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Abstract: We consider material bodies exhibiting a response function for free energy, which depends on
both the strain and its gradient. Toupin–Mindlin’s gradient elasticity is characterized by Cauchy
stress tensors, which are given by space-like Euler–Lagrange derivative of the free energy with
respect to the strain. The present paper aims at developing a first version of gradient elasticity of
non-Toupin–Mindlin’s type, i.e., a theory employing Cauchy stress tensors, which are not necessarily
expressed as Euler–Lagrange derivatives. This is accomplished in the framework of non-conventional
thermodynamics. A one-dimensional boundary value problem is solved in detail in order to illustrate
the differences of the present theory with Toupin–Mindlin’s gradient elasticity theory.
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1. Introduction

This paper addresses material bodies complying with a response function for free energy,
which depends on both the strain tensor and its gradient. Usual gradient elasticity theories are of
Toupin–Mindlin’s type (see Toupin [1], Mindlin [2] and Mindlin and Eshel [3]), i.e., they are
characterized by response functions for Cauchy stress tensors, which obey the structure of a space-like
Euler–Lagrange derivative of the free energy with respect to the strain tensor. (We use the term
space-like Euler–Lagrange derivative with respect to some variable in the sense of Maugin [4]).
In Broese et al. [5], a gradient elasticity model, referred to as Version 3, has been proposed for the first
time, which is characterized by a classical constitutive law for the Cauchy stress at every material
point in the interior of the body, i.e., the Cauchy stress is given by the usual derivative of the free
energy with respect to the strain. Generally, one might ask, if it is possible to develop gradient elasticity
theories of non-Toupin–Mindlin’s type, where the response function of the Cauchy stress tensor is
not necessarily expressed in terms of space-like Euler–Lagrange derivative of the free energy with
respect to the strain tensor. An affirmative answer to this question is of interest, for it encourages
the development of theories which are more flexible than the usual ones, when modelling gradient
effects. Actually, the elastic portion in the Korteweg’s fluid model is known to describe adequately
experimental observed capillarity effects. However, the Cauchy stress in this model includes a term
proportional to grad2$ (the second gradient of the mass density), which does not appear in the class of
gradient elasticity models of Toupin–Mindlin’s type (cf. Dunn and Serrin [6], Auffray et al. [7] and
Auffray et al. [8] and the references cited there). Evidently, every gradient elasticity theory should be
consistent with the laws of thermodynamics. The aim of the paper is to indicate, in the framework of a
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non-conventional thermodynamics, that indeed gradient elasticity of non-Toupin–Mindlin’s type may
be well formulated, i.e., consistent with the laws of thermodynamics.

In order to address non-localities over space and time, a non-conventional thermodynamics has
been proposed in Alber et al. [9]. It has been shown in Broese et al. [5,10], that this thermodynamics
provides a proper framework for discussing gradient elasticity models. In particular, the gradient
elasticity model Version 3 has been established in the framework of this thermodynamics. It must be
noted that limited motivation for the Version 3 model is provided in [5]. However, Version 3 as
discussed in [5] should be regarded rather as a specific one-dimensional example and not as an
exhaustive theory. In fact, the assumed boundary conditions are meaningful only for the discussed
one-dimensional loadings. This is indicated on Section 5.2.2 in [5] where, before Equation (190), it is
stated: ”In the present paper we make the assumption . . . ”. Thus, the aim of the present paper is to
highlight basic assumptions, which are necessary in order to establish rigorously the connection of
Version 3 example with a sound constitutive theory. Others have stated that our effort aims to a first
step towards developing gradient elasticity theories of non-Toupin–Mindlin’s type.

After some preliminaries in Section 2, mainly concerning the notation used in this work, we
record in Section 3 the features of the assumed non-conventional thermodynamics. The main issue is
that the hypothesis of the local equilibrium state of the usual irreversible thermodynamics is extended
in order to capture non-local effects. This is achieved by using an energy transfer law in addition to
the conventional energy balance law. The energy flux vector in this additional energy transfer
resembles the interstitial work flux (cf. Dunn and Serrin [6] and Dunn [11]). Gradient elasticity
theories in the framework of the non-conventional thermodynamics are discussed in Section 4. First,
in Section 4.1, we present a fundamental constitutive structure for all gradient elasticity models we
are interested in. Then, for reasons of comparison, we derive in Section 4.2 Toupin–Mindlin’s gradient
elasticity theory as a trivial example of the assumed non-conventional thermodynamics. The gradient
elasticity example of non-Toupin–Mindlin’s type, which has been called Version 3 in Broese et al. [5],
is highlighted in Section 4.3 as a non-trivial example of the assumed thermodynamics. The main
concerns in this section are focussed on the required boundary conditions. Section 4.4 deals with
one-dimensional examples and especially provides a sound discussion of the one-dimensional example,
which has been presented for the first time in Broese et al. [5]. The paper closes with a list of conclusions
in Section 5.

2. Preliminaries

Throughout the paper, we use the same notation as in Broese et al. [5], which is essentially the
same as in Mindlin [2] and Mindlin and Eshel [3], in order to facilitate comparison with these works.
The deformations are assumed to be small, so we do not distinguish, as usually done, between reference
and actual configuration. Unless explicitly stated, all indices will have the range of integers (1,2,3),
with summation implied over repeated indices. All tensorial components are referred to a Cartesian
coordinate system {xi} in the three-dimensional Euclidean point space, which induces the orthonormal
basis {ei}.

