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Abstract: Data or signal separation is one of the critical areas of data analysis. In this work, the problem
of non-negative data separation is considered. The problem can be briefly described as follows: given
X ∈ Rm×N , find A ∈ Rm×n and S ∈ Rn×N

+ such that X = AS. Specifically, the problem with sparse
locally dominant sources is addressed in this work. Although the problem is well studied in the
literature, a test to validate the locally dominant assumption is not yet available. In addition to that,
the typical approaches available in the literature sequentially extract the elements of the mixing
matrix. In this work, a mathematical modeling-based approach is presented that can simultaneously
validate the assumption, and separate the given mixture data. In addition to that, a correntropy-based
measure is proposed to reduce the model size. The approach presented in this paper is suitable for
big data separation. Numerical experiments are conducted to illustrate the performance and validity
of the proposed approach.

Keywords: big data; blind signal separation; locally dominant sources; correntropy ranking

1. Introduction

Transforming data into information is a key research direction of the current scientific age. During
the data collection phase, it is often the case that the data cannot be collected from the actual data
generating locations (sources). Typically, a nearby physically connected location (station) that is
accessible can be used for the data collection. If the station is influenced by more than one source,
then the data collected at the station provides mixed information from the multiple sources (mixture
data). This creates a challenging problem of identifying the source data from the given mixture data.
Such a problem is typically known as a data (or signal) separation problem.

In this paper, a linear mixing type data separation problem is considered. The generative model
of the problem in its standard form can be written as:

X = AS, (1)

where X ∈ Rm×N denotes the given mixture matrix, A ∈ Rm×n is the unknown mixing matrix,
and S ∈ Rn×N denotes the unknown source matrix. The problem can be further classified
into overdetermined (m > n), undetermined (m < n), and square or determined (m = n) cases.
The overdetermined case can be transformed into the square case by using the Principal Component
Analysis (PCA) method [1,2]. The undetermined cases often result in loss of information or
redundancy in the representation. Usually, approximate recovery is done based on the prior probability
assumptions. Typically, Gaussian or Laplacian priors are used to estimate the mixing matrix. The idea
is to identify the directions of maximum density via clustering. These directions correspond to the
identification of the mixing matrix [3,4]. Once the mixing matrix is estimated, the source matrix is
obtained by solving series of least square problems. In this paper, the data separation problem for
m ≥ n cases will be considered.
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In addition to that, the above problem given in Equation (1) can be solved under numerous
assumptions based on the level of available information. In this work, both A and S are assumed to
be unknown. In such a scenario, the above signal separation problem is known as the “Blind” Signal
Separation (BSS) problem. Seminal ideas of the BSS problem can be found in [5], where the authors
illustrated the idea of BSS via an example of two source signals (n = 2) and two mixture signals (m = 2).
Their objective was to recover source signals from the mixture signals, without any further information.
However, it has been known since then that the recovery of sources from a linear mixture is imperfect,
and pragmatic recovery needs various identifiability conditions. In [6], various approaches and the
identifiable conditions of the BSS problem are summarized.

One of the well known traditional solution approaches to the BSS problem is the Independent
Component Analysis (ICA) [7]. The ICA-based approaches are built upon the key assumption of the
statistical independence among the rows of S. The basic objective of ICA is to separate the input data
into statically independent components. During the last three decades, there have been a large amount
of papers on signal analysis that are devoted to the usage of ICA. These approaches are designed not
only for the linear but also for the nonlinear signal mixing scenarios. They have also been designed
for the overdetermined, undetermined, as well as square cases of the BSS problem. Some of the well
known approaches in ICA are based on mutual information [8]; negentropy [9]; projection pursuit [10];
infomax [11]. Recent applications of ICA include bio-medical data analysis [12–17]; power system
analysis [18], and audio and speech [19]. It is out of the scope of this paper to summarize all the typical
approaches of ICA. Therefore, interested readers are referred to [7,20] (and the references therein).
One of the major critiques pertaining to ICA is the existence of independent sources. Some of the signal
analysis areas (such as biomedical and hyperspectral image analysis) may not satisfy the independence
criterion (see [21]). Thus, alternative approaches to ICA for BSS have also been a critical research
direction in the area of signal analysis.

Other prominent approaches of BSS, apart from ICA, assume some sparsity or geometric structure
in S [22]. In this work, the focus is on the sparsity-based approaches of extracting non-negative sources.
This area is widely known as Sparse Component Analysis (SCA) [23]. Specifically, following are the
basic assumptions that are considered while solving the SCA problem.

Basic SCA assumptions:

1. Every column of the source matrix is non-negative.
2. Source matrix has a full row rank.
3. Mixing matrix has a full column rank, and m ≥ n.
4. The rows of the source matrix, and columns of the mixing matrix have unit norm.
5. Source matrix is sparse.

The first assumption provides a mathematical advantage in designing the solution algorithms.
Basically, the non-negativity assumption transforms the BSS problem into a convex programming
problem [24–26]. In addition to that, non-negative source signals are very common in sound and image
analysis. The next two assumptions ensure that the problem is recoverable (solvable). The fourth
assumption is perhaps the limit of all BSS approaches, which is related to scalability and uniqueness
(see [27]). The fifth assumption is the key sparsity assumption of the SCA-related approaches. Different
scenarios of the SCA problem arise with different structures of the sparsity. The typical structures of
sparsity discussed in the SCA literature can be classified as:

• Locally Dominant Case: In addition to the basic assumptions, for a given row r of S, there exists
at least one unique column c such that:

si,c

{
> 0 if i = r

= 0 otherwise
(2)
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• Locally Latent Case: In addition to the basic assumptions, for a given row r of S, there exists at
least (n− 1) linearly independent and unique columns Cr such that:

si,c

{
= 0 if i = r & c ∈ Cr

> 0 if i 6= r & c ∈ Cr
(3)

• General Sparse Case: This is the default case.

