts was defined as a functional of the process distribution rather than a random
variable depending on a particular text. Third, the number of words was defined using a minimal
grammar-based code rather than the concept of the PPM order. Minimal grammar-based codes are not
computable in a polynomial time in contrast to the PPM order. Thus, we may claim that Theorem 9
is stronger than the theorem about facts and words previously proven in [25]. Moreover, applying
Kolmogorov complexity and algorithmic randomness to formulate and prove Theorem 10 is a new idea.

It is an interesting question whether we have an almost sure version of Theorems 9 and 10,
namely, whether

hilbn→∞ card U(Xn
1 ) ≤ hilbn→∞ I(Xn

1 ; X2n
n+1)

≤ hilbn→∞
[
GPPM(Xn

1 ) + card VPPM(Xn
1 )
]

almost surely
(55)

for strongly nonergodic processes, or

hilbn→∞ card Ua(Xn
1 ) ≤ hilbn→∞ Ia(Xn

1 ; X2n
n+1)

≤ hilbn→∞
[
GPPM(Xn

1 ) + card VPPM(Xn
1 )
]

almost surely
(56)

for general stationary processes. We leave this question as an open problem.

6. Hilberg Exponents and Empirical Data

It is advisable to show that the Hilberg exponents considered in Theorem 9 can assume any value
in range [0, 1] and the difference between them can be arbitrarily large. We adopt a convention that the
set of inferrable probabilistic facts is empty for ergodic processes, U(Xn

1 ) = ∅. With this remark in
mind, let us inspect some examples of processes.

First of all, for Markov processes and their strongly nonergodic mixtures, of any order k, but, over
a finite alphabet, we have

hilb
n→∞

E card U(Xn
1 ) = hilb

n→∞
E I(Xn

1 ; X2n
n+1) = 0. (57)
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This happens to be so since the sufficient statistic of text Xn
1 for predicting text X2n

n+1 is the
maximum likelihood estimate of the transition matrix, the elements of which can assume at most
(n + 1) distinct values. Hence, E I(Xn

1 ; X2n
n+1) ≤ Dk+1 log(n + 1), where D is the cardinality of the

alphabet and k is the Markov order of the process. Similarly, it can be shown for these processes that
the PPM order satisfies limn→∞ GPPM(Xn

1 ) ≤ k. Hence, the number of PPM words, which satisfies
inequality card VPPM(Xn

1 ) ≤ DGPPM(Xn
1 ), is also bounded above. In consequence, for Markov processes

and their strongly nonergodic mixtures, of any order but over a finite alphabet, we obtain

hilb
n→∞

[GPPM(Xn
1 ) + card VPPM(Xn

1 )] = 0 almost surely. (58)

In contrast, Santa Fe processes are strongly nonergodic mixtures of some IID processes over
an infinite alphabet. Being mixtures of IID processes over an infinite alphabet, they need not satisfy
condition (58). In fact, as shown in [25,29] and Appendix C, for the Santa Fe process with exponent α,
we have the asymptotic power-law growth

hilb
n→∞

E card U(Xn
1 ) = hilb

n→∞
E I(Xn

1 ; X2n
n+1) = 1/α ∈ (0, 1). (59)

The same equality for the number of inferrable probabilistic facts and the mutual information is
also satisfied by a stationary coding of the Santa Fe process into a finite alphabet (see [29]).

Let us also note that, whereas the theorem about facts and words provides an inequality of Hilberg
exponents, this inequality can be strict. To provide some substance, in [29], we have constructed
a modification of the Santa Fe process that is ergodic and over a finite alphabet. For this modification,
we have only the power-law growth of mutual information

hilb
n→∞

E I(Xn
1 ; X2n

n+1) = 1/α ∈ (0, 1). (60)

Since, in this case, hilbn→∞ E card U(Xn
1 ) = 0, then the difference between the Hilberg exponents

for the number of inferrable probabilistic facts and the number of PPM words can be an arbitrary
number in range (0, 1).