The Kronecker Delta is denoted by δij and AT is the transpose of a second-order tensor A.
For space and time derivatives we use the notations

∂i() :=
∂()

∂xi
= (),xi , ()̇ =

∂()

∂t
≡ d()

dt
, (1)

where t is time. Explicit reference to space and time variables, upon which functions depend, will be
dropped in most part of the paper. As often in physics, we find it convenient in several passages
not to distinguish between functions and their values. However, to make things clear, when necessary,
we shall give explicitly the set of variables which a function depends upon.

Let B be a material body, which may be identified by the position vectors x = xiei. It is assumed
that B is a single component system (no mixture), and that it occupies the space range V ∪ ∂V in the
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three dimensional Euclidean point space we deal with, where V is an open manifold (the interior) with
boundary ∂V. We denote by ni the components of the outward unit normal vector n to the surface ∂V
bounding the space range V. For a function f (x, t), with x ∈ V ∪ ∂V, the normal derivative D f and
the surface derivative Di f are defined by

D f := nl∂l f , (2)

Di f = ∂i f − niD f , (3)

for every x ∈ ∂V, (see Toupin [1] or Mindlin and Eshel [3]).
Let ui be the components of the displacement vector u and denote by εij and kijk the components of

the strain tensor ε and the gradient of ε, respectively:

εij =
1
2
(
∂iuj + ∂jui

)
, (4)

kijk = ∂iε jk = kikj . (5)

Consider material bodies which are described by ordinary balance laws of linear and angular
momentum, so that at any point in V the field equations

∂jΣjk + Fk + Ik = 0 , (6)

Σjk = Σkj (7)

apply. Here, Σkj are the components of a Cauchy stress tensor Σ, Fk are components of a body force
vector F and Ik are the components of an inertial force I. However, the two forces F and I may be
composed respectively of classical and non-classical parts. If we define a generalized body force b
through (cf. Gurtin et al. [12] (Section 19))

b := F + I (8)

then, Equation (6) takes the form
∂jΣjk + bk = 0 . (9)

It is perhaps of interest to make some comments on the generalized force b. In classical
mechanics no parts of force b are present in boundary conditions. However, in gradient elasticity
non-classical terms may be involved in force b, which can be assumed both to contribute or not to
contribute to boundary conditions (see Mindlin [2] and Broese et al. [5]). Since, however, such aspects
are not relevant to the present paper, we shall focus attention only on classical forces b, so that
Equation (6) reads

∂jΣjk + Fk − $ük = 0 , (10)

with $ being the mass density and Fk being components of classical body forces.

3. Non-Conventional Thermodynamic Framework

We intend to discuss gradient elasticity in the framework of the non-conventional thermodynamics
proposed in Alber et al. [9]. In order to make the paper self-contained, we repeat here the general form
of this thermodynamics.

Let e be the internal energy measured per unit volume, wst the stress power per unit volume and
q the energy/heat flux vector (radiant heating is omitted). Toupin [1] suggested the possibility for
q to encapsulate more than heat flux, and this has been in fact elaborated by Dunn and Serrin [6],
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and Dunn [11]. Then, the local form of the conventional energy balance for body B (first law of
thermodynamics) reads

ė = wst − ∂iqi . (11)

Fundamental in usual irreversible thermodynamics is the hypothesis of a local equilibrium state.
It is assumed there that each material point of body B behaves like a simple homogeneous system in
equilibrium, so that absolute temperature θ > 0 and entropy per unit volume η may be assigned to
that point. The free energy per unit volume is defined through

ψ := e− θη , (12)

and the energy law (11) takes the equivalent form

wst − ψ̇− θη̇ − ηθ̇ − ∂iqi = 0 . (13)

The second law of thermodynamics is commonly accepted in the form of the Clausius–
Duhem inequality

γ := η̇ + ∂i

( qi
θ

)
≥ 0 . (14)

Now consider materials which are sensitive to non-localities in space and time effects. For example,
assume the free energy function ψ to depend, besides on state variables permitted in classical
irreversible thermodynamics, also on the spatial gradients of these variables. Since gradient terms
indicate neighbourhood effects, the hypothesis of a classical local equilibrium state is generally no
longer justified. Yet, according to classical irreversible thermodynamics, absolute temperature θ and
entropy η can be attributed only to equilibrium states. We may proceed conceptually further along the
lines of classical irreversible thermodynamics as follows.

The state of each material point of body B is assumed at any time to be associated with a
homogeneous material system in equilibrium, which we call the generalized associated local equilibrium state or
generalized local accompanying state. Classical thermostatics ensures for the generalized associated
equilibrium system the existence of absolute temperature θ(x, t) and entropy η(x, t), and these are
assumed to be the temperature and entropy of the real material at (x, t). Denote by vI , I = 1, · · · , NI ,
the components of state variables and by ξ J , J = 1, · · · , NJ , the components of time and space
derivatives of vI , which are now assumed to enter into the response function of ψ for the real material,

ψ = ψ(vI , ξ J , θ) . (15)

