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Abstract: Power output (P), thermal efficiency (η) and ecological function (E) characteristics of
an endoreversible Dual-Miller cycle (DMC) with finite speed of the piston and finite rate of heat
transfer are investigated by applying finite time thermodynamic (FTT) theory. The parameter
expressions of the non-dimensional power output (P), η and non-dimensional ecological function (E)
are derived. The relationships between P and cut-off ratio (ρ), between P and η, as well as between
E and ρ are demonstrated. The influences of ρ and piston speeds in different processes on P, η and
E are investigated. The results show that P and E first increase and then start to decrease with
increasing ρ. The optimal cut-off ratio ρopt will increase if piston speeds increase in heat addition
processes and heat rejection processes. As piston speeds in different processes increase, the maximum
values of P and E increase. The results include the performance characteristics of various simplified
cycles of DMC, such as Otto cycle, Diesel cycle, Dual cycle, Otto-Atkinson cycle, Diesel-Atkinson
cycle, Dual-Atkinson cycle, Otto-Miller cycle and Diesel-Miller cycle. Comparing performance
characteristics of the DMC with different optimization objectives, when choosing E as optimization
objective, η improves 26.4% compared to choosing P as optimization objective, while P improves
74.3% compared to choosing η as optimization objective. Thus, optimizing E is the best compromise
between optimizing P and optimizing η. The results obtained can provide theoretical guidance to
design practical DMC engines.

Keywords: finite time thermodynamics; finite speed thermodynamics; Dual-Miller cycle; finite speed
of piston; power output; thermal efficiency; ecological function

1. Introduction

Finite time thermodynamics (FTT) theory [1–11] plays an increasingly important role in analyzing
and optimizing performance characteristics of the thermodynamic processes [12–14] and cycles [15–19].
With the development of FTT, its research objects extended from conventional heat engine [20–22],
refrigerator and heat pump [23] to unconventional systems, such as chemically driven engine [24],
quantum engine [25–31] and energy selective electron engine [32–34]. Until now, scholars have
performed many FTT studies for internal combustion engine (ICE) cycles [35]. Analyses of the different
optimization objective functions are also important work for studying performance characteristics of
the ICE cycles. Some new optimization objective functions on the basis of the power output (P)
and thermal efficiency (η), such as the specific power [36,37], power density [38,39], exergetic
performance [40–43] and finite time exergoeconomic performance [44,45] had been proposed. Besides,
Angulo-Brown [46] first introduced the ecological function E′ = P− TLσ for the heat engine cycle
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(HEC), where TL is the temperature of the cold reservoir and σ is the entropy generation rate of the
HEC, TLσ means the power dissipation of the HEC, the definition ignored the difference between
exergy and energy, Yan [47] made a modification later, E = P− T0σ, where T0 is the environment
temperature, T0σ means the exergy loss of the HEC. Chen et al. [48] finally presented a unified
exergy-based ecological function. Ecological function optimizations have been performed since
then [49–51]. Angulo-Brown et al. [52] firstly applied E to analyze and optimize the performance
for an irreversible Otto cycle (OC) with friction loss. Ust et al. [53] took E as a criterion to optimize
the performance of an endoreversible regenerative Brayton cycle. Based on Ref. [52], Ust et al. [54]
introduced the ecological coefficient of performance (ECOP) into HEC, and performed an analysis
for an irreversible Carnot cycle. Barranco-Jiménez and Angulo-Brown [55] analyzed the performance
of an endoreversible Curzon and Ahlborn engine based on maximum power out and maximum
ecological criteria. After these, Moscato and Oliveira [56] optimized E and ECOP characteristics for
an irreversible OC. Gonca and Sahin [57] performed an optimization for an air-standard irreversible
Dual-Atkinson cycle (DAC) by taking account of finite rate of heat transfer (HT), heat leakage (HL)
and internal irreversibilities based on E and ECOP criteria. Long and Liu [58] analyzed and optimized
η and its boundary based on E criterion for a general cycle with considering non-isothermal HT
process and internal dissipation. Chen et al. [59] studied the performance of an universal cycle based
on P, η, σ and E criteria. Ge [60] analyzed and compared the influences of variable specific heat of
working fluid on P, η and E for ICE cycles. In addition to above heat engine cycles, the ecological
performance of conventional refrigerator [61–63] and unconventional engines, such as quantum [64],
thermoacoustic [65], chemical [66], macro/nano thermosize [67], light-driven [68], energy selective
electron [69], electro-chemical [70] and n-Müser [71] engines, have been investigated.