Now, we are in a position to discuss some empirical data. In this case, we cannot directly
measure the number of facts and the mutual information, but we can compute the PPM order and
count the number of PPM words. In Figure 1, we have presented data for a collection of 35 plays by
William Shakespeare (downloaded from the Project Gutenberg, https://www.gutenberg.org/) and
a random permutation of characters appearing in this collection of texts. The random permutation of
characters is an IID process over a finite alphabet, so, in this case, we obtain

hilb
n→∞

card VPPM(xn
1 ) = 0. (61)

In contrast, for the plays of Shakespeare, we seem to have a stepwise power law growth of
the number of distinct PPM words. Thus, we may suppose that, for natural language, we have
more generally

hilb
n→∞

card VPPM(xn
1 ) > 0. (62)

If relationship (62) holds true, then natural language cannot be a Markov process of any order.
Moreover, in view of the striking difference between observations (61) and (62), we may suppose
that the number of inferrable probabilistic or algorithmic facts for texts in natural language also
obeys a power-law growth. Formally speaking, this condition would translate to natural language
being strongly nonergodic or perigraphic. We note that this hypothesis arises only as a form of

https://www.gutenberg.org/
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a weak inductive inference since formally we cannot deduce condition (33) from mere condition (62),
regardless of the amount of data supporting condition (62).

-2

-1

 0

 1

 2

 3

 1  10  100  1000  10000  100000  1e+06  1e+07

P
P

M
 o

rd
e

r

input length [characters]

Shakespeare
random permutation

 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000  10000  100000  1e+06  1e+07

c
a

rd
in

a
lit

y
 o

f 
th

e
 P

P
M

 v
o

c
a

b
u

la
ry

input length [characters]

Shakespeare
random permutation

Figure 1. The PPM order GPPM(xn
1 ) and the cardinality of the PPM vocabulary card VPPM(xn

1 ) versus
the input length n for William Shakespeare’s First Folio/35 Plays and a random permutation of the
text’s characters.

7. Conclusions

In this article, a stationary process has been called strongly nonergodic if some persistent random
topic can be detected in the process and an infinite number of independent binary random variables,
called probabilistic facts, is needed to describe this topic completely. Replacing probabilistic facts with
an algorithmically random sequence of bits, called algorithmic facts, we have adapted this property
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back to ergodic processes. Subsequently, we have called a process perigraphic if the number of
algorithmic facts which can be inferred from a finite text sampled from the process grows like a power
of the text length.

We have demonstrated an assertion, which we call the theorem about facts and words. This
proposition states that the number of independent probabilistic or algorithmic facts which can be
inferred from a text drawn from a process must be roughly smaller than the number of distinct
word-like strings detected in this text by means of the PPM compression algorithm. We have exhibited
two versions of this theorem: one for strongly nonergodic processes, applying the Shannon information
theory, and one for ergodic processes, applying the algorithmic information theory.

Subsequently, we have exhibited an empirical observation that the number of distinct word-like
strings grows like a stepwise power law for a collection of plays by William Shakespeare, in stark
contrast to Markov processes. This observation does not rule out that the number of probabilistic or
algorithmic facts inferrable from texts in natural language also grows like a power law. Hence, we
have supposed that natural language is a perigraphic process.

We suppose that the path of the future related research should lead through a further analysis
of the theorem about facts and words, and demonstrating an almost sure version of this statement.
It is also an important, still unresolved question whether theoretical analysis of effective universal
coding algorithms and their rates of convergence to the entropy rate can contribute to some definite
statements about natural language treated as a stochastic process. We realize that the results of this
paper as far as the linguistic theory is concerned may be still too inconclusive. As we see it, the main
merit of this paper lies in linking some concepts in the Shannon information theory and the algorithmic
information theory and providing some linguistic interpretations of them.
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Abbreviations

The following abbreviations are used in this manuscript:

IID independent identically distributed
PPM prediction by partial matching

Appendix A. Facts and Mutual Information

In the appendices, we will make use of several kinds of information measures.