In contrast to Alber et al. [9], we do not include time and space derivatives of θ in ξ J .
The mass density and the response function of free energy for the generally fictitious associated

local equilibrium system are defined to be the same as for the real material characterized by
Equation (15). For both, the real material and the associated equilibrium state, the free energy ψ

and the internal energy e are postulated to satisfy Equation (12). In other words, not only the free
energy, but also the internal energy is identical for the two systems. Let wst be the stress power and q the
energy/heat flux vector for the real material, so that the energy balance laws (11) and (13) hold for the
real material. We will introduce an energy balance for the generalized associated equilibrium system by
regarding ξ J for this (homogeneous) system as new state variables, which are independent of vI , θ.
For example, assume εij and ∂kεij to be included as state variables in the response function of ψ.
Then, ∂kεij have to be regarded for the generalized associated local equilibrium state as new,
independent kinematical variables. These, again, engender additional, higher-order stresses and
hence the stress power wst entering into the energy balance law for the fictitious generalized associated
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local equilibrium state will be in general different from wst. We denote by ∂iqi the energy/heat flux
supply for the associated equilibrium system and postulate for this system the energy balance law

ė = wst − ∂iqi ⇔ wst − ψ̇− θη̇ − ηθ̇ − ∂iqi = 0 . (16)

Next, define stress power w′st and energy/heat flux q′ through

w′st := wst − wst , (17)

q′ := q− q , (18)

so that, from Equations (11) and (16),
w′st = ∂iq′i . (19)

Further, assume that w′st and q′ can be decomposed in N parts w′st(i) and q′(i),

w′st = w′st(1) + w′st(2) + · · ·+ w′st(N) , (20)

q′ = q′(1) + q′(2) + · · ·+ q′(N) , (21)

and postulate energy / heat transfer into mechanical power through

w′st(1) = ∂iq′(1)i ,

w′st(2) = ∂iq′(2)i , (22)

...

w′st(N) = ∂iq′(N)i .

In order to complete the theory, it remains to specify some constitutive equations for w′st(i) and q′(i).
In doing so, it might be that new state variables will be involved.

The physical idea behind these equations is that, the energy/heat flux difference q′, between the
actual and the generalized local equilibrium state, may be composed of various parts, say N,
which can be related to corresponding spatial interaction mechanisms of long range. These mechanisms
provide the opportunity for producing some energy/heat transfer to mechanical power without
affecting the internal energy, as manifested by Equations (19) and (22). The assumed transfer must be
accounted for in the entropy production and hence it is postulated that

γ := η̇ + ∂i

(
qi
θ

)
≥ 0 , (23)

or, in view of Equation (16),

− (ηθ̇ + ψ̇) + wst −
1
θ

qi∂iθ ≥ 0 . (24)

Inequality (23) (respectively (24)) is the Clausius–Duhem inequality for the generalized associated
local equilibrium state, which is supposed to apply for the real material as well. The concept of the
generalized associated local equilibrium state imposes the existence of absolute temperature and
entropy and motivates the introduction of inequality (23) or (24). Otherwise, these inequalities can be
exploited by employing known methods in continuum thermodynamics. That means, like classical
irreversible thermodynamics based on the hypothesis of a local equilibrium state, time and space
derivatives of the state variables can be elaborated, when exploiting the inequality. Since it has been
assumed in the present paper, that the response function of ψ does not depend on time and space
derivatives of θ, we may use the Coleman-Noll procedure [13,14] to prove that
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η = −
∂ψ(vI , ξ J , θ)

∂θ
. (25)

In conclusion, we would like to remark that the proposed thermodynamic approach is
motivated by the interesting works of Dunn [11], Dunn and Serrin [6], Maugin [4,15], Toupin [1]
and Ireman and Nguyen [16]. In particular, q′ may be viewed as interstitial work flux (cf. Dunn
and Serrin [6]). Under specific assumptions, theories based on the concept of non locality energy
residual (see Polizzotto [17], Polizzotto [18], Liebe and Steinmann [19] and Liebe et al. [20]), and
rested on the work of Edelen and Laws [21], are in line with the interstitial work flux approach. The
particular feature of the non locality energy residual based theories is that they postulate a so-called
insulation condition. The main difference to the aforementioned works is that q′ in the present work
is allowed to be given also implicitly as solution of differential equations, and not only explicitly as
function of state variables. Additionally, no insulation condition is generally required. We shall turn
back to these remarks at the end of Section 4.3.

4. Gradient Elasticity Theories in the Framework of the Non-Conventional Thermodynamics

4.1. Basic Constitutive Structure

We suppose that wst is given by
wst = Σjk ε̇ jk , (26)

with Σjk introduced in Section 2, and that ψ is a function of ε, k and θ,

ψ = ψ(x, t) = ψ(ε, k, θ) . (27)

Further, we assume that wst and q satisfy Equations (16)–(22), with N = 1,

wst = wst + w′st , q = q + q′ , (28)

and
wst − w′st − ψ̇− θη̇ − ηθ̇ − ∂iqi = 0 , (29)

w′st = ∂iq′i . (30)

By using Equations (25), (27) and the first of (28) in inequality (24), we obtain

wst − w′st −
ψ(ε, k, θ)

∂εij
ε̇ij −

ψ(ε, k, θ)

∂kijk
k̇ijk −

1
θ

qi∂iθ ≥ 0 . (31)

With regard to the energy law (29), we define the fully recoverable isothermal case through θ = θ0

= const. and
θ0η̇ + ∂iqi = 0 , (32)

ψ = ψ(ε, k) , (33)

so that, from Equation (29),

wst − w′st − ψ̇ = wst − w′st −
ψ(ε, k)

∂εij
ε̇ij −

ψ(ε, k)
∂kijk

k̇ijk = 0 . (34)

In this case, the inequality (31) reduces to an equality, namely Equation (34).
For definiteness, we set in the following (cf. Mindlin [2])