The first case is one of the widely known cases in the SCA literature (see [28,29] for recent
literature reviews). The second case is new to the of SCA literature, and few recent papers address
this case [30]. The first two cases have identifiability conditions, which assure identification and
recovery of the source signals. If the conditions of the first two cases do not apply to the given data,
then the SCA problem belongs to the last general case. Typically, the general case may not have
perfect identification (apart from the scalability and uniqueness issues). For the general case, minimum
volume-based approaches [26,31,32], and extreme direction-based approaches [33] have been proposed to
approximately recover the source matrix. Some special cases of sparse structure, apart from the above
cases, that can recover original source data have also been studied in the literature, for example see [34].

In addition to the above, the conditions on X that improve the separability of sources are
studied in the literature [35,36]. Methods that exploit spectral variability can be seen in [37].
Time series (frequency and transformation analysis) based methods to identify sparse sources have
been presented in [4,38]. Further methods developed on the assumption of SCA can be found
in [39,40]. The prominent application areas of SCA include, but are not limited to, the following:
Blind Hyperspectral Unmixing (BHU) [41], chemical analysis [42], Nuclear Magnetic Resonance
(NMR) spectroscopy [43], etc. Figure 1 portrays various linear BSS methods available in the literature.
The grayed areas in the figure represent the research areas that will not be considered further in this paper.
Thus, the branches unrelated to the paper that emerge from the grayed areas are ignored in the figure.
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Figure 1. Overview of the “Blind” Signal Separation (BSS) problem.
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One of the critical gaps found in the SCA literature is the unavailability of a method to test
the existence of a locally dominant assumption from the mixture data (X). In this paper, a novel
mathematical programming and correntropy-based approach is presented for testing the locally
dominant source assumption. The proposed approach also provides a solution for the locally dominant
SCA problem.

Throughout this paper, the following notation styles are used. A capital letter bold face character,
like B, indicates a matrix. A small letter bold face character with or without a subscript, like br,
indicates the rth column vector of matrix B. A small letter bold face character with a special subscript,
like bp•, indicates the transpose of the pth row vector of matrix B. A non-bold small letter character,
like bp,r, represents the pth row rth column element of matrix B.

The rest of the paper is organized as follows: Section 2 introduces the locally dominant case.
Specifically, it displays the existing formulations from the literature, and presents the proposed
novel formulation. A correntropy-based ranking method to eliminate the non-extreme data points
is developed in Section 3. By incorporating the proposed model and the proposed ranking method,
a tailored solution approach for the big data separation problem is developed in Section 4. A numerical
study to assert the performance of the proposed approach is illustrated in Section 5. Finally, the paper
is concluded with discussions in Section 6.

2. Locally Dominant Case

Consider the following determined or square version of the SCA model:

X = A S. (4)

Each column xi for i = 1, . . . , N of the mixture matrix (X) can be represented as follows:

xi =
n

∑
j=1

sj,iaj ∀ i = 1, . . . , N, (5)

where aj is the jth column of the mixing matrix (A), and sj,i is the jth row ith column element of
the source matrix (S). Equation (5) highlights that every column vector of X is a linear combination
of the column vectors of A. Since the source matrix (S) is non-negative (i.e., sj,i ≥ 0 for all i & j),
the combination is a conic combination. Thus, the columns of X are spanned by the columns of A. In
other words, the extreme column vectors of X are the columns of A. Therefore, the locally dominant
case boils down to the identification of the extreme vectors of X [24].

If all the columns of X are non-negative, then normalizing every column of X with respect to
Norm-1 makes the columns of X coplanar. That is, all the columns are contained in the following lower
dimensional plane:

n

∑
j=1

xj,i = 1 ∀ i = 1, . . . , N. (6)

Now, the extreme points of X on the lower dimensional plane correspond to the columns of A.
In addition to that, if some of the elements of X are negative, then the columns of X are projected onto
a suitable lower dimensional plane. There are many approaches in the literature that are designed
to work on this lower dimensional plane (affine hull) [25,44]. The advantage of working on this
plane is that the extreme vector columns of X will form the vertices of a lower dimensional simplex.
Thus, identifying the extreme points will result in the identification of the mixing matrix. Next, a few well
known mathematical formulations and solution approaches for SCA from the literature are presented.
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2.1. Conventional Formulations

One of the earliest mathematical formulations that identifies the extreme vectors of X is proposed
in [24]. The idea is to pick one column of X, say xc, and check the possibility of it being an extreme
vector. The formulation corresponding to xc is given as follows:

min. :∥∥∥∥∥∥∥
N

∑
i=1
i 6=c

αixi − xc

∥∥∥∥∥∥∥
2

(7)

s.t. :

αi ≥ 0 ∀ i = 1, . . . , N, & i 6= c, (8)

where αi ≥ 0, ∈ R is the variable that corresponds to the weight of xi ∈ X for i = 1, . . . , N.
The key idea that is exploited in the formulation is that the extreme vectors cannot be represented
by a non-negative weighted combination of the other data vectors. The above formulation is a least
square minimization problem. In the worse case, the formulation has to be executed N times for each
xc, i.e., for c = 1, . . . , N. In the best case, the formulation has to be executed n times. A nonzero value
of the objective function indicates that the vector xc is an extreme vector of X.