1. First, there are four pointwise Shannon information measures:

• entropy
H(X) = − log P(X),

• conditional entropy
H(X|Z) := − log P(X|Z),

• mutual information
I(X; Y) := H(X) +H(Y)−H(X, Y),

• conditional mutual information
I(X; Y|Z) := H(X|Z) +H(Y|Z)−H(X, Y|Z),

where P(X) is the probability of a random variable X and P(X|Z) is the conditional probability of
a random variable X given a random variable Z. The above definitions make sense for discrete-valued
random variables X and Y and an arbitrary random variable Z. If Z is a discrete-valued random
variable, then also H(X, Z)−H(Z) = H(X|Z) and I(X; Z) = H(X)−H(X|Z).

2. Moreover, we will use four algorithmic information measures:
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• entropy
Ha(x) = K(x) log 2,

• conditional entropy
Ha(x|z) := K(x|z) log 2,

• mutual information
Ia(x; y) := Ha(x) +Ha(y)−Ha(x, y),

• conditional mutual information
Ia(x; y|z) := Ha(x|z) +Ha(y|z)−Ha(x, y|z),

where K(x) is the prefix-free Kolmogorov complexity of an object x and K(x|z) is the prefix-free
Kolmogorov complexity of an object x given an object z. In the above definitions, x and y must
be finite objects (finite texts), whereas z can be also an infinite object (an infinite sequence). If
z is a finite object, then Ha(x, z) − Ha(z)

+
= Ha(x|z, K(z)) rather than being equal to Ha(x|z),

where +
=,

+
<, and

+
> are the equality and the inequalities up to an additive constant ([37], Theorem

3.9.1). Hence,

Ha(x)−Ha(x|z) +Ha(K(z))
+
> Ia(x; z) +

= Ha(x)−Ha(x|z, K(z))
+
> Ha(x)−Ha(x|z). (A1)

In the following, we will prove a result for Hilberg exponents.

Theorem A1. For a function G : N→ R, define J(n) := 2G(n)−G(2n). If the limit limn→∞ G(n)/n = g

exists and is finite, then

hilb
n→∞

[G(n)− ng] ≤ hilb
n→∞

J(n), (A2)

with an equality if J(2n)
+
> 0 for all but finitely many n.

Proof. The proof makes use of the telescope sum

∞

∑
k=0

J(2k+n)

2k+1 = G(2n)− 2ng. (A3)

Denote δ := hilbn→∞ J(n). Since hilbn→∞ (G(n)− ng) ≤ 1, it is sufficient to prove inequality (A2)
for δ < 1. In this case, J(2n) ≤ 2(δ+ε)n for all but finitely many n for any ε > 0. Then, for ε < 1− δ,
by the telescope sum (A3), we obtain for sufficiently large n that

G(2n)− 2ng ≤
∞

∑
k=0

2(δ+ε)(k+n)

2k+1 ≤ 2(δ+ε)n
∞

∑
k=0

2(δ+ε−1)k−1 =
2(δ+ε)n

2(1− 2δ+ε−1)
. (A4)

Since ε can be taken arbitrarily small, we obtain (A2).

Now assume that J(2n)
+
> 0 for all but finitely many n. By the telescope sum (A3), we have

J(2n)/2
+
< G(2n)− 2ng for sufficiently large n. Hence,

δ ≤ hilb
n→∞

(G(n)− ng) (A5)

Combining this with (A2), we obtain hilbn→∞ (G(n)− ng) = δ.
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For any stationary process (Xi)
∞
i=1 over a finite alphabet, there exists a limit

h := lim
n→∞

EH(Xn
1 )

n
= EH(X1|X∞

2 ), (A6)

called the entropy rate of process (Xi)
∞
i=1 [3]. By (28), (43), and (46), we also have

h = lim
n→∞

EHa(Xn
1 )

n
. (A7)

Moreover, for a stationary process, the mutual information satisfies

E I(Xn
1 ; X2n

n+1) = 2EH(Xn
1 )− EH(X2n

1 ) ≥ 0, (A8)

E Ia(Xn
1 ; X2n

n+1) = 2EHa(Xn
1 )− EHa(X2n

1 )
+
> 0. (A9)

Hence, by Theorem A1, we obtain

hilb
n→∞

[EH(Xn
1 )− hn] = hilb

n→∞
E I(Xn

1 ; X2n
n+1), (A10)

hilb
n→∞

[EHa(Xn
1 )− hn] = hilb

n→∞
E Ia(Xn

1 ; X2n
n+1). (A11)

Subsequently, we will prove the initial parts of Theorems 9 and 10, i.e., the two versions of
the theorem about facts and words. The probabilistic statement for strongly nonergodic processes
goes first.