All studies of HECs mentioned above were based on the assumption that the times of adiabatic
processes are small or negligible, and the temperatures of heat absorption and heat releasing processes
vary with constant rates [72,73]. Agrawal and Menon [74] and Agrawal [75] investigated the effects
of finite speed of the piston on work and P for reversible [74] and endoreversible [75] Carnot
cycle. Petrescu et al. [76–79] performed analysis and optimization for irreversible OC [76], Diesel
cycle (DC) [77] and Carnot cycle [78,79] based on P and η characteristics by applying finite speed
thermodynamics (FST) and the direct method [80–82]. Yang et al. [83] optimized speed ratio of the
piston and obtained the optimal heating load for an endoreversible finite speed Carnot heat pump
cycle. Feng et al. [84,85] and Chen et al. [86] performed an analysis for optimal piston speed ratio and
derived the analytical relationship between P and η for an endoreversible Carnot cycle with finite rate
of HT [84], irreversible Carnot cycle with HL and irreversibility [85], as well as irreversible Carnot
refrigerator and Carnot heat pump [86] by using FST and the direct method. Hosseinzade et al. [87]
and Ahmadi et al. [88] investigated analysis and optimization for an irreversible Stirling cycle by
applying FST and the direct method.

Some scholars have also performed thermodynamic optimization for Dual-Miller cycle (DMC)
engines. Gonca et al. [89] carried out a study on P and η for an air-standard irreversible DMC
with internal irreversibilities. Ust et al. [90] took internal and external irreversibilities into account
to optimize the exergy output and exergetic performance coefficient of an irreversible DMC.
Gonca et al. [91] examined and analyzed the effects of HT on P and η for an irreversible DMC with
HT loss and internal irreversibilities. Gonca [92] considered internal irreversibilities to perform
an optimization study on Diesel-Miller cycle (DiMC), Otto-Miller cycle (OMC) and DMC using the
maximum power output and power density criteria, as well as the maximum thermal efficiency.
Gonca and Sahin [93] considered finite rate of HT, HL and internal irreversibilities to analyze
and optimize ECOP of irreversible ICE cycles, such as Dual-Diesel cycle (DDC), OMC and DMC.
Wu et al. [94–96] established air-standard irreversible DMC models with constant specific heat [94],
linear variable specific heat ratio [95] and nonlinear variable specific heat ratio [95] of working fluid,
respectively, analyzed and optimized P, η and E of the cycles. You et al. [97] replaced the two reversible
adiabatic processes of the DMC with two polytropic processes, studied P, η and E of the cycle.
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DMC can be simplified to other gas cycles; the performance characteristics of other gas cycles
are special cases of those of DMC. Based on the work mentioned above, this paper establishes
an endoreversible DMC model with finite speed of the piston and finite rate of HT. The power
output, thermal efficiency and ecological function are investigated based on assuming piston speeds
are unequal constants in different processes by combining with FTT and FST [75,85]. The parameter
expressions of non-dimensional power output, thermal efficiency and non-dimensional ecological
function are derived. The effects of design parameter and piston speeds on the performance of the
cycle are analyzed, and the impact degrees of the time in each process on the performance of the cycle
are compared.

2. Cycle Model and Performance Analyses

Figure 1 shows P-v and T-s diagrams of an endoreversible DMC (1-2-3-4-5-6), which includes
constant temperature heat source and constant temperature heat sink. Processes 1→ 2 and 4→ 5
are adiabatic compression and adiabatic expansion processes; 2→ 3 and 5→ 6 are constant volume
processes; and 3→ 4 and 6→ 1 are constant pressure processes.
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Figure 1. P-v and T-s diagrams for an endoreversible Dual-Miller cycle.

Assuming the model is an air-standard cycle and the working fluid is an ideal gas. The working
fluid absorbs heat in 2→ 3 and 3→ 4 processes, and releases heat in 5→ 6 and 6→ 1 processes.
In the processes of 2→ 3 and 3→ 4 , the quantities of heat provided by heat source TH are QH1 and
QH2, respectively. In the processes of 5→ 6 and 6→ 1 , the quantities of heat released to heat sink TL
are QL1 and QL2, respectively. According to Refs. [68,90,91], one can assume that the law of HT obeys
q ∝ (∆T), there are

QH1 = UH1FH1
(TH − T2)− (TH − T3)

ln[(TH − T2)/(TH − T3)]
t2−3 = mCv(T3 − T2) = mCvεH1(TH − T2) (1)

QH2 = UH2FH2
(TH − T3)− (TH − T4)

ln[(TH − T3)/(TH − T4)]
t3−4 = mCp(T4 − T3) = mCpεH2(TH − T3) (2)

QL1 = UL1FL1
(T6 − TL)− (T1 − TL)

ln[(T6 − TL)/(T1 − TL)]
t6−1 = mCp(T6 − T1) = mCpεL1(T6 − TL) (3)

QL2 = UL2FL2
(T5 − TL)− (T6 − TL)

ln[(T5 − TL)/(T6 − TL)]
t5−6 = mCv(T5 − T6) = mCvεL2(T5 − TL) (4)
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where UH1, UH2 and UL1, UL2 are HT coefficients, W/
(
m2 ·K

)
; FH1, FH2 and FL1, FL2 are HT areas

of the heat exchangers between the working fluid and the heat reservoir, m2; t2−3, t3−4, t5−6 and
t6−1 are the times in processes 2→ 3 , 3→ 4 , 5→ 6 and 6→ 1 , s; m is mass of working fluid, kg;
Cv and Cp are specific heats at constant volume and constant pressure, J/(kg ·K), they can be taken as
constants because the working fluid is the ideal gas; and εH1, εH2 and εL1, εL2 are the effectiveness of
heat exchangers in hot side and cold side, and they are given as:

εH1 = 1− exp(−NH1), εH2 = 1− exp(−NH2)

εL1 = 1− exp(−NL1), εL2 = 1− exp(−NL2)
(5)

where NH1, NH2 and NL1, NL2 are numbers of heat exchangers HT unites in hot side and cold side,
which are expressed as:

NH1 = UH1FH1/(
.

m2−3Cv), NH2 = UH2FH2/(
.

m3−4Cp)

NL1 = UL1FL1/(
.

m6−1Cp), NL2 = UL2FL2/(
.

m5−6Cv)
(6)

where
.

m2−3,
.

m3−4,
.

m6−1 and
.

m5−6 are mass flow rates of working fluid in processes 2→ 3 , 3→ 4 ,
6→ 1 and 5→ 6 , kg/s.

The total heat addition quantity QH is

QH = QH1 + QH2 (7)

The total heat rejection quantity QL is

QL = QL1 + QL2 (8)

From Equations (1)–(4), one has

T1 = εL1TL + (1− εL1)εL2TL + (1− εL1)(1− εL2)T5 (9)

T3 = εH1TH + (1− εH1)T2 (10)

T4 = εH2TH + (1− εH2)εH1TH + (1− εH1)(1− εH2)T2 (11)

T6 = εL2TL + (1− εL2)T5 (12)

The definitions of cut-off ratio and Miller cycle ratio are

ρ = V4/V3 = T4/T3 (13)

rM = V6/V1 = T6/T1 (14)

The following equation is obtained based on the second law of thermodynamics [89]

Tk
1 Tk

4 = T2T5Tk−1
3 Tk−1

6 (15)

Combining Equations (10), (13) and (15), the function of T2 as related with T5 is derived.
Combining Equations (12), (14) and (15), the function of T5 as related with T2 is derived.

T2 =
εH1TH

ρ−kT1
−kT5T6k−1 − (1− εH1)

= f1(T5) (16)

T5 =
εL2TL

rMkT2T3k−1T4
−k − (1− εL2)

= f2(T2) (17)
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The work output W can be calculated as follows:

W = QH −QL
= mCv[εH1(TH − T2) + kεH2(TH − T3)− kεL1(T6 − TL)− εL2(T5 − TL)]

= mCv{[kεH2(1− εH1) + εH1](TH − T2)− [kεL1(1− εL2) + εL2](T5 − TL)}
(18)

Combining Equations (7) and (18), the thermal efficiency η is

η = W
QH

= 1− kεL1(T6−TL)+εL2(T5−TL)
εH1(TH−T2)+kεH2(TH−T3)

= 1− [kεL1(1−εL2)+εL2](T5/TH−TL/TH)
[kεH2(1−εH1)+εH1](1−T2/TH)

(19)

Considering the piston speed in each process is generally different, it can be assumed that the
piston speeds in processes of 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 are constants u1−2, u2−3, u3−4, u4−5, u5−6, u6−1,
respectively, and u1−2 = u4−5, x = u1−2/u3−4, y = u1−2/u6−1. Consequently, the times (t1−2, t2−3,
t3−4, t4−5, t5−6, t6−1) in six processes can be expressed as follows:

t1−2 = V1−V2
Apsu1−2

= V2
Apsu1−2

(V1
V2
− 1) = L2

u1−2
[( T2

T1
)

1
k−1 − 1] (20)

t3−4 = V4−V3
Apsu3−4

= V3
Apsu3−4

(V4
V3
− 1) = V2

Apsu1−2

u1−2
u3−4

(V4
V3
− 1) = L2

u1−2
x( T4

T3
− 1) (21)

t4−5 = V5−V4
Apsu4−5

= V4
Apsu1−2

(V5
V4
− 1) = V2

Apsu1−2

V4
V3
(V5

V4
− 1) = L2

u1−2

T4
T3
[( T4

T5
)

1
k−1 − 1] (22)

t6−1 = V6−V1
Apsu6−1

= V1
Apsu6−1

(V6
V1
− 1) = V2

Apsu1−2

u1−2
u6−1

V1
V2
(V6

V1
− 1) = L2

u1−2
y( T2

T1
)

1
k−1 ( T6

T1
− 1) (23)

t2−3 = a · t3−4 (24)

t5−6 = b · t6−1 (25)

where Aps is cross section area of piston, m2; L2 = V2/Aps, m; a and b are constants.
Combining Equations (9)–(12), the cycle period τ is

τ = t1−2 + t2−3 + t3−4 + t4−5 + t5−6 + t6−1

= L2
u1−2

{
{(1− εL1)(1− εL2)(T5/T2) + [(1− εL1)εL2 + εL1](TL/T2)}k−1 · {(1 + b)y[(1− εL1)

+ εL1
εL2+(1−εL2)·(TL/T5)