Another approach, called Convex Analysis of Mixtures of Non-negative Sources (CAMNS), that
works on the affine hull is presented in [25]. The solution approach of CAMNS involves two major steps.
In the first step, the parameters C ∈ RN×(n−1) and d ∈ RN of the affine hull are estimated as follows:

d =
1
N

N

∑
j=1

xj• (9)

U = XT − d (10)

C = [eigv(UUT)]1,...,(n−1) (11)

where xj• is the jth row of X. In Equation (10), vector d is subtracted from all the rows of X, and in
Equation (11), matrix C contains the columns corresponding to the eigenvectors associated with the
largest (n− 1) eigenvalues of UUT. Basically, this first step is similar to the dimensionality reduction
process executed in the PCA. In the second step, the following mathematical model is repeatedly solved:

max/min :

rT(Cα + d) (12)

s.t. :

cT
i•α + di ≥ 0 ∀ i = 1, . . . , N (13)

where r ∈ RN is a generated vector, ci• is an ith row of C, and α ∈ R(n−1) is the unknown variable.
The above formulation exploits the notion that the optimal solution of a linear program exists at the
extreme points. For a given r, the formulation is solved twice; one time as the maximization problem
and the other time as the minimization problem. This is done in order to get one (or maybe two) new
extreme point(s) in every iteration. The (n− 1) extreme points are identified by resolving the above
formulation repeatedly with respect to different r vectors. The crux of this method is hidden in the
generation of r and convergence of the approach, which are the main concepts presented in [25].

Notice that the above two ideologies extract the columns of A sequentially. In addition to the
above approaches, typical approaches in the literature identify the columns of A sequentially [28,29,45].
Therefore, there is no mechanism to validate the locally dominant assumption from X. One of the main
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objectives of this paper is to build such a mechanism using a mathematical formulation-based approach.
In the following subsection, a novel formulation is presented that can provide the above mechanism.

2.2. Envelope Formulation

In this section, a mathematical model that can simultaneously identify all the extreme vectors of X
under the locally dominant assumption is proposed. To the best of our knowledge, an exact method
that identifies all the extreme vectors in a single shot is unavailable.

Let X2 be the data obtained after normalizing each column of X with respect to Norm-2. Let
yi ∈ X2 be the ith column of X2. Let aTy = b be a plane that is inclined in such a way that all the
columns of X2 are contained in one halfspace of the hyperplane, and the origin is in the other halfspace.
Such a hyperplane is referred to as linear envelope in this work. The envelope can be written as:

aTyi ≥ b ∀ i = 1, . . . , N, (14)

where a ∈ Rm corresponds to the normal vector of the envelope, and b ≥ 0 is a constant. Out of infinite
possible representations of the above envelope, an envelope with b = 1 is selected for further analysis.
Now, the distance between any vector yi and the envelope can be written as:

d(yi) =
|aTyi − 1|
||a||2

(15)

=
aTyi − 1
||a||2

(16)

∝ aTyi − 1 = p(yi) ∀ i = 1, . . . , N. (17)

Equation (16) follows from Equation (14). Ignoring the denominator (||a||2) in Equation (16)
results in a proportional or scaled distance (p(yi)). Among infinite possible linear envelopes, the aim
is to find the tightest or supporting envelope. A formulation that can identify the tightest envelope is
given as follows:

min. :
N

∑
i=1

(aTyi − 1) (18)

s.t. :

aTyi ≥ 1 ∀ i = 1, . . . , N, (19)

where a ∈ Rm is the unknown variable. The above formulation can be equivalently written as:

Formulation: (20)

min. :

µTa (21)

s.t. :

yT
i a ≥ 1 ∀ i = 1, . . . , N, (22)

where µ ∈ Rm is defined as µ = ∑N
i=1 yi. It is assumed that the duplicate and/or all zero columns of

X2 are removed before the execution of the above model. The aim of the above model is to find the
envelope that has the minimum distance with respect to all the columns of X2. The above formulation
is linear, and needs to be executed only once to identify all the extreme vectors. That is, at the optimal
solution, the data points (yi’s) corresponding to the active constraints in Equation (19) will correspond
to the extreme vectors of X2. It can be seen that the above formulation is always feasible. Furthermore,
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due to the design of the constraint given in Equation (19), the problem is linear. That is, the design
allowed the usage of proportional distance (Equation (17)) instead of the nonlinear actual distance
(Equation (15)).

In addition to that, from the LP theory, only m constraints will be active at the optimal solution.
Let Θ be the matrix containing the columns of X corresponding to the m active constraints. Identifying
the columns of A requires the following additional steps: Calculate qi = Θ−1xi for i = 1, . . . , N.
If qi ≥ 0 for i = 1, . . . , N, then Θ corresponds to A. However, if any element of qi is strictly less than 0
for any i = 1, . . . , N, then it indicates that the locally dominant assumption is invalid for the given X.
Thus, this serves as a test for the existence of the locally dominant assumption.

The above test works for typical data mixing without noise. However, the image data is usually
integer data. There is always rounding, taking place at the source or mixture level. Therefore, the
rounding effect needs to be incorporated into the above condition. It is proposed in this paper to follow
the heuristic method to incorporate the rounding effect. Let ν = 0.5|Θ−1e|, where e ∈ Rn is a vector of
all ones. The notion is that the rounding will create a maximum error of ±0.5 in each pixel element.
Thus, the maximum error in any pixel element will be strictly less than 0.5. Therefore, the check for
image data will be as follows: If qi + ν ≥ 0 for i = 1, . . . , N, then Θ corresponds to A.