Theorem A2 (facts and mutual information I). Let (Xi)
∞
i=1 be a stationary strongly nonergodic process over

a finite alphabet. We have inequality

hilb
n→∞

E card U(Xn
1 ) ≤ hilb

n→∞
E I(Xn

1 ; X2n
n+1). (A12)

Proof. Let us write Sn := card U(Xn
1 ). Observe that

EH(ZSn
1 |Sn) = −∑s,w P(Sn = s, Zs

1 = w) log P(Zs
1 = w|Sn = s)

≥ −∑s,w P(Sn = s, Zs
1 = w) log P(Zs

1=w)
P(Sn=s)

= −∑s,w P(Sn = s, Zs
1 = w) log 2−s

P(Sn=s)
= (log 2)E Sn − EH(Sn),

(A13)

EH(Sn) ≤ (E Sn + 1) log(E Sn + 1)− E Sn log E Sn

= log(E Sn + 1) + E Sn log E Sn+1
E Sn

≤ log(E Sn + 1) + 1,
(A14)

where the second row of inequalities follows by the maximum entropy bound from ([3], Lemma 13.5.4).
Hence, by the inequality

EH(X|Y) ≤ EH(X| f (Y)) (A15)
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for a measurable function f , we obtain that

EH(Xn
1 )− EH(Xn

1 |Z∞
1 ) ≥ EH(Xn

1 |Sn)− EH(Xn
1 |Z∞

1 , Sn)− EH(Sn)

≥ EH(Xn
1 |Sn)− EH(Xn

1 |Z
Sn
1 , Sn)− EH(Sn)

= E I(Xn
1 ; ZSn

1 |Sn)− EH(Sn)

≥ EH(ZSn
1 |Sn)− EH(ZSn

1 |X
n
1 , Sn)− EH(Sn) (A16)

= EH(ZSn
1 |Sn)− EH(Sn)

≥ (log 2)E Sn − 2EH(Sn)

≥ (log 2)E Sn − 2 [log(E Sn + 1) + 1] .

Now, we observe that

EH(Xn
1 |Z∞

1 ) ≥ EH(Xn
1 |X∞

n+1) = hn (A17)

since the sequence of random variables Z∞
1 is a measurable function of the sequence of random

variables X∞
n+1, as shown in [24,25]. Hence, we have

EH(Xn
1 )− EH(Xn

1 |Z∞
1 ) ≤ EH(Xn

1 )− hn. (A18)

By inequalities (A17) and (A18) and equality (A10), we obtain inequality (A12).

The algorithmic version of the theorem about facts and words follows roughly the same idea,
with some necessary adjustments.

Theorem A3 (facts and mutual information II). Let (Xi)
∞
i=1 be a stationary process over a finite alphabet.

We have inequality

hilb
n→∞

E card Ua(Xn
1 ) ≤ hilb

n→∞
E Ia(Xn

1 ; X2n
n+1). (A19)

Proof. Let us write Sn := card Ua(Xn
1 ). Observe that

Ha(zSn
1 |Sn)

+
> Ha(zSn

1 )−Ha(Sn)
+
= (log 2)Sn − C−Ha(Sn),

(A20)

Ha(Sn)
+
< 2 log(Sn + 1), (A21)

Ha(K(zSn
1 ))

+
< 2 log(K(zSn

1 ) + 1)
+
< 2 log(Sn + 1),

(A22)

where the first row of inequalities follows by the algorithmic randomness of z∞
1 , whereas the second

and the third row of inequalities follow by the bounds K(n)
+
< 2 log2(n + 1) for n ≥ 0 and K(zk

1)
+
< 2k.

