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Abstract: We analyze the dimension of a financial correlation-based network and apply our analysis
to characterize the complexity of the network. First, we generalize the volume-based dimension and
find that it is well defined by the correlation-based network. Second, we establish the relationship
between the Rényi index and the volume-based dimension. Third, we analyze the meaning of the
dimensions sequence, which characterizes the level of departure from the comparison benchmark
based on the randomized time series. Finally, we use real stock market data from three countries for
empirical analysis. In some cases, our proposed analysis method can more accurately capture the
structural differences of networks than the power law index commonly used in previous studies.
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1. Introduction

Many complex systems in the real world can be described using complex networks. In the last
two decades, many concepts and algorithms have been proposed [1–5]. Since A. L. Barabási and
R. Albert proposed a scale-free network model [6], the power law has become an important tool for
characterizing network structures [7]. There are some dominant nodes in which the node degree
is significantly larger than that of most nodes, and some researchers have discovered that there are
other types of scaling laws in some networks that therefore define the dimensions of the network [8].
After the pioneering work of Song et al., other types of network dimensions were introduced [9–17].
For example, Daijun Wei et al. proposed the information dimension [9], and defined the Tsallis
information dimension [10]. Rosenberg introduced the concept of maximal entropy minimal coverings
to compute the information dimension [11]. O. Shanker defined the volume of a node in a network
and introduced a new dimension based on the scaling law between the average of the volume and
the distance [12,13]. The average density was defined by Guo Long et al., along with defining the
dimension by the scale law of average density and distance [14].

The dimensions of weighted networks and the multifractal of networks have also been discussed
by researchers [15–17]. In particular, researchers analyzed the multifractal of the network using the
sandbox algorithm and found that there is multifractal in scale-free networks, but not in random
networks [18]. A recent study shows that the heterogeneity of degree distribution is of crucial
importance to the fractal properties of networks [19]. In addition to using the scaling law and
information entropy to define network dimensions, some researchers also use the ergodic theory of
dynamical systems to define the correlation dimension of a network [20].

In this article, we will apply the dimension proposed by O. Shanker to analyze a financial
correlation-based network. We follow the terminology used by some researchers [21,22], and call the
network constructed from the correlation matrix a correlation-based network.
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At present, there are three usual methods for constructing correlation-based networks.
One constructs the network using the minimum spanning tree (MST) algorithm [23]. The second
method constructs the planar maximally filtered graph (PMFG), which can include some structures that
are not in the MST, such as 4-clique and community [24]. The third approach constructs a 0–1 matrix
based on a threshold and a correlation matrix, where the threshold is used to extract the structure in
the correlation matrix [25,26]. For example, an element in a correlation matrix that is greater than a
threshold is converted to 1, otherwise the element is converted to 0, so that a 0–1 matrix is generated
as an adjacency matrix.

Since the work of Mantegna [23], many studies have explored applications of these methods, such as
in stock markets [27], industrial indices [28], international indices, or foreign exchange markets [29,30].
Studies show that the degree distribution of some correlation networks satisfies the scale-free law [31–36].
Some researchers have found that the topological structure of the MST in the market changes over time,
which leads to a change in the power law exponent of the degree distribution [34]. Further research
has used the Rényi index to characterize the topological structural changes [36]. The Rényi Index is
a standardized Rényi entropy used to characterize randomness and evenness; it has been correlated
with the Lorenz curve [37,38]. Research shows that the Rényi index can effectively characterize the
topological structure of MST, and this paper will analyze its relationship with the dimensions of a
correlation-based network.

Many studies have applied entropy to the study of economic or financial issues [39,40].
For example, S.D. Bekiros constructed a discrete wavelet transformation based on entropy and used it
to study currency returns [41]. R. Gencay and N. Gradojevic applied the maximum entropy principle
to study the crash of 19 October 1987, and found the crash predictable [42]. Entropy has also been
applied to the study of issues such as option pricing and asset pricing [43,44]. It can also be used to
study financial hazards or predict systemic financial risks [45–47]. E. Maasoumi and J. Racine applied
entropy metrics to study the predictability of returns in the stock market and found that the measure
can detect nonlinear dependencies [48]. In particular, entropy has recently been applied to research
networks and used to construct economic indicators of market fragility and systemic risk [49]. J. Yang
and W. Qiu constructed a decision—making model based on entropy, and some problems that cannot
be solved based on the mean—variance criterion can be dealt with [50].