−1

]−1
− (1 + b)y + 1

}
+
[
(1− εH2) +

εH2
εH1+(1−εH1)(T2/TH)

]
×
{{

(1− εH1)(1− εH2) · (T5/T2)
−1 + [(1− εH2)εH1 + εH2] · (T5/TH)

−1
} 1

k−1
+ (1 + a)x− 1

}
−[(1 + a)x + 1]}

(26)

The power output P is
P = W/τ (27)

The non-dimensional power output P can be obtained as:

P = P
mCvTH

L2
u1−2

= [kεH2(1−εH1)+εH1](1−T2/TH)−[kεL1(1−εL2)+εL2](T5/TH−TL/TH)

{(1−εL1)(1−εL2)(T5/T2)+[(1−εL1)εL2+εL1](TL/T2)}k−1·{(1+b)y[(1−εL1)

+ εL1
εL2+(1−εL2)·(TL/T5)

−1

]−1
− (1 + b)y + 1

}
+
[
(1− εH2) +

εH2
εH1+(1−εH1)(T2/TH)

]
×
{{

(1− εH1)(1− εH2) · (T5/T2)
−1 + [(1− εH2)εH1 + εH2] · (T5/TH)

−1
} 1

k−1
+ (1 + a)x− 1

}
−[(1 + a)x + 1]

(28)



Entropy 2018, 20, 165 6 of 19

The entropy generation ∆S can be written as follows:

∆S = QL
TL
− QH

TH
= mCv [kεL1(T6−TL)+εL2(T5−TL)]

TL
− mCv [εH1(TH−T2)+kεH2(TH−T3)]

TH

= mCv{[kεL1(1− εL2) + εL2](T5/TL − 1)− [kεH2(1− εH1) + εH1](1− T2/TH)}
(29)

Thus, the entropy generation rate σ is

σ = ∆S/τ (30)

The ecological function [46,47] is given as:

E = P− Toσ (31)

The non-dimensional ecological function E can be obtained as:

E =P− Toσ

mCvTH

L2

u1−2

=

[kεH2(1− εH1) + εH1](1− T2/TH)(1 + T0/TH)− [kεL1(1− εL2) + εL2][(T5/TH − TL/TH)

+(T5/TL − 1)(T0/TH)]

{(1− εL1)(1− εL2)(T5/T2) + [(1− εL1)εL2 + εL1](TL/T2)}k−1 · {(1 + b)y[(1− εL1)

+ εL1
εL2+(1−εL2)·(TL/T5)

−1

]−1
− (1 + b)y + 1

}
+
[
(1− εH2) +

εH2
εH1+(1−εH1)(T2/TH)

]
×
{{

(1− εH1)(1− εH2) · (T5/T2)
−1 + [(1− εH2)εH1 + εH2] · (T5/TH)

−1
} 1

k−1
+ (1 + a)x− 1

}
−[(1 + a)x + 1]

(32)

3. Analyses of Special Cases

Equations (19), (28) and (32) are expressions of η, P and E of an endoreversible DMC. When
the temperatures at different state points reach certain relationships, they can be transformed into
expressions of η, P and E of different simplified cycles with finite speed of the piston.

(1) When T2 = T3, i.e., εH1 = 0, Equations (19), (28) and (32) are transformed into expressions of η,
P and E of an endoreversible DiMC with finite speed of the piston and finite rate of HT:

ηDiMC = 1− [kεL1(1− εL2) + εL2](T5/TH − TL/TH)

kεH2(1− T2/TH)
(33)

PDiMC = kεH2(1−T2/TH)−[kεL1(1−εL2)+εL2](T5/TH−TL/TH)

{(1− εL1)(1− εL2)(T5/T2) + [(1− εL1)εL2 + εL1](TL/T2)}k−1 · {(1 + b)y[(1− εL1)

+ εL1
εL2+(1−εL2)·(TL/T5)

−1

]−1
− (1 + b)y + 1

}
+
[
(1− εH2) +

εH2
(T2/TH)

]
×
{[

(1− εH2) · (T5/T2)
−1 + εH2 · (T5/TH)

−1
] 1

k−1
+ (1 + a)x− 1

}
− [(1 + a)x + 1]

(34)

EDiMC =

kεH2(1− T2/TH)(1 + T0/TH)− [kεL1(1− εL2) + εL2][(T5/TH − TL/TH)

+(T5/TL − 1)(T0/TH)]

{(1− εL1)(1− εL2)(T5/T2) + [(1− εL1)εL2 + εL1](TL/T2)}k−1 · {(1 + b)y[(1− εL1)

+ εL1
εL2+(1−εL2)·(TL/T5)

−1

]−1
− (1 + b)y + 1

}
+
[
(1− εH2) +

εH2
(T2/TH)

]
×
{[

(1− εH2) · (T5/T2)
−1 + εH2 · (T5/TH)

−1
] 1

k−1
+ (1 + a)x− 1

}
− [(1 + a)x + 1]

(35)
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(2) When T3 = T4, i.e., εH2 = 0, Equations (19), (28) and (32) are transformed into expressions of η,
P and E of an endoreversible OMC with finite speed of the piston and finite rate of HT:

ηOMC = 1− [kεL1(1− εL2) + εL2](T5/TH − TL/TH)

εH1(1− T2/TH)
(36)

POMC = εH1(1−T2/TH)−[kεL1(1−εL2)+εL2](T5/TH−TL/TH)

{(1− εL1)(1− εL2)(T5/T2) + [(1− εL1)εL2 + εL1](TL/T2)}k−1 · {(1 + b)y[(1− εL1)

+ εL1
εL2+(1−εL2)·(TL/T5)

−1

]−1
− (1 + b)y + 1

}
+

[
(1− εH1) ·

(
T5
T2

)−1
+ εH1 ·

(
T5
TH

)−1
] 1

k−1

−2

(37)

EOMC =

εH1(1− T2/TH)(1 + T0/TH)− [kεL1(1− εL2) + εL2][(T5/TH − TL/TH)

+(T5/TL − 1)(T0/TH)]

{(1− εL1)(1− εL2)(T5/T2) + [(1− εL1)εL2 + εL1](TL/T2)}k−1 · {(1 + b)y[(1− εL1)

+ εL1
εL2+(1−εL2)·(TL/T5)

−1

]−1
− (1 + b)y + 1

}
+

[
(1− εH1) ·

(
T5
T2

)−1
+ εH1 ·

(
T5
TH

)−1
] 1

k−1

−2

(38)

(3) When T5 = T6, i.e., εL2 = 0, Equations (19), (28) and (32) are transformed into expressions of η,
P and E of an endoreversible DAC with finite speed of the piston and finite rate of HT:

ηDAC = 1− kεL1(T5/TH − TL/TH)

[kεH2(1− εH1) + εH1](1− T2/TH)
(39)

PDAC = [kεH2(1−εH1)+εH1](1−T2/TH)−kεL1(T5/TH−TL/TH)

[(1− εL1)(T5/T2) + εL1(TL/T2)]
k−1 ·

{
(1 + b)y[(1− εL1) + εL1(TL/T5)]

−1 − (1 + b)y + 1
}

+
[
(1− εH2) +

εH2
εH1+(1−εH1)(T2/TH)

]
×
{{

(1− εH1)(1− εH2) ·
(

T5
T2

)−1
+ [(1− εH2)εH1

+εH2] · (T5/TH)
−1
} 1

k−1
+ (1 + a)x− 1

}
− [(1 + a)x + 1]

(40)

EDAC =

[kεH2(1− εH1) + εH1](1− T2/TH)(1 + T0/TH)− kεL1[(T5/TH − TL/TH)

+(T5/TL − 1)(T0/TH)]

[(1− εL1)(T5/T2) + εL1(TL/T2)]
k−1 ·

{
(1 + b)y[(1− εL1) + εL1(TL/T5)]

−1 − (1 + b)y + 1
}

+
[
(1− εH2) +

εH2
εH1+(1−εH1)(T2/TH)

]
×
{{

(1− εH1)(1− εH2) ·
(

T5
T2

)−1
+ [(1− εH2)εH1

+εH2] · (T5/TH)
−1
} 1

k−1
+ (1 + a)x− 1

}
− [(1 + a)x + 1]

(41)

(4) When T6 = T1, i.e., εL1 = 0, Equations (19), (28) and (32) are transformed into expressions of η,
P and E of an endoreversible DDC with finite speed of the piston and finite rate of HT:

ηDDC = 1− εL2(T5/TH − TL/TH)

[kεH2(1− εH1) + εH1](1− T2/TH)
(42)

PDDC = [kεH2(1−εH1)+εH1](1−T2/TH)−εL2(T5/TH−TL/TH)

[(1− εL2)(T5/T2) + εL2(TL/T2)]
k−1 + {(1− εH2) + εH2/[εH1 + (1− εH1)(T2/TH)]}

×
{{

(1− εH1)(1− εH2) · (T5/T2)
−1 + [(1− εH2)εH1 + εH2] · (T5/TH)

−1
} 1

k−1
+ (1 + a)x− 1

}
−[(1 + a)x + 1]

(43)

EDDC =

[kεH2(1− εH1) + εH1](1− T2/TH)(1 + T0/TH)− εL2[(T5/TH − TL/TH)

+(T5/TL − 1)(T0/TH)]

[(1− εL2)(T5/T2) + εL2(TL/T2)]
k−1 + {(1− εH2) + εH2/[εH1 + (1− εH1)(T2/TH)]}

×
{{

(1− εH1)(1− εH2) · (T5/T2)
−1 + [(1− εH2)εH1 + εH2] · (T5/TH)

−1
} 1

k−1
+ (1 + a)x− 1

}
−[(1 + a)x + 1]

(44)
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(5) When T2 = T3 and T5 = T6, i.e., εH1 = 0 and εL2 = 0, Equations (19), (28) and (32) are transformed
into expressions of η, P and E of an endoreversible Diesel-Atkinson cycle with finite speed of the
piston and finite rate of HT:

ηDiesel−Atkinson cycle = 1− εL1(T5/TH − TL/TH)

εH2(1− T2/TH)
(45)

PDiesel−Atkinson cycle =
kεH2(1−T2/TH)−kεL1(T5/TH−TL/TH)

[(1− εL1)(T5/T2) + εL1(TL/T2)]
k−1 ·

{
(1 + b)y[(1− εL1) + εL1(TL/T5)]

−1

−(1 + b)y + 1}+
[
(1− εH2) + εH2 · (T2/TH)

−1
]
×
{[

(1− εH2) · (T5/T2)
−1

+εH2 · (T5/TH)
−1
] 1

k−1
+ (1 + a)x− 1

}
− [(1 + a)x + 1]

(46)

EDiesel−Atkinson cycle =

kεH2(1− T2/TH)(1 + T0/TH)− kεL1[(T5/TH − TL/TH)

+(T5/TL − 1)(T0/TH)]

[(1− εL1)(T5/T2) + εL1(TL/T2)]
k−1 ·

{
(1 + b)y[(1− εL1) + εL1(TL/T5)]

−1

−(1 + b)y + 1}+
[
(1− εH2) + εH2 · (T2/TH)

−1
]
×
{[

(1− εH2) · (T5/T2)
−1

+εH2 · (T5/TH)
−1
] 1

k−1
+ (1 + a)x− 1

}
− [(1 + a)x + 1]

(47)

(6) When T2 = T3 and T6 = T1, i.e., εH1 = 0 and εL1 = 0, Equations (19), (28) and (32) are transformed
into expressions of η, P and E of an endoreversible DC with finite speed of the piston and finite
rate of HT:

ηDC = 1− εL2(T5/TH − TL/TH)

kεH2(1− T2/TH)
(48)

PDC = kεH2(1−T2/TH)−εL2(T5/TH−TL/TH)

[(1− εL2)(T5/T2) + εL2(TL/T2)]
k−1 +

[
(1− εH2) + εH2 · (T2/TH)

−1
]

×
{[

(1− εH2) · (T5/T2)
−1 + εH2 · (T5/TH)

−1
] 1

k−1
+ (1 + a)x− 1

}
− [(1 + a)x + 1]

(49)

EDC = kεH2(1−T2/TH)(1+T0/TH)−εL2[(T5/TH−TL/TH) +(T5/TL−1)(T0/TH)]

[(1− εL2)(T5/T2) + εL2(TL/T2)]
k−1 +

[
(1− εH2) + εH2 · (T2/TH)

−1
]

×
{[

(1− εH2) · (T5/T2)
−1 + εH2 · (T5/TH)

−1
] 1

k−1
+ (1 + a)x− 1

}
− [(1 + a)x + 1]

(50)

(7) When T3 = T4 and T5 = T6, i.e., εH2 = 0 and εL2 = 0, Equations (19), (28) and (32) are transformed
into expressions of η, P and E of an endoreversible Otto-Atkinson cycle with finite speed of the
piston and finite rate of HT:

ηOtto−Atkinson cycle = 1− kεL1(T5/TH − TL/TH)

εH1(1− T2/TH)
(51)

POtto−Atkinson cycle =
εH1(1−T2/TH)−kεL1(T5/TH−TL/TH)

[(1− εL1)(T5/T2) + εL1(TL/T2)]
k−1 ·

{
(1 + b)y[(1− εL1) + εL1(TL/T5)]

−1

−(1 + b)y + 1}+
[
(1− εH1) · (T5/T2)

−1 + εH1 · (T5/TH)
−1
] 1

k−1 − 2

(52)

EOtto−Atkinson cycle =

εH1(1− T2/TH)(1 + T0/TH)− kεL1[(T5/TH − TL/TH)

+(T5/TL − 1)(T0/TH)]

[(1− εL1)(T5/T2) + εL1(TL/T2)]
k−1 ·

{
(1 + b)y[(1− εL1) + εL1(TL/T5)]

−1

−(1 + b)y + 1}+
[
(1− εH1) · (T5/T2)

−1 + εH1 · (T5/TH)
−1
] 1

k−1 − 2

(53)
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(8) When T3 = T4 and T6 = T1, i.e., εH2 = 0 and εL1 = 0, Equations (19), (28) and (32) are transformed
into expressions of η, P and E of an endoreversible OC with finite speed of the piston and finite
rate of HT:

ηOC = 1− εL2(T5/TH − TL/TH)

εH1(1− T2/TH)
(54)

POC = εH1(1−T2/TH)−εL2(T5/TH−TL/TH)

[(1−εL2)(T5/T2)+εL2(TL/T2)]
k−1+

[
(1−εH1)·(T5/T2)

−1 +εH1·(T5/TH)−1
] 1

k−1−2
(55)

EOC = εH1(1−T2/TH)(1+T0/TH)−εL2[(T5/TH−TL/TH) +(T5/TL−1)(T0/TH)]

[(1−εL2)(T5/T2)+εL2(TL/T2)]
k−1+

[
(1−εH1)·(T5/T2)

−1 +εH1·(T5/TH)−1
] 1

k−1−2
(56)

4. Numerical Examples

When the value of ρ (or rM) is set, T2 (or T5) can be calculated by combining with Equations (10)
and (11) (or Equations (9) and (12)). Then, T1, T3, T4, T6 and T5 (or T2) can be obtained according to
Equations (9)–(12) and (16) (or Equation (17)). Substituting temperatures into Equations (19), (28) and
(32), η, P and E can be obtained.