Moreover, for any a computable function f , there exists a constant C f ≥ 0 such that

Ha(x|y)
+
< Ha(x| f (y)) + C f . (A23)
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Hence, we obtain that

Ha(Xn
1 )−Ha(Xn

1 |z∞
1 )

+
> Ha(Xn

1 |Sn)−Ha(Xn
1 |z∞

1 , Sn)−Ha(Sn)
+
> Ha(Xn

1 |Sn)−Ha(Xn
1 |z

Sn
1 , Sn)−Ha(Sn)

+
> Ia(Xn

1 ; zSn
1 |Sn)−Ha(K(zSn

1 ))−Ha(Sn)
+
> Ha(zSn

1 |Sn)−Ha(zSn
1 |Xn

1 , K(Xn
1 ), Sn)

−Ha(K(zSn
1 ))−Ha(Sn)

+
> Ha(zSn

1 |Sn)− Cg −Ha(K(zSn
1 ))−Ha(Sn)

+
> (log 2)Sn − C− Cg −Ha(K(zSn

1 ))− 2Ha(Sn)
+
> (log 2)Sn − 6 log(Sn + 1)− C− Cg.

(A24)

Since −E log(Sn + 1) ≥ − log(E Sn + 1) by the Jensen inequality, then

EHa(Xn
1 )− EHa(Xn

1 |z∞
1 )

+
> (log 2)E Sn − 6 log(E Sn + 1)− C− Cg. (A25)

Now, we observe that

EHa(Xn
1 |z∞

1 ) ≥ EH(Xn
1 ) ≥ hn (A26)

since the conditional prefix-free Kolmogorov complexity with the second argument fixed is the length
of a prefix-free code. Hence, we have

EHa(Xn
1 )− EHa(Xn

1 |z∞
1 ) ≤ EHa(Xn

1 )− hn. (A27)

By inequalities (A25) and (A27) and equality (A11), we obtain inequality (A19).

Appendix B. Mutual Information and PPM Words

In this appendix, we will investigate some algebraic properties of the length of the PPM code to be
used for proving the second part of the theorem about facts and words. First of all, it can be seen that

HPPMk (xn
1 ) =


n log D, k = −1,

k log D + ∑
u∈Xk

log
(N(u|xn−1

1 ) + D− 1)!

(D− 1)! ∏D
a=1 N(ua|xn

1 )!
, k ≥ 0.

(A28)

Expression (A28) can be further rewritten using notation

log∗ n :=

{
0, n = 0,

log n!− n log n + n, n ≥ 1,
(A29)

H(n1, . . . , nl) :=

∑l
i=1:ni>0 ni log

(
∑l

j=1 nj
ni

)
, if nj > 0 exists,

0, else,
(A30)

K(n1, . . . , nl) :=
l

∑
i=1

log∗ ni − log∗
(

l

∑
i=1

ni

)
. (A31)

Then, for k ≥ 0, we define

HPPM0
k
(xn

1 ) := ∑
u∈Xk

H (N(u1|xn
1 ), . . . , N(uD|xn

1 )) , (A32)
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HPPM1
k
(xn

1 ) := ∑u∈Xk H
(

N(u|xn−1
1 ), D− 1

)
−∑u∈Xk K

(
N(u1|xn

1 ), . . . , N(uD|xn
1 ), D− 1

)
.

(A33)

As a result for k ≥ 0, we obtain

HPPMk (xn
1 ) = k log D +HPPM0

k
(xn

1 ) +HPPM1
k
(xn

1 ). (A34)

In the following, we will analyze the terms on the right-hand side of (A34).

Theorem A4. For k ≥ 0 and n ≥ 1, we have

D̃ card V(k|xn−1
1 ) ≤ HPPM1

k
(xn

1 ) < D card V(k|xn−1
1 ) (2 + log n) , (A35)

where D̃ := −D log
(

D−1)! > 0.