In this article, we will sturdy the relationship between the dimensions of a network and the Rényi
index. Our study is different from the application of entropy in finance used by most of the previous
studies. This article discusses a correlation-based network, which leads us to focus on the correlation
structure rather than a single financial temporal series. Recently, some researchers have applied the
work of Song et al. to analyze the fractal of financial MST [51]. Based on this analytical framework,
the MST of financial markets is non-fractal [51]. Here, we use the dimension proposed by O. Shanker
to analyze the dimension of correlation-based networks, which is essentially a scale law defined on the
basis of volume, with volume defined by the shortest distance. Then, we can directly calculate the
shortest distance matrix and test whether there is a scaling law between volume and distance [12,13].

There are some differences between our calculation method and previous results [51]. First,
we calculate the scaling law between volume and distance, whereas previous studies focused on
the scaling law between the number of boxes and the distance. Secondly, we study the relationship
between dimension and entropy, both commonly used indicators of complexity. Thirdly, to establish
the relationship between these two indicators, we first generalize the definition of Shanker’s dimension
and then use the data from three stock markets for empirical analysis.

The main finding of this paper is that the dimensions can be well defined on a correlation-based
network and capture the details of changes in the network structure, and can therefore be used to
study the dynamics of correlation-based networks.
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2. Materials and Methods

2.1. Materials

We use daily closing price data from stock markets in China, the United Kingdom and the
United States for empirical analysis. The Chinese data used in this paper are from the Wande database,
while the data for the USA and UK markets are from Yahoo Finance.

Constituent stocks with missing data on the Chinese market for the Shanghai-Shenzhen
300 index (CSI300 index) were removed and a total of 162 stocks were selected from 4 January 2005
to 23 December 2015. Similarly, we exclude stocks with missing data in the Standard & Poor’s
(S&P) 100 index between 3 January 2005 and 29 December 2014. In total, 93 stocks were selected.
For comparative analysis, the daily closing price series of 80 constituent stocks of the Financial Times
Stock Exchange (FTSE) 100 index were also used, excluding stocks with missing data, from 3 January 2005
to 29 December 2017.

2.2. MST and PMFG

We assume that there are n stocks V = {1, . . . , n}, and that each stock i corresponds to a price
time series {Pi(t)}. In the calculations of this paper, the stock price series needs to be preprocessed
into a yield series: {Ri(t)}, where

Ri(t) = log(Pi(t + 1))− log(Pi(t)). (1)

The Pearson correlation coefficient between stocks i and j is calculated using

ρ(i, j) =
< RiRj > − < Ri >< Rj >√

(< R2
i− < Ri >2>< R2

j− < Rj >2>)
. (2)

The distance between stock i and j is defined as [23]:

d(i, j) = (2− 2× ρ(i, j))
1
2 . (3)

In this paper, MST and PMFG are, respectively, calculated based on the distance matrix D = [d(i, j)]
and the correlation coefficient matrix ρ = [ρ(i, j)]. We construct the MST using the classical Prim
algorithm [52]. The minimum spanning tree is a planar graph with n− 1 edges and no cycles, and with
the minimum possible total edge weight. More details can be found in the literature [52].

Below, we briefly describe the construction of PMFG. The PMFG is also a planar graph that
includes 3(n− 2) edges, so that it contains 3-clique and 4-clique [24].

1. Pearson’s correlation coefficient between any two stocks i and j is calculated and denoted as ρ(i, j)
(Equation (2)).

2. We extract elements of the upper triangular matrix of correlation coefficient matrix ρ = [ρ(i, j)]
and arrange them in ascending order, denoted by ρsort = {ρm(i, j)}.

3. In order of ρsort, we add a link between the pairs of nodes of an element in ρsort when the resulting
graph is a planar graph.

4. The above step is repeated until a planar graph with 3(n− 2) edges is generated.

In the following, each stock i corresponds to a node, so that the corresponding node is also
labeled i.