According to Refs. [68,90,93], it is set that T0 = TL = 300 K, TH = 800 K, k = 1.4, εH1 = εH2 =

εL1 = εL2 = 0.25, ρ = 1 ∼ 1.2, x = 1, 10, 100, y = 1, 10, 100, a = 1, 3, 6 and b = 1, 3, 6 in the calculations.
Thus, the characteristics relationships between P and ρ, between P and η, as well as between E and ρ

of an endoreversible DMC with finite speed of the piston can be obtained.

4.1. Effects of x and y on P, η and E

Figures 2–4 show the non-dimensional power output (P) versus cut-off ratio (ρ), P versus thermal
efficiency (η), and non-dimensional ecological function (E) versus ρ characteristics when x and y take
different values, respectively. In Figures 2 and 4, one can see that P and E first increase and then start
to decrease with increasing ρ. There are two different ρ when P and E reach to zeroes, respectively.
Moreover, there are different optimal cut-off ratios (ρopt) to make P and E reach their maximum values,
respectively. However, there are some differences between the curves of P versus ρ and E versus ρ.
For example, the ending point of ρ is 1.111 corresponding to P = 0, but the ending point of ρ is 1.071
corresponding to E = 0. The reason is P should be larger than zero if E = 0 according to the definition
of E = P− T0σ, which shrinks the range of ρ.Entropy 2018, 20, x  11 of 20 
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In Figures 2 and 4, it is obvious that the larger x and y are, the smaller the maximum values
of P and E are. That is, the faster piston speeds in processes 3→ 4 and 6→ 1 are, the larger the
maximum values of P and E are. Further, as x and y increase, the optimal ρoptP

corresponding to the
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maximum P and optimal ρoptE
corresponding to the maximum E will decrease, but the variation range

of the optimal ρoptP
with x is larger than that of the optimal ρoptP

with y, the variation range of the
optimal ρoptE

with y is larger than that of the optimal ρoptE
with x. The effects of y on P and E are

more significant than those of x, which means the piston speed in constant pressure heat rejection
process has more marked impact on P and E than in constant pressure heat addition process. It can be
concluded from Figure 3 that x and y have no effect on η. The maximum η is equal to 0.622 whatever
values x and y take. The reason is that W and QH are uncorrelated with cycle time τ, leading to η be
uncorrelated with x and y according to the definition of η = W/QH . Moreover, as x and y increase,
the thermal efficiency (ηP) at the maximum P will increase.
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4.2. Effects of a and b on P, η and E

Figures 5–7 show P versus ρ, P versus η, and E versus ρ characteristics when a and b take different
values, which are similar to curves of P versus ρ, P versus η, and E versus ρ characteristics under
different x and y. In Figures 5 and 7, one can see that the smaller a and b are, the larger the maximum
values of P and E are. That is, the shorter the times in processes 2→ 3 and 5→ 6 are, the larger the
maximum values of P and E are. Further, as a and b increase, the optimal ρoptP

and optimal ρoptE
will

decrease, but the variation range of the optimal ρoptP
with a is larger than that of the optimal ρoptP

with b, the variation range of the optimal ρoptE
with b is larger than that of the optimal ρoptE

with
a. The effects of b on P and E are more significant than those of a, which means the piston speed in
constant volume heat rejection process has more marked impact on P and E than that in constant
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volume heat addition process. It can be concluded from Figure 6 that a and b have no effect on η.
The maximum η is equal to 0.622 whatever values a and b take. The reason is as same as that of η being
uncorrelated with x and y. Moreover, as a and b increase, the thermal efficiency (ηP) at the maximum
P will increase slightly.
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4.3. Performance Comparison

Figure 8 gives the curves between P and ρ, between η and ρ, as well as between E and ρ. When P,
η and E are chosen as optimization objective functions, the DMC engines will be in different conditions.
According to Figure 8, the following can be concluded.

(1) When P is chosen as optimization objective function, the maximum P is Pmax = 0.0035,
η corresponding to the maximum P is ηP = 0.306. However, the maximum η is ηmax = 0.622,
ηP/ηmax = 0.492, so choosing P as optimization objective function sacrifices most of η.

(2) When η is chosen as optimization objective function, P corresponding to the maximum η is
Pη = 0, Pη/Pmax = 0. Although η can reach the maximum, P is zero when optimizing η. Thus,
choosing η as optimization objective function is unreasonable.

(3) When E is chosen as optimization objective function, the maximum E is Emax = 0.0017,
P corresponding to the maximum E is PE = 0.0026, PE/Pmax = 0.743, η corresponding to
the maximum E is ηE = 0.470, ηE/ηmax = 0.756. Thus, choosing E as optimization objective
function can improve η compared with choosing P as optimization objective function and can
also improve P compared with choosing η as optimization objective function.