Furthermore, the above idea can be extended for mixing scenarios containing noise. For instance,
a level of tolerance can be used to analyze the noisy mixture data. Let ψ ≥ 0, ∈ Rm be a tolerance
parameter selected by the user. Then, based on the earlier discussion, the check for noisy data will
be as follows: If qi + ψ ≥ 0 for i = 1, . . . , N, then Θ corresponds to A. The precise value of ψ may
not be available for a given scenario. Hence, the parameter will be empirically selected based on trial
experiments. In Section 5, an experiment that highlights the usage of parameter ψ for noisy data
is illustrated.

3. Point Correntropy

Correntropy is a generalized correlation measure based on the concept of entropy. It is typically
used in detecting local similarity between two random variables. Roughly speaking, it is a kernelized
version of the conventional correlation measure. The measure first appeared in [46,47], and its usage as
a cost function was illustrated in [48–52]. The optimization properties of the cost function are presented
in [53]. The correntropy cost function (or the correntropic loss) for N errors is defined as:

F (ε) = β(1− 1
N

N

∑
i=1

k(εi, σ)), (23)

where β =

[
1− e(

−1
2σ2 )
]−1

is a scaling parameter, ε ∈ RN is an array of errors, and k() is the

transformation kernel function with parameter σ. In this work, a Gaussian kernel is selected, i.e.,

k(ε, σ) = e
(
−ε2

2σ2

)
. Equation (23) is readily separable with respect to sample errors, and can be rewritten as:

F (ε) =
N

∑
i=1

f (εi) (24)

where f (εi) =
β
N (1− k(εi, σ)), and it will be referred to as point estimate of the correntropic loss.

Let εi be an error corresponding to the ith column vector of X. For a given kernel parameter σ,
the point estimate provides similarity information of the ith vector with respect to the other data vectors
of X. Based on the geometry of the vectors, the extreme vectors’ similarity with respect to the central
vectors should be typically less than the other non-extreme vectors of X. Thus, the point estimate
of the correntropic loss function can be used as a measure to differentiate extreme and non-extreme
vectors of X.
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4. Solution Methodology

Our goal is to develop a geometric separation method for the non-negative data mixing problem,
that can be applied to the “Big Data” scenarios. The concepts developed in Sections 2 and 3 are
tailored with respect to big data, and the following solution approach is proposed. The summary of
the proposed approach is illustrated in Figure 2 and Algorithm 1.

START

Normalize

X into X2

Remove all zero and

duplicate columns

Remove columns

with 50 percentile

point correntropy

criterion

Execute LP Formulation (20)

Check
aTyi ≥ 1 for
i = 1, . . . , N

Check
qi + ψ ≥ 0
for i =
1, . . . , N

The columns of A
corresponds to the

active constraints

Add column

with maximum

infeasiblity to

the LP constraints

The locally

dominant assumption

is invalid

STOP

YES

YES

NO

NO

Figure 2. The proposed approach.
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Algorithm 1: The Proposed Algorithm.

Data: Given X ∈ Rm×N

Result: Find A ∈ Rm×n and S ∈ Rn×N
+ such that X = AS

X2 = normalize(X) ;

Remove all zero columns and duplicate columns from X2, and say X2 ∈ Rm×N̂ ;
Estimate σ from S;
Obtain XR by removing all columns with the 50 percentile point correntropy criterion from X2;
Let XE = X2 \ XR;
Let yi be the ith column of X2 ;
a = Solution of LP Formulation (20) with respect to data XR;
while aTyi < 1 for i = 1, . . . , N do

XR = XR ∪w,;
where w ∈ XE is the column with maximum infeasiblity to the LP constraints;
Get a = Solution LP Formulation (20) with respect to data XR;

end
Let Θ be the matrix containing the columns of X corresponding to the active constraints at the
optimal solution of Formulation (20).;

Calculate qi = Θ−1xi for i = 1, . . . , N;
Set ψ equal to 0 for non-noisy non-image data mixing, equal to ν for non-noisy image data
mixing, or equal to the user-specified value for noisy mixing.;

if qi + ψ ≥ 0 ∀i = 1, . . . , N then
A = Θ;
Stop;

else
Locally dominant assumption invalid;
Stop;

end

Data Ranking: As seen earlier, the extreme vectors of X2 contain all the relevant information that
is needed for separation (i.e., identifying A and S). Other data vectors are redundant in identifying the
mixing matrix. Thus, the point estimate of the correntropic loss can be evaluated at all the data points
with respect to the central columns of X2. Those data points that have low value of the correntropic loss
can be removed from the data set X2 without losing any information. The major issues in implementing
the above idea are as follows: how to select the right value for σ, and how to define εi corresponding
to yi for i = 1, . . . , N.