2.3. Rényi Index

In general, for a network W(V, T), where matrix T = [Tij] is the adjacency matrix, the set
V = {1, 2 · · · n} is the node set. The degree of node i is di = ∑j Tij and the average degree is
d = 1

n ∑i di. Further, the shortest distance matrix D = [D(i, j)] of the network W can be calculated,
where D(i, j) is the length of the shortest path between nodes i and j.
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In this paper, we will calculate the shortest distance matrix and construct different threshold
networks. First, we need to denote the Heaviside step function as:

H(t) = 0, t ≥ 0, (4)

H(t) = 1, t < 0. (5)

Then, for a positive integer r, we can construct a threshold network Wr(V, Tr(i, j)), where the
element Tr(i, j) = H(D(i, j)− r). That is, the elements in the shortest distance matrix that are less than
r are converted to 1, otherwise to 0. Here, it is assumed that Tr(i, i) = 0. The degree of node i and the
average of the threshold network are, respectively, denoted di(r) = ∑j Tr(i, j) and dm(r) = 1

n ∑i di(r).
The Rényi index is a standardized Rényi entropy, which can be used to characterize randomness

and evenness [37]. Consider a human population consisting of n members, each of which owns wealth
wi and thus has a wealth vector w = (w1, w2, . . . wn). Then, the Rényi index of the wealth vector w is
defined as [37]

R(q) = 1− {
n

∑
i=1

(
wi
w
)q × (

1
n
)}

1
1−q , q 6= 1, (6)

R(1) = 1− exp{−
n

∑
i=1

(
wi
w
× ln(

wi
w
)× 1

n
)}, q = 1, (7)

where w = 1
n ∑i wi is the average wealth and q is a parameter.

Further research has found that the Rényi index can be effectively applied to characterize the
topological structure of financial MST [36]. In general, we can define the Rényi index of network W as

R(q) = 1− {
n

∑
i=1

(
di

d
)q × (

1
n
)}

1
1−q , q 6= 1, (8)

R(1) = 1− exp{−
n

∑
i=1

(
di

d
× ln(

di

d
)× 1

n
)}, q = 1, (9)

where the degree of node i is analogous to wealth.
Next, we study the relationship between the heterogeneity and dimension of correlation-based

networks. Naturally, the Rényi index R(q, r) (q 6= 1) of the threshold network Wr can also be calculated as

R(q, r) = 1− {∑i di(r)q

dm(r)q ×
1
n
}

1
1−q . (10)

2.4. Dimension

Since MST and PMFG are always connected networks, we can directly calculate the shortest
distance between any two nodes. Based on the dimension proposed by O. Shanker [12], the calculation
steps are as follows:

1. We calculate MST or PMFG based on distance matrix or correlation coefficient matrix. Here,
the correlation-based network is denoted as W(V, T), where V = {1, 2, ..., n} is a node set and
T = [T(i, j)] is an adjacency matrix.

2. The shortest distance matrix Ds = [Ds(i, j)] is calculated by the adjacency matrix T.
3. We set the threshold set L = {ls, s = 1 . . . k} and then compute threshold network Wls(V, Tls) for

ls, where the elements of Tls(i, j) = H(Ds(i, j)− ls).
4. The number of non-zero elements in the i-th row of matrix Tls is the volume of node i with

distance ls. That is, the volume Vi(r) of node i is its degree in the threshold network Wls . Further,
the volume V(ls) is calculated using

V(li) = ∑
k

Vk(li)/n, (11)

that is, the average is calculated.
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5. If the scaling relationship is as
V(r) ∼ CrDV , (12)

the volume dimension DV is defined, where C is a constant and r is the distance.

In the calculation, we need to select the appropriate set L and then estimate Vd in the double
logarithmic coordinate system by

log(V(ls)) = C0 + dV × log(ls), (13)

where C0 is a constant.

2.5. Generalized Volume-Based Dimensions

In this section, we will define the volume dimension in a generalized way based on the
concept of volume. We note that the volume V(r) is the average of the volume of all nodes
i ({Vi(r), i = 1 · · · n}, Equation (11). In general, we define V(r, q) as

V(r, q) = (∑
i

Vi(r)q/n)
1
q , q ≥ 1, (14)

where q ≥ 1. When q is a positive integer, the expression ∑i Vi(r)q/n is the q-th sample moment
of the volume {Vi(r)}. For any real number q ≥ 1, the latter calculation shows that there is still a
scale relationship between V(r, q) and distance r. As in the definition of dimension proposed by
O. Shanker [12], we define the generalized dimensions as follows: if there is a scaling relationship
between V(r, q) and distance r as

V(r, q) ∼ ConqrDV,q , q ≥ 1, (15)

where r is the threshold, Conq is a constant, then the index DV,q is a generalized dimension. As a special
case, when q = 1, DV,1 = DV . For a set of suitable thresholds {ls}, DV,q can be fit using a least square
method, as follows (C is a constant):

log(V(ls, q)) = C + DV,q × log(ls). (16)

