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Abstract: Rate-distortion optimization (RDO) plays an essential role in substantially enhancing the
coding efficiency. Currently, rate-distortion optimized mode decision is widely used in scalable
video coding (SVC). Among all the possible coding modes, it aims to select the one which has
the best trade-off between bitrate and compression distortion. Specifically, this tradeoff is tuned
through the choice of the Lagrange multiplier. Despite the prevalence of conventional method
for Lagrange multiplier selection in hybrid video coding, the underlying formulation is not
applicable to 3-D wavelet-based SVC where the explicit values of the quantization step are not
available, with on consideration of the content features of input signal. In this paper, an efficient
content adaptive Lagrange multiplier selection algorithm is proposed in the context of RDO for
3-D wavelet-based SVC targeting quality scalability. Our contributions are two-fold. First, we
introduce a novel weighting method, which takes account of the mutual information, gradient per
pixel, and texture homogeneity to measure the temporal subband characteristics after applying
the motion-compensated temporal filtering (MCTF) technique. Second, based on the proposed
subband weighting factor model, we derive the optimal Lagrange multiplier. Experimental results
demonstrate that the proposed algorithm enables more satisfactory video quality with negligible
additional computational complexity.

Keywords: rate-distortion optimization; mode decision; scalable video coding; Lagrange multiplier;
3-D wavelet-based SVC; motion-compensated temporal filtering

1. Introduction

With the rapid development of video services in recent years, how to efficiently compress
video sequences has been considered as a very challenging task for transmitting video data over
heterogeneous networks. To meet this demand, scalable video coding (SVC) has become a simple and
flexible solution to enable seamless delivery by offering three different kinds of scalabilities, namely,
temporal scalability, spatial scalability, and quality scalability [1–4]. Generally speaking, there are
two main categories on SVC: discrete cosine transform (DCT)-based hybrid video coding SVC and
wavelet-based SVC.

Owing to the intrinsic localization and multiresolution features of the discrete wavelet transform
(DWT), video codecs based on motion-compensated three-dimensional (3-D) DWT have been studied
extensively for use in SVC [5–8]. 3-D wavelet-based SVC provides a natural way in producing
embedded bitstreams with full scalability and fine granularity for in-network adaptation [9,10].
In the 3-D wavelet-based SVC, temporal redundancy across frames is exploited by adopting the
motion-compensated temporal filtering (MCTF) framework [11–14], and spatial redundancy inside
a frame is utilized by 2-D spatial transform. Such codecs do not suffer from the drift problem often
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exhibited by the DCT-based SVC codecs with their incorporated feedback loops. Consequently, over the
last few years, much research has been devoted to the 3-D wavelet video coding, and it is meaningful
to further explore its properties for developing a best coding approach for 3-D wavelet-based SVC.

As in hybrid video coding-based SVC, rate-distortion optimization (RDO) plays a significant role
in SVC in choosing the most suitable coding parameters under communication bandwidth constraints.
A critical problem residing in RDO is the selection of the Lagrange multiplier that controls the RD
trade-off [15–23]. Sullivan and Wiegand first derived the relationship among the Lagrange multiplier,
distortion and bitrate. This simple and effective formula has been extensively adopted in hybrid
video coding [24,25]. Although the conventional Lagrange multiplier selection techniques have been
developed and widely adopted in hybrid video coding, the existing formulations are not applicable to
3-D wavelet-based SVC. This is principally due to the fact that the Lagrange multiplier is determined by
the quantization step. Different from hybrid video coding-based SVC where the quantization steps are
implied in the base layer, quantization for wavelet-based SVC is usually approached in an embedded
manner rather than using explicit quantization steps. Accordingly, in absence of the quantization step,
the conventional Lagrange multiplier cannot be directly applied to 3-D wavelet-based SVC.

The Lagrange multiplier selection technique used to solve the RDO problem is an important
feature that contributes to the success of current video coding. However, solving the optimal Lagrange
optimization problem in 3-D wavelet coding is more complicated because the energy difference
between the pixel and wavelet domains is not conserved after applying the bi-orthogonal wavelet
transform and MCTF technique. The latter leads to the intrinsic subband coupling across various
temporal subbands during motion aligned temporal filtering. Moreover, the open-loop prediction
structure employed in 3-D wavelet-based SVC further complicates the issue of Lagrange multiplier
selection. This issue has been solved by assigning different weighting factors to the subbands, resulting
in degrading unpleasant quality fluctuations [18,19,26–28]. For the Haar filter used in temporal
filtering structure, Ohm proposed a method to derive various quantization weights associated with
low-frequency and high-frequency subbands [29]. Xiong et al. have obtained weighting factors for
other longer temporal filters, such as 5/3 and 9/7 filters [30,31]. Peng et al. derived the weighting
factors from the subscriber’s preference for different resolutions [32,33]. In theory, the subband
distortions presented in the reconstructed frame through inverse wavelet transform can be accurately
derived from the filter-based weighting factors. However, all the temporal subbands in each temporal
decomposition level have diverse features from each other. As a consequence, it is necessary to consider
both the diverse content characteristics of the temporal subbands and the impact of subband coupling
in the Lagrange multiplier selection process.

Inspired by the methods mentioned above, we propose a content adaptive Lagrange multiplier
selection algorithm for RDO in 3-D wavelet-based SVC. During the RDO process, the wavelet filter
types, subband coupling phenomenon, and temporal subband content information are all taken into
account to adaptively compute the Lagrange multiplier. Our strategy aims to not only accurately select
the Lagrange multiplier of each temporal subband in the MCTF decomposition level, but also yield
better video quality. By performing the proposed algorithm, our codec clearly outperforms the existing
well-known 3-D wavelet-based SVC coding schemes with higher PSNR gains and much lower video
quality variations through the whole reconstructed video sequence.