(4) There are Pη < PE < Pmax and ηP < ηE < ηmax. When E is chosen as optimization objective
function, P and η may be smaller than their maxima, but they can reach relatively large values at
the same time. Hence, optimizing E is the best compromise optimization between optimizing P
and optimizing η.
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4.4. Corollary 75–25

In thermodynamic (and thermoeconomic) optimization of some endoreversible models of heat
engines, there is a reduction of the total entropy production (Corollary 75–25 [98,99]) when the
ecological function is maximized in comparison with that obtained under maximum power output.
Corollary 75–25 means that the maximization of the ecological function leads to an engine performance
with a power output around 75% of the maximum power output and an entropy production rate
around 25% of the entropy production rate at maximum power condition [98,99].

The curves of power output, ecological function and entropy generation rate versus cut-off
ratio for the endoreversible Dual-Miller cycle are depicted in Figure 9. The values of maximum
power output, power output corresponding to maximum ecological function, entropy generation rate
corresponding to maximum power output and entropy generation rate corresponding to maximum



Entropy 2018, 20, 165 13 of 19

ecological function are listed in Table 1. They show that the property of ecological function is also
concordant with Corollary 75–25 for the endoreversible Dual-Miller cycle with finite speed of the piston.
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Table 1. Values of power output and entropy generation rate with different optimal conditions.

Optimal Conditions Power Output Entropy Generation Rate

Emax 2.63 × 10−3 3.013 × 10−6

Pmax 3.51 × 10−3 1.222 × 10−5

ratio 74.9% 24.7%

5. Conclusions

The performances of the non-dimensional power output, thermal efficiency and non-dimensional
ecological function of an endoreversible DMC with finite rate of HT are analyzed and optimized based
on finite speed of the piston. Performance characteristics are discussed and analyzed when DMC are
simplified to other cycles. The effects of ρ and piston speeds on performance of the cycle are examined
via numerical examples. The results show that, the faster the piston speeds are, the larger the maximum
values of P and E are. The optimal cut-off ratio ρopt will increase if piston speeds increase in heat
addition processes and heat rejection processes. The effects of time in constant volume heat rejection
process on P and E are more marked than those of time in constant volume heat addition process,
the effects of time in constant pressure heat rejection process on P and E are also more marked than
those of time in constant pressure heat addition process. Choosing ecological function as optimization
objective function is more significant compared with choosing power output and thermal efficiency as
optimization objective functions.

The results obtained herein show that there are three aspects to improve the performance when
designing the Dual-Miller cycle engines. Firstly, improving piston speed can increase the power output.
Secondly, excessive times in heat addition and heat rejection processes have negative impacts on
performance of the cycle engines, thus the times in heat rejection processes should be decreased as
much as possible. Lastly, taking ecological function as a design criterion can improve comprehensive
performance (power output and thermal efficiency) of the cycle engines.

The cut-off ratio is an important design parameter for Dual-Miller cycle heat engines; it can
determine the running forms of the engines. For example, the heat engine can run with maximum
power output, maximum thermal efficiency and maximum ecological function conditions. Thus,
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optimizing the cut-off ratio is necessary, and optimal cut-off ratio is also important to design heat
engines with different conditions.

The obtained results herein are based on the assumptions that the working fluid is an ideal gas
and its specific heat is constant. The specific heat of the working fluid will change with its temperature
in actual heat engines. The variable specific heat characteristic of the working fluid will be considered
in the next studies.
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Nomenclatures

a constant
Aps area of piston face (m2)
b constant
Cp specific heat at constant pressure (kJ/(kg ·K))
Cv specific heat at constant volume (kJ/(kg ·K))
E ecological function (kW)
ECOP ecological coefficient of performance
F area of heat transfer (m2)
k specific heat ratio
L stroke length (m)
m mass of working fluid (kg)
N number of heat transfer unites
P power output (kW)
Q quantity of heat transfer (kJ)
S entropy generation (kJ/K)
T temperature (K)
u piston speed (m/s)
U heat transfer coefficient (W/

(
m2 ·K

)
)

V volume (m3)
Greek symbols
ε effectiveness of heat exchanger
η thermal efficiency
σ entropy generation rate (kW/K)
τ cycle period (s)
Subscripts
H high temperature heat reservoir
L low temperature heat reservoir
opt optimal value
1, 2, 3, 4, 5, 6 cycle state points
Superscripts
. rate
− non-dimensional
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Abbreviations

The following abbreviations are used in this manuscript:

DAC Dual-Atkinson cycle
DC Diesel cycle
DDC Dual-Diesel cycle
DiMC Diesel-Miller cycle
DMC Dual-Miller cycle
FST finite speed thermodynamics
HEC heat engine cycle
HL heat leakage
HT heat transfer
ICE internal combustion engine
OC Otto cycle
OMC Otto-Miller cycle
TFS thermodynamics with finite speed
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