The generalized dimension can be used to study higher-order statistics of volume sequence
{Vi(r), i = . . . n} and is naturally embedded in the definition of the Rényi index. Since the volume
Vi(r) is the degree of node i (di(r)) in the threshold network Wr,

R(q, r) = 1− (
V(r, q)q

V(r, 1)q )
1

1−q , q > 1, (17)

can be obtained from Equations (10) and (14).
To further simplify Equation (17),

R(q, r) = 1− C× r
q(DV,q−DV,1)

1−q , C = (
Conq

Con1
)

q
1−q , q > 1, (18)

is introduced, where C is a constant. If DV,q = DV,1, then R(q, r) = 0, which means that the degree of
nodes in the network is homogeneous. Based on Equation (18), the difference between the dimensions
can also be expressed by the Rényi index. In particular, the original volume-based dimension
(DV,q = DV,1) is the basic dimension, with which other dimensions are compared to characterize the
Rényi index as follows:
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DV,q − DV,1 =
1− q

q
× log(1− R(q, r))− log(C)

log(r)
, C = (

Conq

Con1
)

q
1−q , q > 1. (19)

When r = 2, Equation (18) allows the Rényi index of the original network W(V, T) to be expressed
in terms of dimensions, as

R(q, 2) = 1− C× 2
q(DV,q−DV,1)

1−q , C = (
Conq

Con1
)

q
1−q , q > 1. (20)

However, r can take any value in the set of thresholds ({ls}), so the dimension also expresses
the Rényi index of the threshold network Wr. Since the degree of node i in the threshold network
expresses the more neighbor information of the node, the dimension contains more information of the
network structure.

3. Results

3.1. Generalized Volume-Based Dimensions

First, we calculate MST and PMFG based on the constituent stocks of the S&P 100 index
(3 January 2005–29 December 2014) and estimate the dimensions. Figure 1a,b show the results
of the dimension estimation: Figure 1a corresponds to MST and Figure 1b to the PMFG. It can be
seen that in a suitable threshold interval the relationship between log(V(r, q)) and log(r) is nearly
linear. This means that in this example, the dimensions can be defined well on MST and PMFG.
We choose L = {2, 3, 4, 5, 6} and L = {2, 3, 4} when estimating the dimensions of MST and PMFG,
respectively. Calculations show that the generalized volume-based dimensions can be well defined on
the correlation-based networks.
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Figure 1. The dimension estimation of: (a) minimum spanning tree (MST); and (b) planar maximally
filtered graph (PMFG) (point: DV,1, +: DV,2, triangle: DV,3).

In our study, we find that the threshold sets L = {2, 3, 4, 5, 6} and L = {2, 3, 4} are suitable for
estimating the dimensions of MST and PMFG, respectively. Therefore, the later threshold set in the
calculation is consistent with this example.
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Next, to establish a benchmark for comparative analysis, we randomize the yield series and
calculate the correlation-based network, then estimate the dimensions and compare them with the
dimensions based on the real data. We still choose the data used in Figure 1.

Now, the series of yield for each stock is randomly reordered. Note that this step does not change
the distribution of yield. Then the correlation coefficient matrix and distance matrix between the yield
series are calculated. Finally, we calculate MST and PMFG and estimate their dimensions.

To visualize the structural changes in the network, Figure 2a–d shows the original network
versus the network as a benchmark. The figure shows MST and PMFG based on real data, where
the maximum degree (UTX) in Figure 2a is 9, and the maximum degree (UTX) in Figure 2b is 30.
However, the degree of node UTX in Figure 2c is 2 and in Figure 2d it is 5. This is because randomized
series eliminate the original correlation structure, causing hub nodes to lose their core positions.
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Figure 2. (a,b) The original networks; and (c,d) the benchmark networks used for comparison.

The structural changes directly lead to the changes in the degree distribution. Figure 3a–d shows
the degree distributions of the four networks in Figure 2. It is assumed here that the degree distribution
satisfies the power law p(x) ∼ x−α. We compare Figure 3a,c and find that the power law exponent of
the latter is larger, which implies that the degree distribution is less heterogeneous.