ψ(x, t) = ψ(ε, k) = ψ1 + ψ2 , (35)
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ψ1 = ψ1(x, t) = ψ1(ε) =
1
2

λεiiε jj + µεijεij , (36)

ψ2 = ψ2(x, t) = ψ2(k) = a1kiikkkjj + a2kijjkikk + a3kiikk jjk + a4kijkkijk + a5kijkkkji , (37)

where λ, µ (Lamé constants) and a1, . . . , a5 are material parameters. It is also convenient to define
stresses τ and µ by

τjk ≡ τkj :=
ψ(ε, k)

∂ε jk
≡ ψ1(ε)

∂ε jk
, (38)

µijk ≡ µikj :=
ψ(ε, k)

∂kijk
≡ ψ2(k)

∂kijk
. (39)

Then, we deduce from Equation (34), with the help of (26), that

Σjk ε̇ jk − w′st − τjk ε̇ jk − µijk k̇ijk = 0 , (40)

which is equivalent to
Σjk ε̇ jk − w′st = ψ̇ = ψ̇1 + ψ̇2 , (41)

and, in view of (30), equivalent to

Σjk ε̇ jk − ∂jq′j = ψ̇ = ψ̇1 + ψ̇2 . (42)

According to Equation (41), the whole stress power w = Σij ε̇ij − w′st will be stored in ψ

(i.e., in the material). Equation (40), respectively Equation (41) or Equation (42), is a central equation
for all gradient elasticity theories we shall discuss in the remainder of the paper. In order to obtain a
global counterpart of Equation (42), we take the integral over V and apply the divergence theorem:∫

V
Σjk ε̇ jkdV −

∫
∂V

njq′jdS =
d
dt

∫
V

ψdV . (43)

The first integral on the left hand side can be recast as∫
V

Σjk ε̇ jkdV =
∫

V
Σjk
(
∂ju̇k

)
dV

=
∫

∂V
njΣjku̇kdS +

∫
V

bku̇kdV . (44)

In deriving this formula, we multiplied the linear momentum Equation (9) with u̇k, integrated the
result over V and applied the divergence theorem. After substitution of (44) into (43),∫

∂V
njΣjku̇kdS−

∫
∂V

niq′idS +
∫

V
bku̇kdV =

d
dt

∫
V

ψdV , (45)

which is a general balance law for ψ (see, e.g., Liu [22] (p. 31)).
To complete the formulation of gradient elasticity theories, we must specify w′st and q′ by suitable

constitutive equations, which should be always compatible with the energy transfer law (30). In the two
subsequent sections we consider two cases for such constitutive equations. In both cases we assume
the response function of the Cauchy stress Σ to be of the form

Σ = Σ(ε, k) . (46)
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4.2. Toupin–Mindlin’s Type of Gradient Elasticity

We recover in this section Toupin–Mindlin’s gradient elasticity (see Toupin [1] and Mindlin [2])
by putting

w′st = −(∂iµijk)ε̇ jk − µijk k̇ijk , (47)

q′i = −µijk ε̇ jk + ci , (48)

where ci are the components of a divergence-free vector c,

∂ici = 0 . (49)

For simplicity, we set in the following c = 0 and recall from Equation (5), that µijk k̇ijk = µijk∂i ε̇ jk,
so that, from Equations (47) and (48),

w′st = −∂i

(
µijk ε̇ jk

)
= ∂iq′i . (50)

In other words, the energy transfer law (30) is satisfied trivially (identically) for the case of the
constitutive laws (47) and (48).

Next, on appealing to Equations (40) and (47),

Σjk ε̇ jk +
(

∂iµijk

)
ε̇ jk − τjk ε̇ jk = 0 , (51)

or equivalently, (
Σjk − τjk + ∂iµijk

)
ε̇ jk = 0 . (52)

Bearing in mind Equations (38), (39) and (46), and by applying standard arguments, we deduce
from Equation (52) that

Σjk = τjk − ∂iµijk ≡
∂ψ

∂ε jk
− ∂i

 ∂ψ

∂
(

∂iε jk

)
 . (53)

The field Equation (9) (respectively (10)), together with the constitutive law (53) and appropriate
initial and boundary conditions, make up Toupin–Mindlin’s gradient elasticity for classical body
and inertial forces. It is worth noticing, that, with regard to Equation (53), the Cauchy stress tensor
Σ is given by a space-like Euler–Lagrange derivative of ψ with respect to the strain tensor ε. This
property is characteristic for the gradient elasticity models of the Toupin–Mindlin’s type.

The concomitant boundary conditions can be established by using Equation (48) with c = 0 into
Equation (45): ∫

∂V
njΣjku̇kdS +

∫
∂V

niµijk
(
∂ju̇k

)
dS +

∫
V

bku̇kdV =
d
dt

∫
V

ψdV . (54)

The surface integrals in this equation may be assembled in the manner indicated by Mindlin [2]
(cf. also Broese et al. [5]):∫

∂V
njΣjku̇kdS +

∫
∂V

niµijk
(
∂ju̇k

)
dS =

∫
∂V

[Pku̇k + Rk (Du̇k)] dS , (55)

where

Pk := njΣjk − Dj

(
niµijk

)
+ (Dlnl) ninjµijk , (56)

RK := ninjµijk . (57)
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Equation (55) suggests the boundary conditions

either Pk or uk (58)

and either Rk or Duk (59)

have to be prescribed on ∂V. This completes the derivation of Toupin–Mindlin’s gradient elasticity as
a trivial example of the adopted non-conventional thermodynamics.