Proof. Observe that H(0, D− 1) = K(0, . . . , 0, D− 1) = 0. Hence, the summation in HPPM1
k
(xn

1 ) can

be restricted to u ∈ Xk such that N(u|xn−1
1 ) ≥ 1. Consider such a u and write N = N(u|xn−1

1 ) and
Na = N(ua|xn

1 ).
Since H(n1, . . . , nl) ≥ 0 and K(n1, . . . , nl) ≥ 0 (the second inequality follows by subadditivity of

log∗ n), we obtain first

H (N, D− 1)− K (N1, . . . , ND, D− 1) ≤ H (N, D− 1)

= N log
(

1 + D−1
N

)
+ (D− 1) log

(
1 + N

D−1

)
≤ N · D−1

N + (D− 1) log
(

1 + N
D−1

)
= (D− 1)

[
1 + log

(
1 + N

D−1

)]
< D (2 + log n) ,

(A36)

where we use log(1 + x) ≤ x and N < n. On the other hand, function log∗ n is concave so by
∑D

a=1 Na = N and the Jensen inequality for log∗ n, we obtain

H (N, D− 1)− K (N1, . . . , ND, D− 1) ≥ F (N, D) :

= N log
(

1 + D−1
N

)
+ (D− 1) log

(
1 + N

D−1

)
+ log∗(N + D− 1)− log∗(D− 1)− D log∗ (N/D)

= log(N + D− 1)!− log(D− 1)!− D log (N/D)!− N log D
= log (N+D−1)!

(D−1)!(N/D)!D DN ≥ 0,

(A37)

since
(N/D)!DDN = ND(N − D)D(N − 2D)D . . . DD

≤ (N + D− 1)(N + D− 2) . . . D = (N+D−1)!
(D−1)! .

(A38)

Moreover, function F (N, D) is growing in argument N. Hence,

F (N, D) ≥ F (1, D) = −D log
(

D−1
)

!. (A39)

Summing inequalities (A36) and (A39) over u ∈ Xk such that N(u|xn
1 ) ≥ 1, we obtain

the claim.

The mutual information is defined as a difference of entropies. Replacing the entropy with
an arbitrary function HQ(u), we obtain this quantity:
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Definition A1. The Q pointwise mutual information is defined as

IQ(u; v) := HQ(u) +HQ(v)−HQ(uv). (A40)

We will show that the PPM0
k pointwise mutual information cannot be positive.

Theorem A5. For ni = ∑l
j=1 nij, where nij ≥ 0, we have

H(n1, . . . , nk) ≥
l

∑
j=1

H(n1j, . . . , nkj). (A41)

Proof. Write N := ∑k
i=1 ∑l

j=1 nij, pij := nij/N, qi := ∑l
j=1 pij, and rj := ∑k

i=1 pij. We observe that

H(n1, . . . , nk)−
l

∑
j=1

H(n1j, . . . , nkj) = N
k

∑
i=1

l

∑
j=1

pij log
pij

qirj
, (A42)

which is N times the Kullback–Leibler divergence between distributions
{

pij
}

and
{

qirj
}

and thus is
nonnegative.

Theorem A6. For k ≥ 0, we have

IPPM0
k
(xn

1 ; xn+m
n+1 ) ≤ 0. (A43)

Proof. Consider k ≥ 0. For u ∈ Xk and a ∈ X, we have

N(ua|xn+m
1 ) = N(ua|xn

1 ) + N(ua|xn+k
n−k) + N(ua|xn+m

n+1 ). (A44)

Thus, using Theorem A5, we obtain

H
(

N(u1|xn+m
1 ), . . . , N(uD|xn+m

1 )
)
≥ H

(
N(u1|xn

1 ), . . . , N(uD|xn
1 )
)

+H
(

N(u1|xn+k
n−k), . . . , N(uD|xn+k

n−k)
)

+H
(

N(u1|xn+m
n+1 ), . . . , N(uD|xn+m

n+1 )
)

.

(A45)

Since the second term on the right-hand side is greater than or equal zero, we may omit it and
summing the remaining terms over all u ∈ Xk we obtain the claim.