Next, we use the dimension and Rényi index to analyze the changes in the structure of the
network. Figure 4 shows the estimation of the dimensions when taking different q values, where
the solid line corresponds to the network based on real data and the dotted line corresponds to the
network based on the randomized series. Intuitively, it can be found that the change of the dotted
line is smoother. In addition, we calculate the Rényi index index for each network. Corresponding to
the four subgraphs in Figure 3a–d, the Rényi indices are 0.3476 (Figure 2a), 0.3715 (Figure 2b), 0.2352
(Figure 2c), and 0.1885 (Figure 2d).
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Figure 3. The degree distribution of the network in Figure 2, in which the labels of the four subgraphs
correspond to the labels in Figure 2 one by one, for example, Figure 3a corresponds to Figure 2a and
so on. (a) α = 3.06; (b) α = 2.84; (c) α = 3.45; (d) α = 2.91.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2

2.5

3

3.5

q

D
V

,q

 

 

PMFG, D
V,q

=−0.23q+3.6

PMFG, D
V,q

=−0.088q+3.2

MST, D
V,q

=−0.091q+2.7

MST, D
V,q

=−0.016q+2.2

Figure 4. The dimension sequences of the different networks, where the solid line corresponds to the
real data and the dotted line corresponds to the randomized data.

To show the changes of the four dimension sequences in Figure 4 more clearly, the four data
sets are approximated by straight lines. It can be seen that the absolute value of the coefficient of q
corresponding to the solid line is significantly larger than the coefficient of the benchmark-based q.
For example, the absolute value of the coefficient of q corresponding to the PMFG of the real data
is 0.23, which is more than 2.6 times 0.088. In particular, the differences in the structure of some
networks cannot be accurately captured by the power law exponent. The power law exponent of
the networks shown in Figure 2b,d is 2.84 and 2.91, respectively. The difference between the two
power law exponents is small, yet Figure 4 shows that there is a significant difference between the two
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networks. We find that the Rényi index and the dimensions can clearly and quantitatively show the
structural changes.

Below, we analyze the results based on a factor model. In modern finance theory, multi-factor
models are often used to model stock returns [53]. For example, the three-factor model is one of the
most commonly used multifactor models [54]. More recently, some researchers have also used factor
models to study networks, such as constructing factor models to analyze network structures [55],
or applying a three-factor model to studying network-based portfolios [56]. In the factor model, in general,
a normalized series of returns can be expressed as a linear combination of m factors, as shown in [57]

Ri(t) =
m

∑
k

βik fk(t) + εi(t). (21)

In Equation (21), the βik are the linear exposure of the variable Ri(t) to the factor
fk(t) (k = 1, · · · , m) at time t and the εi(t) is the idiosyncratic part of Ri(t) (E(εi(t)) = 0).

Furthermore, Equation (21) can be re-expressed as a matrix form, as shown in

R = βF + ε, (22)

where R = [R1(t), · · · , Rn(t)]t, β = [βi,k]n×m, F = [ f1(t), · · · , fm(t)]t, and ε = [ε1(t), · · · , εn(t)]t [57].
Here, t represents the transpose of the matrix. Thus, we can express the covariance matrix of a set of
yield series as shown in

C = βCFβt + Cε, (23)

where CF is the covariance matrix of the factors { fk(t), k = 1, · · · , m} and Cε is the covariance matrix
of the residuals εi(t) [57].

The covariance matrix of the normalized series is the correlation coefficient matrix of the yield
series. Equation (23) means that the matrix of correlation coefficients can be linearly represented by
some factors. In our study, when the yield series are randomized, the yield series are no longer factor
driven. As a result, the hub node is converted to a non-hub node, as shown in Figure 2. Structural
changes can be captured by the Rényi index and the dimension sequence, as shown in Figure 4.
In general, when the structural changes of the network, such as from the star to the chain, the Rényi
index also changes, based on Equation (19), the dimension sequence changes.

In summary, we can characterize the differences between the networks and their benchmarks by
analyzing the curvature of dimension sequences. Since a network for the comparison benchmark is
generated based on a randomized time series, it can be considered as having no notable structure. Thus,
the more dramatic changes in the dimension sequence, the higher the deviation from the benchmark.
Therefore, the sequence of dimensions characterizes the complexity of the network. In addition,
we construct the relationship between the Rényi index and the dimensions, as shown in Equations (18)
and (19). This means that the dimension sequence also contains information about the structure of the
threshold network, whereas the original network can be considered as a special threshold network
(r = 2). In the next section, we will study the relationship between the dimension and the Rényi index
of the threshold network.