Let us now assume that q′ is the interstitial work flux. It can be recognized from Equation (48) that
q′ must be given as an explicit function of µijk and ε̇ jk, in order to derive Toupin–Mindlin’s gradient
elasticity. In addition, the only Cauchy stress tensor appearing in the field equations (cf. Equation (9) or
Equation (10)) is Σ, which justifies to denote Σ, given by the constitutive law (53), as the total Cauchy
stress tensor for the Toupin–Mindlin’s theory. Then, the total Cauchy stress Σjk is decomposed in the
classical Cauchy stress τjk and the non-classical Cauchy stress −∂iµijk.

4.3. Gradient Elasticity of Non-Toupin–Mindlin’s Type

We start the construction of a gradient elasticity model of non-Toupin–Mindlin’s type by assuming
w′st to be given by the constitutive equation

w′st = −ψ̇2 ≡ −µijk k̇ijk , (60)

and q′ to be irrotational. Then, there exists a scalar-valued potential φ(x, t), so that

q′i = ∂iφ . (61)

It follows from Equations (30), (60) and (61), that φ fulfills the Poisson’s equation

∆φ := ∂j∂jφ = ∂iq′i = −ψ̇2 = −µijk k̇ijk . (62)

Its global counterpart is

−
∫

∂V
(Dφ) dS =

d
dt

∫
V

ψ2dV , (63)

which is a general balance law for ψ2.
Keeping in mind Equations (38), (46) and (60), we find from Equation (41) first that

Σjk ε̇ jk = ψ̇1 = τjk ε̇ jk , (64)

and then, by employing standard arguments, that

Σjk ≡ τjk =
∂ψ1(ε)

∂ε jk
. (65)

That means, the response function of the Cauchy stress Σ now does not exhibit the structure of a
space like Euler–Lagrange derivative of ψ with respect to ε.

Next, by substituting (61) into (45),∫
∂V

njΣjku̇kdS−
∫

∂V
(Dφ) dS +

∫
V

bku̇kdV =
d
dt

∫
V

ψdV . (66)

To proceed further, we have to specify Dφ on ∂V. To this end, we assume the existence of a
self-equilibrated Cauchy stress σ with components

σjk = σkj ; (67)
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i.e., σ satisfies in V the equilibrium equations

∂jσjk = 0 . (68)

In order to demonstrate the capabilities of the theory, which deals with small deformations,
we shall concentrate ourselves in the remainder on problems which can be approximated by the
specific Neumann boundary condition

−Dφ = njσjku̇k on ∂V . (69)

It is emphasized that Equation (69) holds only on ∂V. Of course, after integration over ∂V, and in
view of Equations (63) and (68), we might infer from Equation (69) that∫

V
σjk ε̇ jkdV =

d
dt

∫
V

ψ2dV . (70)

However, this is a global equation. In other words, we do not require from it to hold for arbitrary
parts of the material body. To the contrary, Equation (63) is required to hold for arbitrary subbodies,
which yields, by suitable continuity properties, the local Equation (62).

Turning back to Equation (66), and taking into account Equation (69), we find that∫
∂V

nj

(
Σjk + σjk

)
u̇kdS +

∫
V

bku̇kdV =
d
dt

∫
V

ψdV . (71)

With respect to the surface integral in this equation, we define the surface traction

Pk := njTjk (72)

with
Tjk := Σjk + σjk (73)

and impose the boundary conditions

either Pk or uk (74)

have to be prescribed on ∂V. According to Equation (73), the stress T is decomposed in two parts Σ

and σ, and since σ is self-equilibrated, the stress T satisfies also the balance law for linear momentum
(cf. Equations (9) and (68))

∂jTjk + bk = 0 (75)

and the symmetry condition
Tjk = Tkj . (76)

The Equations (73), (75) and (76) justify to consider T as the total Cauchy stress tensor for the
non-Toupin–Mindlin’s theory. In addition, according to Equations (61) and (69) the stress tensor σ

causes on ∂V the energy flux niq′i. Once more it is outlined, that the boundary conditions must be
compatible with Equations (63) and (69).

For the aims of the present paper it is not necessary to specify σ further. However,
it is clear that the gradient elasticity we developed above deviates from gradient elasticities of
Toupin–Mindlin’s type. Especially, the energy transfer law (30) is no more trivially satisfied
(cf. Equation (62)), and neither of the Cauchy stresses Σ, σ and T is given by a space like
Euler–Lagrange derivative of ψ with respect to ε. One can prove this by keeping in mind
Equation (65), recalling Equations (73) and (68) and noting that neither the constitutive relation
σjk =

∂ψ
∂ε jk
− ∂i

(
∂ψ

∂(∂iε jk)

)
nor the constitutive relation σjk = −∂i

(
∂ψ

∂(∂iε jk)

)
can hold generally. Otherwise
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the displacement field u should satisfy the field Equation (68) combined with any one of these
constitutive laws and at the same time the field Equation (10) combined with the constitutive law (65).
One-dimensional examples in the next section might help to verify this argument.