The value of σ represents the kernel width, and should be large enough to contain the central
vectors. However, it should be small enough to exclude the extreme vectors. In the following, we
propose a practical method to estimate the value of σ. Let S be a sample of columns randomly
selected from X2. Let δj = max

∀ i1,i2∈S
i1<i2

{yj,i1 − yj,i2}, where yj,i1 is the jth element of yi1. Based on the trial

experiments, we found that σ =
∑n

j=1 δj√
2n

is a good choice for the kernel width. Furthermore, the value of

c should correspond to the center of the columns of X2. An approximate estimate for c can be c = g+h
2 ,

where gj = max
j
{yj,i}, hj = min

j
{yj,i} for i ∈ S. Thus, simple (and practical for big data) estimate of

error for yi will be εi = yi − c for i = 1, . . . , N. Based on the trial experiments, it can be concluded that
the larger the size of S, the better the estimation. Furthermore, the strategy to eliminate the columns
from the trial experiments is as follows. All the columns of X2 that have the point estimate value lower
than 50 percentile are removed from further consideration.
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Handling a Large Number of Constraints: From Formulation (20), it can be seen that the big
data corresponds to a large number of constraints. However, only m constraints are active, and the rest
of the constraints are redundant (i.e., the rest of the constraints will never be active). The proposed
data ranking method eliminates a good amount of the redundant constraints, depending upon the
distribution of columns in the data set.

Let XR ⊆ X2 be the data matrix obtained after eliminating possible central vectors, and let XE ⊂ X2

be the eliminated central vectors. If the columns of X2 are reorganized, then there exists a partition
such that X2 = [XR|XE]. Once the tightest envelope is obtained for XR by solving Formulation (20),
the envelope is validated with respect to XE. If all the columns of XE fall in the same half space
(i.e., Equation (14) is feasible with respect to X2), then it can be guaranteed that none of the extreme
vectors of X2 were eliminated. However, if there is any infeasibility detected, then the column of XE
with maximum infeasibility is added to the LP, and the LP is resolved.

Performance Index: In order to evaluate the performance of the proposed approach,
distance-based metrics will be used. Specifically, two metrics (one for the mixing matrix, and the other
for the source matrix) will be used in this work. The following error measure is for the mixing matrix:

eA =
1
n2

n

∑
j=1

∥∥∥∥∥ aj

||aj||
−

â[j]
||â[j]||

∥∥∥∥∥
2

(25)

where aj is the jth column of the original mixing matrix A, and â[j] is the corresponding column to
aj, obtained from the recovered mixing matrix Â. The corresponding columns are identified by the
Hungarian algorithm [54]. The source matrix is obtained as follows:

Ŝ = argmin
S∈Rn×N

+

{‖X− ÂS‖2} (26)

The above approach can be replaced by Ŝ = Â−1X, whenever Â−1 exists. Similar to eA,
the following error measure is for the source matrix:

eS =
1

nN

n

∑
j=1

∥∥∥∥∥ sj•
||sj•||

−
ŝ[j•]
||̂s[j•]||

∥∥∥∥∥
2

(27)

where sj• is the jth row of the original source matrix S, and ŝ[j•] is the corresponding row to sj•,
obtained from the recovered source matrix Ŝ.

5. Numerical Experiments

In order to illustrate the performance of the proposed approach, numerical experiments are
presented. The experiments are divided into four groups. In the first group of experiments, simulated
non-noisy data is used to test the performance and sensitivity of the proposed approach. In the second
group of experiments, image data mixtures are used to test the applicability of the proposed approach
on real image data. The third and fourth group of experiments compare the proposed approach
with the well known SCA methods in the literature. In all the instances of this section, the following
specifications were used: S = {1, . . . , N}. All the random mixing matrices contain columns with unit
norm. The LP resolving step is skipped in order to identify the number of instances in which the
extreme vectors were eliminated. The LP was solved via the dual simplex method, using the state of
the art Cplex 12.0 solver [55]. All the instances were solved on an Intel Xeon 2.4 GHz workstation,
with 16 logical processors and 32 GB of RAM.
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5.1. Simulated Data Separation

Setup: Given n and N, a random source matrix S that satisfies the locally dominant assumption is
generated. For the generated S matrix, 100 random mixing matrices A are generated. Then, using the
X = AS equation, 100 random mixture matrices are generated. On each mixture matrix, the proposed
approach is implemented. This study is executed for all the following combinations of n = 5, 7, 9
and 11, and N = 1000, 5000, 10,000, 50,000, 100,000, 500,000 and 1,000,000. In addition to that, this study
is also executed for n = 10, 20, 40, 60, 80 and 100 when N = 1,000,000. The value of ψ is set to zero in
this experiment.

Results: Using one mixture matrix as input, and using the proposed approach, matrices Â
and Ŝ are recovered. This experiment is repeated 100 times for a given combination of n and N.
The performance of the proposed approach is displayed in Table 1. The column corresponding
to mErrA (vErrA) indicates the mean (variance) of error eA over the 100 instances. Similarly,
columns mErrS and vErrS correspond to the mean and variance of error eS respectively. The column
corresponding to mTime (vTime) indicates the mean (variance) of the solution time per instance in
seconds (milliseconds) over the 100 instances. In addition to that, the column corresponding to mRed
(vRed) indicates the mean (variance) of the percentage of columns eliminated over the 100 instances.
Finally, the column corresponding to nMiss indicates the number of times the extreme vectors were
eliminated based on the 50 percentile criterion. Since the mixtures are clean (i.e., no noise is added to
the mixture data), the recovery is perfect. This can be seen from the very low average error (mErrA
and mErrS) over the 100 iterations. Furthermore, the method is consistent in the recovery of the
matrices, and it can be justified from the low variance in the error (vErrA and vErrS). The suitability
and applicability of the proposed approach to big data can be seen from the solution time. For instance,
Figures 3 and 4 illustrate the average time in seconds required to solve one instance of the proposed
approach for N data points and n data sources. The behavior of the solution time with respect
to log10(N) is exponential. In other words, the solution time increases linearly with respect to N.
Furthermore, from Figure 4, it can be observed that the solution time is linear with respect to n. Thus,
the algorithm is suitable for big data scenarios. Moreover, the 50 percentile criterion removes exactly
50% of the data points in all the cases, with zero variance. This is due to the fact that the source matrices
are uniformly randomly generated. Due to the uniform generation of the source matrices, none of the
extreme vectors were eliminated.