3.2. Relationship between the Dimension and the Rényi Index of the Threshold Network

In the previous section, Equation (18) implied that the dimension not only contains the information
of the structure of the original network but also the information in the threshold network Wr. We select
the network in Figure 2a as an example to generate the threshold networks W3 and W4, as shown,
respectively, in Figure 5a,b. Intuitively, we can see that there is a significant difference between W3 and
W4, and network W4 includes even more edges. Network W3 includes second-order information of a
node, that is, other nodes at a distance of 2 from the node are regarded as neighbors, and network W3

includes third-order information.



Entropy 2018, 20, 177 10 of 20

We will next show that the dimension contains information about the structure of networks W3

and W4. Based on Equation (18), R(2, 3) and R(2, 4) are estimated using the dimensions DV,1 and
DV,2 estimated in Figure 1a, respectively. In addition, The Rényi index of the threshold network can
be calculated directly using Equation (10), denoted as R(2, r). The comparison results are shown in
Table 1. In Table 1, the Rényi index calculated based on dimensions is denoted as R′(2, r). Calculations
show that the Rényi index value of W4 is less than the Rényi index value of W3, which means its degree
distribution is more homogeneous. It can also be seen that the difference between R′(2, r) and R(2, r)
is small.

In summary, our analysis shows that the dimension sequence includes information on the structure
of the threshold network.
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Figure 5. The figure shows two threshold networks based on Figure 2a: (a) W3; and (b) W4.

Table 1. The Rényi index of the threshold network.

Figure DV ,1 DV ,2 C r R′(2, r) R(2, r)

Figure 5a 2.5913 2.5091 0.5658 3 0.3221 0.3362
Figure 5b 2.5913 2.5091 0.5658 4 0.2893 0.2842

3.3. Empirical Analysis Based on Different Countries

In this section, we use data from three stock markets for analysis. We choose a special case to
show the relationship between the dimension and the Rényi index. We set q = 1 and q = 2 to calculate
the dimension series, and q = 2 to calculate the Rényi index series. For convenience, we define

Di f fdim(2, 1) = DV,2 − DV,1 (24)

in the following subsections.
During the period considered, the number of trading days in the UK and China markets were

approximately 253 and 242, respectively. In this section, we only set the length of the calculation
window to 126 days, which is about half the number of trading days in the USA market. In the
following, the dimension series DV,1, DV,2 and Rényi series are calculated simultaneously, where the
calculation window is 126 days and the sliding window is 1 day. Then, the difference between DV,1

and DV,2 is calculated Di f fdim(2, 1) for each time period.
The calculation results of the USA market are shown in Figure 6a,b: Figure 6a corresponds to MST

and Figure 6b corresponds to PMFG. Intuitively, we can find that there is a highly negative correlation
between the Di f fdim(2, 1) and Rényi series in the USA market.

Similarly, the calculated results using UK market data and China market data are shown in
Figures 7 and 8, respectively. Both the UK and China markets showed similar results to the USA
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market. Intuitively, we find that there is a synchronization between the Di f fdim(2, 1) series and the
Rényi index series. We calculated the Pearson correlation between each pair of Di f fdim(2, 1) series and
the Rényi series and are listed in Table 2. The high level of correlation shown in the calculations is
consistent with the results predicted by Equations (18) and (19).
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Figure 6. The dimension and Rényi index series of the correlation-based networks in the USA market:
(a) MST; and (b) PMFG. The solid line corresponds to the Rényi index, and the dotted line corresponds
to Di f fdim(2, 1).
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Figure 7. The dimension and Rényi index series of the correlation-based networks in the British market:
(a) MST; and (b) PMFG. The solid line corresponds to the Rényi index, and the dotted line corresponds
to Di f fdim(2, 1).
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Figure 8. The dimensionality and Rényi index series of the correlation-based networks in the Chinese
market: (a) MST; and (b) PMFG. The solid line corresponds to the Rényi index, and the dotted line
corresponds to Di f fdim(2, 1).

Table 2. Pearson’s correlation coefficient (PCC) between the Di f fdim(2, 1) series and the Rényi index
series (q = 2).