It is perhaps instructive to imagine φ as the negative rate of a variable ϕ, i.e.,

ϕ̇ = −φ , (77)

and hence to rewrite Equation (61) in the form

q′i = −∂i ϕ̇ , (78)

and Equation (66) in the form∫
∂V

njΣjku̇kdS +
∫

∂V
(Dϕ̇) dS +

∫
V

bku̇kdV =
d
dt

∫
V

ψdV . (79)

The latter reflects the character of the power balance law in terms of rates and suggests how to
incorporate variational formulations of the theory (cf. corresponding approaches in Auffray et al. [7]
and Auffray et al. [8] and in the references cited there). After time integration of Equation (62),
using suitable initial conditions,

∆ϕ = ψ2 ≥ 0 , (80)

which indicates that ϕ is a subharmonic function. Equation (78) is analogous to Fourier’s heat
conduction law, with ϕ and ϕ̇ being thermal displacement and temperature like variables, respectively
(cf. Green and Naghdi [23]), suggesting to incorporate ϕ as a new state variable. In the context of the
present constitutive theory ϕ can be assumed to affect only the conductivity tensor in Fourier’s heat
conduction law. A new, more elaborated constitutive theory might be formulated by assuming ϕ to
enter into the response function of ψ as state variable. This aspect however is not pursued in the present
paper. Essential features of the gradient elasticity developed in this section will be demonstrated in the
next section, which provides a sound discussion on the one-dimensional example case presented for
the first time in Broese et al. [5].

The considerations in this and the last section make clear that the proposed thermodynamics
can be regarded as a generalization of the one according to Dunn and Serrin [6]. In fact, Dunn
and Serrin [6] supposed q′ to be given as an explicit function of state variables and their time and
space derivatives. This was the case in Equation (48) for the Toupin–Mindlin’s gradient elasticity
theory. However, apart from conceptual interpretations in conjunction with the generalized local
equilibrium state, the adopted thermodynamics allows to express the interstitial work flux q′ also as an
implicitly defined functional of state variables, i.e., as solution of some differential equations like those
in (61) and (62) for the non-Toupin–Mindlin’s gradient elasticity theory. This offers possibilities to
capture more complex constitutive structures than the Toupin–Mindlin’s gradient elasticity.

4.4. One-Dimensional Examples

By substituting Equations (36) and (37) into Equations (38) and (39), we obtain

τjk = λδjkεnn + 2µε jk , (81)

µijk =
1
2 a1

(
δijkknn + 2δjkknni + δkik jnn

)
+ 2a2δjkkinn + a3

(
δijknnk + δikknnj

)
+ 2a4kijk + a5

(
kkij + k jki

)
. (82)
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Following Broese et al. [5], we set x1 = x and consider a prismatic, slender bar of length L and
cross section A, oriented along the x-axis. The only non vanishing component of the normal vector n
along the x-axis is n1 = ±1. We put for the displacements ui

u1 = u = u(x, t) , (83)

u2 = u3 ≡ 0 everywhere , (84)

and for the material parameters in the elasticity law (81) we set λ = 0, 2µ = E. With E denoting the
classical Young’s modulus, we find that

ε := ε11 = u,x , (85)

k111 = ∂1ε11 = ε ,x = u,xx , (86)

τ := τ11 = Eε = Eu,x , (87)

µ1 := µ111 = g2E ε ,x = g2E u,xx , (88)

where

g :=

√
2
E
(a1 + · · ·+ a5) . (89)

We intend to compare one-dimensional responses predicted by the developed gradient
elasticity theory of non-Toupin–Mindlin’s type with those predicted by the Toupin–Mindlin’s theory.
The governing equations for both theories are provided below. In both cases the body force F in
Equation (10) is assumed to vanish.

4.4.1. Non-Toupin–Mindlin’s Gradient Elasticity

From Equations (65) and (87) we see that

Σ := Σ11 = τ = Eu,x (90)

and after inserting into Equation (10),
Σ,x − $u,tt = 0 . (91)

Then, we set
σ := σ11 , (92)

and assume that all the other components of the state variables vanish or play no role neither in the
field equations nor in the boundary conditions. Since, from Equation (68),

σ,x = 0 , (93)

we conclude that σ is a function only of time,

σ = σ(t) . (94)

For the uniaxial problem here, the boundary conditions (74) are chosen in the form

u(0, t) = 0 (95)

T(L, t) = Σ(L, t) + σ(t) =
P0

A
eiωt , (96)
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where i is the imaginary unit. The given uniaxial load at the right hand side of Equation (96) is
characterized by the operational frequency ω = const. and the amplitude of the axial load P0 = const..
By using (90) in (96),

E u,x(L, t) + σ(t) =
P0

A
eiωt . (97)

Now, it is convenient to introduce the classical velocity of propagation of axial elastic waves

c :=

√
E
$

, (98)

the dimensionless variables
x̄ :=

x
L

, t̄ :=
c
L

t , (99)

the dimensionless parameters

ḡ :=
g
L

, ω̄ :=
ωL
c

(100)

and the dimensionless displacement and stresses

ū :=
u
L

, T̄0 :=
P0

EA
, Σ̄ :=

Σ
E

, σ̄ :=
σ

E
, µ̄ :=

µ1

EL
. (101)

Thus, we may rewrite Equation (91) in the dimensionless form

ū,x̄x̄ − ūt̄t̄ = 0 , (102)

while (94) becomes
σ̄ = σ̄(t̄) . (103)

The dimensionless form of the boundary conditions (95) and (97) reads

ū(0, t̄) = 0 , (104)

ū,x̄(1, t̄) + σ̄(t̄) = T̄0eiω̄t̄ . (105)

Assuming the potential φ to be a function of x, t, i.e., φ = φ(x, t), we conclude from
Equation (62) that

φ,xx = −µ1u,xxt = −g2Eu,xxu,xxt . (106)