Figure 3. Time VS log10(N) comparison on the simulated data.
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Table 1. Performance of the proposed approach on the simulated data.

n × N mErrA vErrA mErrS vErrS mTime vTime mRed vRed nMiss

5 × 1000 1.04 × 10−17 9.78 × 10−36 1.17 × 10−20 4.76 × 10−42 0.0647 0.07095 50 0 0
5 × 5000 1.08 × 10−17 1.16 × 10−35 2.03 × 10−21 5.24 × 10−43 0.0756 0.04114 50 0 0
5 × 10,000 1.07 × 10−17 1.26 × 10−35 9.50 × 10−22 1.88 × 10−43 0.08 0.16436 50 0 0
5 × 50,000 1.10 × 10−17 1.13 × 10−35 5.10 × 10−22 5.39 × 10−44 0.1427 0.09452 50 0 0
5 × 100,000 1.02 × 10−17 8.22 × 10−36 4.85 × 10−22 3.21 × 10−44 0.2254 0.12459 50 0 0
5 × 500,000 1.01 × 10−17 9.28 × 10−36 1.81 × 10−22 6.50 × 10−45 1.0166 2.2 50 0 0
5 × 1,000,000 1.03 × 10−17 1.11 × 10−35 1.19 × 10−24 8.55 × 10−50 2.0526 1.9 50 0 0

7 × 1000 7.28 × 10−18 3.47 × 10−36 1.30 × 10−20 3.41 × 10−42 0.0641 0.05835 50 0 0
7 × 5000 6.85 × 10−18 2.72 × 10−36 1.71 × 10−21 1.08 × 10−43 0.0816 0.06362 50 0 0
7 × 10,000 6.86 × 10−18 2.28 × 10−36 1.01 × 10−21 7.70 × 10−44 0.0891 0.11015 50 0 0
7 × 50,000 7.08 × 10−18 1.89 × 10−36 7.05 × 10−22 4.27 × 10−44 0.1689 0.14786 50 0 0
7 × 100,000 6.78 × 10−18 2.46 × 10−36 1.14 × 10−22 5.67 × 10−45 0.2675 0.14104 50 0 0
7 × 500,000 7.26 × 10−18 2.61 × 10−36 6.11 × 10−23 1.80 × 10−45 1.2584 1.3 50 0 0
7 × 1,000,000 6.85 × 10−18 2.62 × 10−36 9.93 × 10−23 1.77 × 10−45 2.5154 3.3 50 0 0

9 × 1000 5.50 × 10−18 1.05 × 10−36 1.59 × 10−20 2.94 × 10−42 0.067 0.10896 50 0 0
9 × 5000 5.82 × 10−18 1.42 × 10−36 2.44 × 10−21 1.96 × 10−43 0.0812 0.05954 50 0 0
9 × 10,000 5.62 × 10−18 1.30 × 10−36 8.13 × 10−22 4.63 × 10−44 0.0835 0.08635 50 0 0
9 × 50,000 5.52 × 10−18 1.38 × 10−36 2.62 × 10−22 5.69 × 10−45 0.1821 0.12421 50 0 0
9 × 100,000 5.57 × 10−18 1.31 × 10−36 3.79 × 10−22 1.68 × 10−44 0.3066 0.1855 50 0 0
9 × 500,000 5.40 × 10−18 1.36 × 10−36 9.78 × 10−23 1.84 × 10−45 1.5029 1 50 0 0
9 × 1,000,000 5.32 × 10−18 1.21 × 10−36 1.49 × 10−22 2.10 × 10−45 3.0258 3.1 50 0 0

11 × 1000 4.05 × 10−18 4.77 × 10−37 1.75 × 10−20 3.13 × 10−42 0.0672 0.02826 50 0 0
11 × 5000 4.16 × 10−18 5.04 × 10−37 2.03 × 10−21 9.47 × 10−44 0.096 0.10778 50 0 0
11 × 10,000 4.21 × 10−18 4.87 × 10−37 1.31 × 10−21 7.33 × 10−44 0.0916 0.00928 50 0 0
11 × 50,000 4.09 × 10−18 5.02 × 10−37 6.61 × 10−22 2.97 × 10−44 0.2137 0.05729 50 0 0
11 × 100,000 4.12 × 10−18 3.79 × 10−37 1.90 × 10−22 6.92 × 10−45 0.355 0.25758 50 0 0
11 × 500,000 4.14 × 10−18 3.96 × 10−37 1.18 × 10−22 1.66 × 10−45 1.8358 0.69888 50 0 0
11 × 1,000,000 4.21 × 10−18 4.37 × 10−37 8.91 × 10−23 8.11 × 10−46 3.667 5.4 50 0 0

10 × 1,000,000 4.71 × 10−18 7.54 × 10−37 8.46 × 10−23 8.89 × 10−46 3.4245 2.5 50 0 0
20 × 1,000,000 1.83 × 10−18 5.10 × 10−38 1.12 × 10−22 6.32 × 10−46 6.6053 9.3 50 0 0
40 × 1,000,000 7.84 × 10−19 5.33 × 10−39 4.22 × 10−23 9.61 × 10−47 14.8988 64.8 50 0 0
60 × 1,000,000 7.32 × 10−19 4.62 × 10−38 1.05 × 10−22 2.18 × 10−46 20.2509 628.9 50 0 0
80 × 1,000,000 6.51 × 10−19 6.39 × 10−39 7.51 × 10−23 1.40 × 10−46 27.0654 101.7 50 0 0
100 × 1,000,000 5.13 × 10−19 2.83 × 10−39 4.65 × 10−23 5.57 × 10−47 33.7978 136.6 50 0 0