Figure Figure 6a Figure 6b Figure 7a Figure 7b Figure 8a Figure 8b

PCC −0.9550 −0.9915 −0.9374 −0.9869 −0.9197 −0.9859

3.4. Robust Analysis of Calculation Window

In the previous section, we have analyzed the relationship between the Rényi index series and the
dimension series of networks in three different markets. In the analysis, we set the calculation time
window to be 126 days. To further study the robustness of the calculation window, we set different
time windows and study the relationship between Rényi index and dimension. Here, we choose the
data of American market and set eight windows (k× 63 days, k = 2, · · · , 9), respectively, to calculate
Rényi index series and Di f fdim(2, 1) series. The calculation results are shown in Figure 9, where the
triangles and squares correspond to MST and PMFG, respectively. It can be found that the Pearson
correlation coefficients corresponding to all time windows are less than −0.94, and the average values
corresponding to MST and PMFG are all less than −0.96. The calculation results show that the time
window does not change the conclusion that there is a high correlation between Rényi index and
Di f fdim(2, 1) series.
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Figure 9. The figure shows the relationship between the Pearson correlation coefficient and the
calculation window.

3.5. The Dynamics of the Rényi Index

In the previous section, we empirically analyzed the relationship between the Rényi index and
the volume dimension. Intuitively, the Rényi index was found to vary drastically over time. To analyze
the dynamics of the Rényi index in more detail, this section will calculate the standard deviation of the
Rényi series for the three markets. We set the calculation time window at 126 days, and the sliding
window at one day. In this way, a standard deviation series of Rényi series is calculated. Figure 10a–c
shows the standard deviations of the MST Rényi index for the U.S. market, the U.K. market, and the
China market, respectively. Similarly, Figure 11a–c shows the standard deviation series of the Rényi
index for PMFG.

We calculated the average of each series in Figure 10 and found that the difference between the
three markets was small. However, Figure 11 shows that the Rényi index of PMFG in China fluctuates
significantly more than that of the other two markets. The dramatic change in the index over a period
of time can lead to an increase in the standard deviation. Comparing the Chinese market with the other
two markets, we find that the Rényi index in the Chinese market changed drastically from 2014 to 2015,
as shown in Figure 11c. A more detailed analysis shows that the mean of the data up to 30 June 2014 is
0.0392. The difference between 0.0392 and the average of the other two markets (0.0376 and 0.0361)
is not significant. Therefore, the difference between the Chinese market and the other two markets
is mainly due to the data changes from July 2014 to June 2015. During this period, a huge bubble
was generated in the Chinese market and was broken in June 2015. Taking the CSI 300 Index as an
example, the index on 1 July 2014 was 2164.559 and reached the peak of 5353.751 on 8 June 2015. After
that, the bubble broke down and the index dropped drastically to 4253.021 on 1 July 2005. In addition,
the maximum (0.1351) in Figure 11c reached on 2 March 2015, and then rapidly decreased to 0.0299
(on 12 June 2015).
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Figure 10. The series of standard deviations (MST): (a) the USA market; (b) the UK market;
and (c) the China market.
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Figure 11. The series of standard deviations (PMFG): (a) the USA market; (b) the UK market; and (c) the
China market.

We have found in Section 2.1 that there is no hub node in the network based on the randomized
sequence, resulting in a decrease of the Rényi index. Similarly, in previous studies, researchers found
changes in the network structure, such as the central company changes as the marginal company,
leading to power law exponent changes [34]. Our research also shows that the drastic change in
the number of central firms that correspond to the core nodes leads to a change in the Rényi index,
as shown in Figures 2 and 3. The drastic change in the Rényi index also suggests that the relationship
between companies changes significantly over time, leading to more unstable structures. Therefore,
the results shown in Figure 11 show that the changes in PMFG in the Chinese market may be related
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to this structural change. Furthermore, since the time series can be explained by a multifactor model,
as shown in Section 2.1, we speculate that the underlying causes of this change are due in part to
changes in economic factors in the Chinese market. The market index has fluctuated dramatically
during the period when the bubble was generated and broken. The economic factors that drive the
price changes of stocks during this period may have changed, leading to differences between the
Chinese market and the other two markets.

3.6. Example of Volume-Based Dimension Analysis

The calculations in the previous section show that the structure of the network varies drastically
over time. In this section, we will examine a concrete example using the analytic framework of
dimension-entropy.