In dimensionless form,
φ̄,x̄x̄ = −ḡ2ū,x̄x̄ū,x̄x̄t̄ , (107)

where the dimensionless potential φ̄ is defined by

φ̄ :=
φ

cEL
. (108)

The form of the loading conditions (104) and (105) suggests making the ansatz

ū(x̄, t̄) = Ū(x̄)eiω̄t̄ . (109)

After inserting this ansatz into Equation (102), we arrive at the linear, ordinary differential
equation with constant coefficients

Ū,x̄x̄ + ω̄2Ū = 0 . (110)

Its solution is
Ū = B cos(ω̄x̄) + C sin(ω̄x̄) . (111)
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The boundary condition (104) implies B = 0, so that

ū(x̄, t̄) = Ceiω̄t̄ sin(ω̄x̄) . (112)

By using this in Equation (107),

φ̄,x̄x̄ = −iω̄5 ḡ2C2e2iω̄t̄ sin2(ω̄x̄) . (113)

Integration with respect to x̄ between x̄ = 0 and x̄ = 1, furnishes

φ̄,x̄(1, t̄)− φ̄,x̄(0, t̄) = −iω̄5 ḡ2C2e2iω̄t̄
[

1
2
− 1

4ω̄
sin(2ω̄)

]
, (114)

which corresponds to (63). Because of the boundary condition (104), the rate ū,t̄ vanishes at x̄ = 0, i.e.,
ū,t̄(0, t̄) = 0, so that, from the boundary conditions (69)

x̄ = 1 : φ̄,x̄(1, t̄) = −σ̄(t̄)ū,t̄(1, t̄) , (115)

x̄ = 0 : φ̄,x̄(0, t̄) = 0 . (116)

From Equations (114)–(116),

σ̄ū,t̄(1, t̄) = iω̄5 ḡ2C2e2iω̄t̄
[

1
2
− 1

4ω̄
sin(2ω̄)

]
, (117)

and by appealing to Equation (112),

σ̄iω̄Ceiω̄t̄ sin ω̄ = iω̄5 ḡ2C2e2iω̄t̄
[

1
2
− 1

4ω̄
sin(2ω̄)

]
. (118)

Hence,

σ̄ =
ω̄4 ḡ2C
sin ω̄

eiω̄t̄
[

1
2
− 1

4ω̄
sin(2ω̄)

]
. (119)

Finally, we use the latter and (112) in (105) to obtain

C =
T̄0

ω̄ cos ω̄ + ω̄4 ḡ2

sin ω̄

[
1
2 −

1
4ω̄ sin(2ω̄)

] , (120)

which is the same result as in the Version 3 example in Broese et al. [5]. In particular, −Λ(1, t̄)ū,x̄(1, t̄)
in [5] is equal to σ̄(t̄) here. Once again, it is emphasized that the required boundary conditions in
Version 3 example have been defined ad hoc in [5] and are valid only for the one dimensional loading
case considered there. To the contrary, the required boundary conditions here are established by
assuming in addition the existence of the self-equilibrated Cauchy stress tensor σ. In the calculated
responses of Ū(x̄) given below, T̄0 = 0.0015 has been chosen .

4.4.2. Toupin–Mindlin’s Gradient Elasticity

From Equations (53), (87) and (88) we see that

Σ := Σ11 = τ − µ1,x = E
(

u,x − g2u,xxx

)
, (121)

so that, after substitution into Equation (10),

E
(

u,xx − g2u,xxxx

)
− $u,tt = 0 . (122)
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It has been shown in Broese et al. [5] that the boundary conditions (56)–(59) reduce to

either P := P1 = n1 (τ − µ1,x) = n1E
(

u,x − g2u,xxx

)
or u (123)

and either R := R1 = µ1 = g2Eu,xx or n1u,x (124)

have to be prescribed at x = 0 and x = L. If we assume u,xx(0, t) = 0, and u,x(L, t) = ε0eiωt,
with ε0 being a prescribed strain value, then the one-dimensional boundary conditions corresponding to
those in Equations (95) and (96) read

u(0, t) = 0 , u,xx(0, t) = 0 , u,x(L, t) = ε0eiωt , (125)

τ(L, t)− µ1,x(L, t) = E
[
u,x(L, t)− g2u,xxx(L, t)

]
=

P0

A
eiωt . (126)

By employing the dimensionless variables introduced in Equations (99)–(101), we can recast the
field Equation (122) and the boundary conditions (125) and (126) as follows

ū,x̄x̄ − ḡ2ū,x̄x̄x̄x̄ − ūt̄t̄ = 0 , (127)

ū(0, t̄) = 0 , ū,x̄x̄(0, t̄) = 0 , ū,x̄(1, t̄) = ε0eiω̄t̄ , (128)

ū,x̄(1, t̄)− ḡ2ū,x̄x̄x̄x̄(1, t̄) = T̄0eiω̄t̄ . (129)

The form of the loading condition (129) suggests making the same ansatz as in Equation (109):

ū(x̄, t̄) = Ū(x̄)eiω̄t̄ . (130)

The problem (127)–(129) has been solved in Broese et al. [5], by means of the ansatz (130).
The solution reads

Ū(x̄) = C1eξ1 x̄ + C2e−ξ1 x̄ + C3cos(ξ2 x̄) + C4sin(ξ2 x̄) , (131)

where ±ξ1 and ±iξ2 are the eigenvalues of the differential Equation (127). The constants C1, C2, C3, C4

have been determined in [5] from the boundary conditions (128) and (129) as functions of ξ1 and ξ2.
In the calculated responses of Ū(x̄) given below we have chosen T̄0 = 0.0015 as above and Ū,x̄(1) =
0.0075 in the second of the boundary conditions in (128).