Figure 4. Time vs. n comparison on the simulated data.
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5.2. Image Mixture Separation

Setup: In the following experiments, image data available from the literature and online
repositories are considered (see Table 2). Each source image of an image set is reshaped into one row
vector. Then, the reshaped images are row-wise stacked together to generate the S matrix. The source
matrices are pre-processed in order to satisfy the locally dominant assumption. Next, for each source
matrix S, 100 random A matrices are generated, and correspondingly 100 random X matrices are
analyzed using the proposed approach. Table 2 summarizes the details of the image sets that are
considered in this subsection. The first column conveys the name of the image set that is being
considered. The column corresponding to n indicates the total number of sources, and the column
corresponding to N indicates the total data points (or column vectors) in X. The value of ψ is set to ν

in this experiment.

Table 2. Image Mixture Separation Data.

Image Set n N

Chest X-rays 2 26,896
Scenery 3 65,536

CT Scans 5 16,384
Zip Codes 7 12,672

Finger Print 9 90,000

Results: Table 3 displays the results after executing the proposed approach on the 100 mixture
instances of each image set. The columns have the notation similar to the earlier experiment, except
that the vTime column units are in seconds. Moreover, Figures 5–9 depict the results. Low mean errors
(eA and eS) over the 100 runs are obtained for all the image sets. This shows that the method precisely
recovers A and S matrices. A low value in the corresponding variance column indicates the high level
of consistency of the proposed approach. The solution time, specifically for the finger print data set,
indicates the applicability of the proposed approach for big data with complex image mixing scenarios.
Based on the results, it can be seen that the 50 percentile criterion eliminates a good amount (more than
50%) of the redundant columns. However, in some instances (at most 7 percentage in one instance),
the criterion eliminated some of the extreme vectors.

(a) (b) (c)

Figure 5. Mixing and unmixing of chest X-rays. (a) Original; (b) Mixture; (c) Recovered.
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Table 3. Image mixture separation results.

Image Set mErrA vErrA mErrS vErrS mTime vTime mRed vRed nMiss

Chest X-rays 2.45 × 10−17 2.81 × 10−34 1.33 × 10−22 2.02 × 10−44 0.0755 4.89 × 10−5 81.632 0.0101 0
Scenery 2.06 × 10−17 5.30 × 10−35 4.10 × 10−22 4.12 × 10−44 0.109 9.81 × 10−5 73.2417 0.0033 7
CT Scan 1.19 × 10−17 9.09 × 10−36 4.80 × 10−22 1.20 × 10−44 0.0679 1.34 × 10−4 89.7026 0.0012 4

Zip Codes 7.36 × 10−18 2.61 × 10−36 4.96 × 10−22 8.17 × 10−45 0.0787 3.74 × 10−5 74.0513 0.0047 6
Finger Print 5.72 × 10−18 1.19 × 10−36 1.67 × 10−22 2.23 × 10−45 0.2716 1.57 × 10−4 55.952 6.49 × 10−6 0

(a) (b) (c)

Figure 6. Mixing and unmixing of scenery. (a) Original; (b) Mixture; (c) Recovered.

(a) (b) (c)

Figure 7. Mixing and unmixing of a CT scan. (a) Original; (b) Mixture; (c) Recovered.
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(a) (b) (c)

Figure 8. Mixing and unmixing of zip codes. (a) Original; (b) Mixture; (c) Recovered.

(a) (b) (c)

Figure 9. Mixing and unmixing of a finger print. (a) Original; (b) Mixture; (c) Recovered.
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5.3. Comparative Experiment-I

Setup: Given n and N, a random source matrix S that does not satisfy the locally dominant
assumption is generated in this experiment. For the generated S matrix, 100 random mixing matrices
A are generated. Then, using the X = AS equation, 100 random mixture matrices are generated.
This study is executed for n = 5, 7, 9, 11, 13 and 15, and for N = 10,000. The value of ψ is set to zero
in this experiment. Well known methods from the SCA literature are compared with the proposed
approach. The methods that are used for the comparison are N-FINDR ([44]), VCA ([45]), MVSA ([56]).
The objective of this experiment is to highlight that the above three (like the other typical algorithms in
the literature) do not have the capability to test the locally dominant assumption from the knowledge
of X. To the best of my knowledge, only an exhaustive search similar to the one presented in [24] can
do such a test. However, the proposed approach does not require such an exhaustive search.

Results: Table 4 displays the results after executing the proposed and selected approaches on the
100 randomly generated mixture instances. The column corresponding to mErrA (vErrA) indicates
the mean (variance) of error eA over the 100 instances for the three methods used from the literature.
The lines in the column corresponding to ErrA indicate that the proposed approach was unable to
identify any mixing matrix. The reason for the lines is the non-existence of the locally dominant
assumption in the source data. This information is captured in the column corresponding to TnMiss.
The numbers in the TnMiss column indicate the total number of times the proposed approach exited
with the “no locally dominant sources” token. Based on the results, it can be seen that the other
algorithms try to find the best match for the columns of A. However, they are unable to validate the
locally dominant assumption. This is due to the fact that no such test is available in the literature.
However, in all the scenarios, the proposed approach was able to conclude that the input data is not
a mixture of sources that contain the locally dominant signals.