During the financial crisis of 2008, the collapse of Lehman Brothers was an important event.
We chose the data of constituent stocks in the S&P100 index from 1 June 2007–31 December 2009
for analysis. We extract the data for this period from Figure 6b and show it in Figure 12 (blue line).
For comparison, the S&P 500 index is also shown in Figure 12 (green line). In the figure, Point A
corresponds to the collapse of Lehman Brothers on 15 September 2008. Overall, we find that as the index
decreases drastically, Di f fdim(2, 1) also changes drastically and declines from 15 September–15 December
2008. At Point A, the value of Di f fdim(2, 1) is −0.1850; however, after that, the value of Di f fdim(2, 1)
varies dramatically and reaches −0.3445 after three months. This implies that the structure of the PMFG
varies significantly. To visualize this change, Figure 13a,b shows the PMFGs for Points A and B.
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Figure 12. The Di f fdim(2, 1) series and the S&P 500 index, where Point A corresponds to the collapse
of Lehman Brothers, while Point B corresponds to 15 December 2008.

Comparing Figure 13a with Figure 13b, we find that there is a super hub node in Figure 13b,
which has a degree of 43, whereas, in Figure 13a, the maximum degree is 25.

This structural change can be well captured using the dimension sequence, as shown in Figure 14.
The changes in the dimension sequences corresponding to the two networks are significantly different.
For comparison, we randomize the yield series for the time period and construct the PMFG according
to the method of generating the benchmark shown in Section 2.1.
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Figure 13. The PMFG corresponding to Points A and B: (a) the collapse of Lehman Brothers;
and (b) 15 December 2008.

We find three differences between the dimension sequences at Points A and B. First,
the corresponding dimension (DV,1) of Point B is greater than Point A, which means that as the
distance increases, the volume changes more rapidly. Second, the solid line corresponding to Point A
changes more smoothly, which means that the PMFG at Point B deviates farther from the benchmark.
Third, to show the difference between different dimension sequences, we use a line to fit the data to get
the relationship between dimension and q as shown in the figure. It can be seen that the PMFGs at Points
A and B are all significantly different from the benchmark, and the difference at Point B is greater.

In summary, we find that the market’s correlation structure changed drastically and deviated
significantly from the benchmark. This also suggests that the complexity of the correlation structure in
the market changes over time, especially during a financial crisis.
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Figure 14. The dimension sequence corresponding to the two points in Figure 11; the solid and dotted
lines correspond to the real data and the benchmark, respectively.



Entropy 2018, 20, 177 17 of 20

4. Discussion and Conclusions

4.1. Discussion

In our study, both the dimension and the Rényi index are defined on an undirected network,
which are used to extract the structure in the Pearson correlation matrix. At present, some research
focuses on the networks constructed by other methods, for instance constructing partial networks
by using partial correlation coefficients or constructing causal networks [58–60]. One area of further
possible study is to discuss the dimension and Rényi index on these directed networks.

In this article, we use the method of rolling time windows to construct the network. Recently,
researchers have estimated the dynamic correlation between time series and constructed networks that
can avoid rolling time windows; however, it is difficult to estimate and construct larger networks [61,62].
Therefore, further research should focus on networks based on dynamic correlation.

Here, the dynamics of dimension and Rényi index have been studied, but its mechanism needs
further study. First, in Section 2.1, we use a multifactor model to explain the change in the correlation
structure caused by the randomized time series, and this change is captured by the Rényi index and
the dimension sequence. Second, in Sections 2.3 and 2.5, calculations show that the dimension series
and the Rényi index change over time in different markets, whereas the Rényi index of the PMFG
in the Chinese market changes more drastically. On the one hand, the yield series can be directly
expressed as a linear combination of factors. On the other hand, the change of network structure can
be affected by the change of factors, as shown in Section 2.1. Therefore, it is necessary to further study
the mechanism explanation of network structure changes based on economic factors. Further research
may need to focus on the influence of the factors on the network structure, as well as on the dynamics
of Rényi index and dimension.

4.2. Conclusions

In studying the relationship between the dimensions of the correlation network and the Rényi
Index, using the data of three markets for empirical analysis, we find that volume-based dimension
is well defined on a correlation-based network. Our studies have shown that there is also a scaling
relationship between the higher moment of the volume and the distance. Based on this empirical fact,
we constructed a general volume-based dimension. We also find that the volume-based dimensions
are intrinsically linked to the network’s Rényi index.

Our analysis results show that the dimensions can reveal the topological structure of the
network well and include the neighbor information of the nodes. Volume-based dimension sequences
characterize the level of deviation from the benchmark based on randomized series, thus describing the
complexity of correlation-based networks. In addition, our analytical framework may also be applied to
complex systems, such as those in financial markets, where each element can be characterized by time
series, and the relationships among the different elements can be constructed based on the correlation.
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