Now, we will show that the PPM pointwise mutual information between two parts of a string
is roughly bounded above by the cardinality of the PPM vocabulary of the string multiplied by the
logarithm of the string length.

Theorem A7. We have

IPPM(xn
1 ; xn+m

n+1 ) ≤ 1 + 4 log
[
GPPM(xn+m

1 ) + 2
]
+
[
GPPM(xn+m

1 ) + 1
]

log D
+2D card VPPM(xn+m

1 ) [2 + log(n + m)] .
(A46)

Proof. Consider k ≥ 0. By Theorems A4 and A6, we obtain

IPPMk (xn
1 ; xn+m

n+1 ) = k log D + IPPM0
k
(xn

1 ; xn+m
n+1 ) + IPPM1

k
(xn

1 ; xn+m
n+1 )

≤ k log D + D card V(k|xn
1 ) [2 + log n]

+D card V(k|xn+m
n+1 ) [2 + log m]

≤ k log D + 2D card V(k|xn+m
1 ) [2 + log(n + m)] .

(A47)



Entropy 2018, 20, 85 23 of 26

In contrast, IPPM−1(xn
1 ; xn+m

n+1 ) = 0. Now, let G = GPPM(xn+m
1 ). Since

HPPM(xn+m
1 ) ≥ HPPMG (xn+m

1 ) (A48)

and

HPPM(u) ≤ HPPMk (u) + 1/2 + 2 log(k + 2) (A49)

for any u ∈ X∗ and k ≥ −1, we obtain

IPPM(xn
1 ; xn+m

n+1 ) ≤ IPPMG (xn
1 ; xn+m

n+1 ) + 1 + 4 log(G + 2)
≤ 1 + 4 log(G + 2) + (G + 1) log D
+2D card V(G|xn+m

1 ) [2 + log(n + m)] .
(A50)

Hence, the claim follows.

Consequently, we may prove the second part of Theorems 9 and 10, i.e., the theorems about facts
and words.

Theorem A8 (mutual information and words). Let (Xi)
∞
i=1 be a stationary process over a finite alphabet.

We have inequalities

hilbn→∞ E I(Xn
1 ; X2n

n+1) ≤ hilbn→∞ E Ia(Xn
1 ; X2n

n+1)

≤ hilbn→∞ E
[
GPPM(Xn

1 ) + card VPPM(Xn
1 )
]

.
(A51)

Proof. By Theorem A7, we obtain

hilb
n→∞

E IPPM(Xn
1 ; X2n

n+1) ≤ hilb
n→∞

E [GPPM(Xn
1 ) + card VPPM(Xn

1 )] . (A52)

In contrast, Theorems 6 and A1 and inequalities (28) and (46) yield

hilbn→∞
[
EH(Xn

1 )− hn
]
≤ hilbn→∞

[
EHa(Xn

1 )− hn
]

≤ hilbn→∞
[
EHPPM(Xn

1 )− hn
]

≤ hilbn→∞ E IPPM(Xn
1 ; X2n

n+1).
(A53)

Hence, by equalities (A10) and (A11), we obtain inequality (A51).

Appendix C. Hilberg Exponents for Santa Fe Processes

We begin with a general observation for Hilberg exponents. In [36], this result was discussed only
for the Hilberg exponent of mutual information.

Theorem A9 (cf. [36]). For a sequence of random variables Yn ≥ 0, we have

hilb
n→∞

Yn ≤ hilb
n→∞

E Yn almost surely. (A54)

Proof. Denote δ := hilbn→∞ E Yn. From the Markov inequality, we have

∑∞
k=1 P

( Y2k

2k(δ+ε) ≥ 1
)
≤ ∑∞

k=1
E Y2k

2k(δ+ε)

≤ A + ∑∞
k=1

2k(δ+ε/2)

2k(δ+ε) < ∞,
(A55)

where A < ∞. Hence, by the Borel–Cantelli lemma, we have Y2k < 2k(δ+ε) for all but finitely many n
almost surely. Since we can choose ε arbitrarily small, in particular, we obtain inequality (A54).
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In [29,36], it was shown that the Santa Fe process with exponent α satisfies equalities

hilb
n→∞

I(X0
−n+1; Xn

1 ) = 1/α almost surely, (A56)

hilb
n→∞

E I(X0
−n+1; Xn

1 ) = 1/α. (A57)

We will now show a similar result for the number of probabilistic facts inferrable from the Santa
Fe process almost surely and in expectation. Since Santa Fe processes are processes over an infinite
alphabet, we cannot apply the theorem about facts and words.