Classical elasticity is recovered from Equation (127) for ḡ = 0. For this case,

ū,x̄x̄ − ū,t̄t̄ = 0 , (132)

and by employing the ansatz (130),
Ū,x̄x̄ + ω̄2Ū = 0 , (133)

which has the solution
Ū = B cos(ω̄x̄) + C sin(ω̄x̄) . (134)

The first of the boundary conditions in (128) yields B = 0. Note that the second boundary
condition in (128) is non-classical and therefore it is not required to hold for classical elasticity.
The boundary condition (129) for ḡ = 0 is a classical one and furnishes C = T̄0

ω̄ cos ω̄ . Hence, for
classical elasticity Ū(x̄) takes the form

Ū(x̄) =
T̄0

ω̄ cos ω̄
sin(ω̄x̄) . (135)

As above, T̄0 = 0.0015 has been chosen in the calculated responses in the next section.
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4.4.3. Comparison of the Two Theories with Reference to the One-Dimensional Loading Case

The gradient elasticity theories of non-Toupin–Mindlin’s type and of Toupin–Mindlin are
different in both the field equations and the boundary conditions. Especially, with regard to the
derivatives with respect to x̄, the differential equation governing the response of the displacement ū is of
second-order for the non-Toupin–Mindlin’s theory (see Equation (102)) and of fourth-order for the
Toupin–Mindlin’s theory (see Equation (127)). Further, all boundary conditions in Equations (95) and (96)
for the non-Toupin–Mindlin’s theory are classical. To the contrary, not all boundary conditions in
Equations (125) and (126) for the Toupin–Mindlin’s theory are classical. Gradient effects are controlled
in both theories by the parameter ḡ (respectively g). For the case of the Toupin–Mindlin’s theory this
parameter is present in the constitutive law for the stress Σ (see Equation (121)) as well as in the boundary
conditions (cf. Equations (127) and (129)). To the contrary, in the case of the non-Toupin–Mindlin’s
theory this parameter is present only in the boundary condition (105) and not in the constitutive law (90)
for Σ. Actually, the boundary condition (105) depends on the stress σ̄ and this in turn depends on
ḡ, as it is shown in Equation (119). In other words, σ̄ affects the response of ū only by the boundary
condition (105).

It is also of interest to compare distributions of Ū(x̄) according to the two gradient elasticity
theories with each other and with the one predicted by classical elasticity. In Figures 1–4, N-T–M, T–M
and Cl. denote the responses according to the gradient elasticity of the non-Toupin–Mindlin’s type,
the gradient elasticity of Toupin–Mindlin and the Classical elasticity, respectively. It can be seen in
Figures 1 and 2 that, for ω̄ = 1.4, the distributions Ū(x̄) for both gradient elasticity theories tend to
be closer to the classical one, the smaller the value of ḡ. These figures indicate qualitatively similar
responses for the two theories. This holds true also for higher frequencies as shown in Figures 3 and 4.
For low frequencies, as in Figures 1 and 2, a stiffening effect is observed, i.e., decreasing absolute
values of Ū with increasing values of ḡ. However, the opposite happens for ω̄ = 2.0 in Figures 3 and 4,
and generally the stiffening effect for both gradient elasticities is dependent on the frequency ω̄.
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Figure 1. Predicted distributions according to the Toupin–Mindlin’s theory (T–M) for ω̄ = 1.4 and
various values of ḡ.
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Figure 2. Predicted distributions according to the non-Toupin–Mindlin’s theory (N-T–M) for ω̄ = 1.4
and various values of ḡ. The distributions are qualitatively similar to those in Figure 1.
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Figure 3. Predicted distributions according to the Toupin–Mindlin’s theory (T–M) for ω̄ = 2.0 and
various values of ḡ.



Entropy 2018, 20, 179 18 of 19

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.2  0.4  0.6  0.8  1

x−

N-T-M

U
−

g− = 0.1, V3
g− = 0.2, V3
g− = 0.3, V3

g− = 0.35, V3
g− = 0.4, V3

Cl.

Figure 4. Predicted distributions according to the non-Toupin–Mindlin’s theory (N-T–M) for ω̄ = 2.0
and various values of ḡ. The distributions are qualitatively similar to those in Figure 3.

5. Conclusions

1. We adopted in the paper a non-conventional thermodynamics framework, which allows to
address gradient elasticity models. The main issue in this thermodynamics is the assumption of
an energy transfer equation in addition to the usual energy balance law. This is equivalent to
allowing the interstitial work flux to be defined not only as an explicit function of state variables
but also as an implicitly defined functional of state variables.

2. Toupin–Mindlin’s gradient elasticity is derived by satisfying the additional energy transfer
equation identically.

3. A gradient elasticity model of non-Toupin–Mindlin’s type is established as a non-trivial
example of the assumed energy transfer law.

4. The required boundary conditions in the model of non-Toupin–Mindlin’s type are established by
employing a self-equilibrated stress tensor as part of the total Cauchy stress tensor at the
boundary. This allows to provide a rigorous justification of the ad hoc assumptions in the
Version 3 example studied earlier.

5. The most important conclusion of the paper is that we indicated a possibility for modelling
gradient elasticity of non-Toupin–Mindlin’s type. This result suggests pursuing further the ideas
introduced in the paper when modeling gradient effects.
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