Table 4. Comparative experiment-I separation results.

n N VCA MVSA N-FINDR Proposed

mErrA vErrA mErrA vErrA mErrA vErrA ErrA TnMiss

5 10,000 0.0755 7.08 × 10−5 0.0813 6.65 × 10−5 0.0905 4.14 × 10−5 — 100
7 10,000 0.056 9.63 × 10−6 0.0567 2.6 × 10−5 0.0604 7.23 × 10−6 — 100
9 10,000 0.0422 2.96 × 10−6 0.0402 1.13 × 10−5 0.0441 1.34 × 10−6 — 100

11 10,000 0.0333 8.56 × 10−7 0.0314 4.16 × 10−6 0.0342 7.16 × 10−7 — 100
13 10,000 0.0269 3.28 × 10−7 0.0252 1.56 × 10−6 0.0274 3.6 × 10−7 — 100
15 10,000 0.0223 1.52 × 10−7 0.0212 7.53 × 10−7 0.0226 1.8 × 10−7 — 100

5.4. Comparative Experiment-II

Setup: In this experiment, a random source matrix S that satisfies the locally dominant
assumption, is generated. For the generated S matrix, 100 random mixing matrices A are generated.
Then, using the X = AS equation, 100 random mixture matrices are generated. In each mixture matrix,
5% of the columns are randomly selected, and a uniform noise between 0 and 0.01 is added to all the
elements of the selected columns. This study is executed for n = 5, 7, 9, 11, 13 and 15, and for N = 10,000.
Well known methods from the SCA literature are compared with the proposed approach. The methods
that are used for the comparison are N-FINDR ([44]), VCA ([45]), MVSA ([56]). The objective of this
experiment is to comparatively assess the performance of the proposed and selected methods in noisy
data. In this experiment, the value of ψ is defined as follows: ψ = ρ|Θ−1e|, where e ∈ Rn is a vector
of all ones, and ρ takes the following values: 0, 0.2, 0.4, . . . , 1.

Results: Table 5 displays the results after executing the proposed and selected approaches on the
100 randomly generated noisy mixture instances. The columns corresponding to VCA, MVSA and
N-FINDR present the average error eA over the 100 instances. The proposed approach is executed
100 times for each value of ρ, and the average error eA for each value of ρ is archived. The column
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corresponding to the proposed approach presents the best of the average errors eA over the values
of ρ. Table 6 (Figure 10) indicates the total number of times the method fails (succeeds) to identify
the mixing matrix, for various values of ρ. Based on the low value of error in the proposed column,
and the trends depicted in Figure 10, it can be seen that the proposed approach recovers A and S in
the majority of the noisy instances for higher values of ρ. Moreover, as n increases, the complexity
of mixing increases, and thus the proposed approach requires a higher value of ρ for the recovery of
A and S.

Table 5. Comparative experiment-II separation results.

n N VCA MVSA N-FINDR Proposed

5 10,000 0.0798 0.0872 0.0954 6.43 × 10−10

7 10,000 0.0573 0.045 0.0658 4.73 × 10−10

9 10,000 0.0407 0.0309 0.0467 3.77 × 10−10

11 10,000 0.0321 0.0265 0.0357 0.0012
13 10,000 0.0255 0.0231 0.0284 0.0007
15 10,000 0.0212 0.0197 0.0235 0.0021

Table 6. Effect of parameter ρ on the total number of failures.

n N ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1

5 10,000 0 0 0 0 0 0
7 10,000 92 24 13 7 5 4
9 10,000 99 32 16 12 7 6
11 10,000 100 47 27 19 15 10
13 10,000 100 53 26 17 15 13
15 10,000 100 69 45 29 22 18

Figure 10. Total success vs. ρ (the tolerance parameter).

6. Discussion and Conclusions

The SCA approaches are relatively new to the BSS problem when compared to the ICA approaches.
The main critique that often appears with respect to locally dominant SCA approaches is the validity
of the locally dominant criterion. In this paper, a mathematical modeling-based approach is proposed
that can validate the existence of the locally dominant criterion from the given mixture matrix. That is,
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the formulation can be used not only to identify the mixing matrix, but also to validate the assumption
presented in Equation (2). Although the approach is proposed for the determined case, it can also be
applied to the overdetermined cases. The columns of the matrix X are proportional to the number
of constraints in the proposed LP. Thus, big data often leads to LP with many redundant constraints.
We propose the usage of interior point methods, when the total number of constraints is very high [57].
Moreover, LP decomposition-based approaches for SCA can also be developed to improve the solution
time [58]. In addition to that, the LP presolve theory [59] can be designed to eliminate the redundant
constraints in the proposed SCA approach. Roughly speaking, the point correntropic ranking method
may be seen as a novel probabilistic approach for removing LP redundant constraints. The proposed
method of estimating the point correntropy is computationally cheap, and can be applied to the big
data scenarios. From the simulated data study, it can be seen that if the input data is uniformly
distributed, then the 50 percentile criterion can be raised to a higher value. However, from the image
data set, it is clear that the real world data is rarely uniformly distributed. Thus, the 50 percentile
criterion is a good estimate to avoid the LP resolving. From the comparative experiments, it can
be concluded that the proposed approach validates the locally dominant assumption in non-noisy
and noisy mixing scenarios. To summarize, the proposed approach provides new insights into the
BSS problem.
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