Theorem A10. For the Santa Fe process with exponent α, we have

hilb
n→∞

card U(Xn
1 ) = 1/α almost surely, (A58)

hilb
n→∞

E card U(Xn
1 ) = 1/α. (A59)

Proof. First, we obtain

P(card U(Xn
1 ) ≤ mn) ≤ ∑mn

k=1 P(g(k; Xn
1 ) 6= Zk) = ∑mn

k=1 [1− P(Ki = k)]n

≤ mn

[
1− m−α

n
ζ(α)

]n
≤ mn exp (−nm−α

n /ζ(α)) ,
(A60)

where ζ(α) := ∑∞
k=1 k−α is the zeta function. Put now mn = n1/α−ε for an ε > 0. It is easy to

observe that ∑∞
n=1 P(card U(Xn

1 ) ≤ mn) < ∞. Hence, by the Borel–Cantelli lemma, we have inequality
card U(Xn

1 ) > mn for all but finitely many n almost surely.
Second, we obtain

P(card U(Xn
1 ) ≥ Mn) ≤ n!

(n−Mn)! ∏Mn
k=1 P(Ki = k)

= n!
(n−Mn)!(Mn !)α [ζ(α)]Mn .

(A61)

Recalling from Appendix B that log n! = n(log n − 1) + log∗ n, where log∗ n ≤ log(n + 2) is
subadditive, we obtain

log P(card U(Xn
1 ) ≥ Mn) ≤ n(log n− 1)− (n−Mn) [log(n−Mn)− 1]

− αMn(log Mn − 1) + log∗ Mn −Mn log ζ(α) (A62)

≤ Mn [log n− α(log Mn − 1)− log ζ(α)] + log∗ Mn

by log n ≤ log(n−Mn) +
Mn
n . Put now Mn = Cn1/α for a C > e[ζ(α)]−1/α. We obtain

P(card U(Xn
1 ) ≥ Mn) ≤ (Cn1/α + 2) exp(−δn1/α), (A63)

where δ > 0 so ∑∞
n=1 P(card U(Xn

1 ) ≥ Mn) < ∞. Hence, by the Borel–Cantelli lemma, we have
inequality card U(Xn

1 ) < Mn for all but finitely many n almost surely. Combining this result with the
previous result yields equality (A58).

To obtain equality (A59), we invoke Theorem A9 for the lower bound, whereas, for the upper
bound, we observe that

E card U(Xn
1 ) ≤ Mn + nP(card U(Xn

1 ) ≥ Mn), (A64)

where the last term decays according to the stretched exponential bound (A63) for Mn = Cn1/α.
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19. Dębowski, Ł. On Hilberg’s law and its links with Guiraud’s law. J. Quant. Linguist. 2006, 13, 81–109.
20. Wolff, J.G. Language acquisition and the discovery of phrase structure. Lang. Speech 1980, 23, 255–269.
21. De Marcken, C.G. Unsupervised Language Acquisition. Ph.D. Thesis, Massachussetts Institute of Technology,

Cambridge, MA, USA, 1996.
22. Kit, C.; Wilks, Y. Unsupervised Learning of Word Boundary with Description Length Gain. In Proceedings

of the Computational Natural Language Learning ACL Workshop, Bergen; Osborne, M., Sang, E.T.K., Eds.;
The Association for Computational Linguistics: Stroudsburg, PA, USA, 1999; pp. 1–6.

23. Kieffer, J.C.; Yang, E. Grammar-based codes: A new class of universal lossless source codes. IEEE Trans.
Inf. Theory 2000, 46, 737–754.
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