The rest of this paper is organized as follows: Section 2 presents a brief overview of related work.
The proposed content-adaptive Lagrange multiplier selection is introduced in detail in Section 3 with
its performance evaluation provided in Section 4. Conclusions and discussions are drawn in Section 5.

2. Related Work

In this section, we review relevant background information related to the Lagrange multiplier
selection in the wavelet-based SVC. The reasons for the failure of the conventional Lagrange multiplier
selection in 3-D wavelet-based SVC are also addressed.
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2.1. System Model

The representative motion compensated embedded zero block coding (MC-EZBC) scalable video
coder [34] is a highly efficient member of the existing 3-D wavelet-based SVC schemes. However, the
coding efficiency of MC-EZBC in the range of low bitrates is far from satisfactory. To improve this
deficiency, Wu et al. put forward the well-known enhanced motion-compensated embedded zero
block coding (ENH-MC-EZBC), which retains its excellent rate-distortion performance at high bitrates
and achieves significant improvement at low bitrates and/or low resolutions [35].

In our work, the proposed algorithm is designed for the popular ENH-MC-EZBC considering
quality scalability. Our choice of this codec system is motivated by the fact that ENH-MC-EZBC
incorporates all the advanced encoding tools found in the state-of-the-art video coding schemes and
obtains the excellent coding performance both at low and high bitrates. The ENH-MC-EZBC codec
system model contains three parts: encoder, bitstream extractor, and decoder, which is shown in
Figure 1. In the encoder, a motion compensated 3-D subband/wavelet transform naturally partitions
the input video sequence into a range of spatiotemporal resolutions. We then use 3D-EZBC to encode
the resulting spatio-temporal subbands. All the motion fields are coded as side information by using
lossless spatial differential pulse code modulation (DPCM) and adaptive arithmetic coding. In the
bitstream extractor, the fully embedded bitstream is truncated based on both user preferences and
network conditions to generate a highly flexible scalable bitstream to meet specific applications. At the
decoder, the respective reverse operations are carried out to reconstruct video sequences.
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Figure 1. Block diagram of the ENH-MC-EZBC codec system model.

2.2. Lagrange Optimization and Lagrange Multiplier Selection

The Lagrange optimization technique provides a systematic way to solve the constrained RDO
problem, which aims at selecting the optimal coding parameter that minimizes the overall distortion
measure subject to a given target bitrate restriction.

More details on Lagrange optimization technique have been discussed in [16,20,36].
This technique is well known in optimization problems where the cost and objective functions are
continuous and differentiable. Everett’s contribution [37] demonstrated that the Lagrange optimization
technique could also be used for discrete optimization problems, with no loss of optimality if a solution
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exists with the required budget; i.e., as long as there exists a point in the convex hull that meets the
required budget.

Let {Para} denote the coding parameter set, including motion estimation, mode decision, MCTF
decomposition levels, etc. For mathematical convenience, the rate control problem can be formulated
as: Minimize the distortion D, subject to a target rate RT:

{Para}opt = arg min
{Para}

D = arg min
{Para}

K

∑
i=1

di s.t.
K

∑
i=1

ri ≤ RT, (1)

where di and ri are the distortion and bitrate for the ith (i = 1, 2, · · ·K) coding unit, respectively; K is
the total number of coding units involved and RT the available bitrate constraint.

In view of the Lagrange optimization, the above constrained optimization problem (1) can be
converted into an unconstrained form as:

{Para}opt = arg min
{Para}

J = arg min
{Para}

(D + λR) = arg min
{Para}

K

∑
i=1

(di + λri), (2)

where J = D + λR is the Lagrange cost function, and λ is the so-called Lagrange multiplier that
weights the relative importance between di and ri. The optimal coding parameter set for all coding
units can be determined by minimizing the Lagrange cost function as expressed in Equation (2).
Consequently, how to determine λ becomes a key problem in Lagrange optimization. To have a
better solution to the unconstrained problem, much effort has been placed on the research of the
Lagrange multiplier selection. One may attain the λ using bisection search [38,39]. In RDO for video
coding, however, a more computationally efficient approach is usually favorable to determine the
Lagrange multiplier.

Rather than empirically solving the problem of Lagrange multiplier selection as in [38,39], the
λ in video coding can be determined using an R-D function. Due to the convexity of the R-D curve,
the optimal slope λ matched to the desired R can be easily obtained using standard convex search
techniques [24,40]. For each coding unit, the point on the R-D curve that minimizes the Lagrange cost
is that point at which the line of absolute slope λ is tangent to the convex hull of the R-D curve.

Note that the R-D curve is convex and non-increasing in video coding, and if we assume that
both R and D are differentiable everywhere, the minimum of the Lagrange cost function J is given by
setting its derivative to zero, i.e.:

∂J
∂R

=
∂D
∂R

+ λ = 0, (3)

which yields:

λ = − ∂D
∂R

∣∣∣∣
R=RT

. (4)

where RT is the target bitrate. A given value of λ yields an optimal solution {Para}opt(λ) to the original

RDO problem (1) for a particular value of R
(
{Para}opt

)
.

2.3. Problem Formulation

In 3-D wavelet-based SVC, the temporal decomposition is efficiently refined by adopting the
MCTF technique. The ENH-MC-EZBC scalable video coder utilizes an adaptive lifting-based MCTF
framework with switching between LeGall and Tabatabai (LGT) 5/3 and Haar 2/2 filters to exploit the
temporal redundancies between successive frames [41]. During the MCTF process, video frames are
filtered into low-frequency (L) and high-frequency (H) subbands. The process to generate the temporal
high- and low- subbands is called the “prediction” and “update” step, respectively. Figure 2 illustrates
the prediction and updates steps for the analysis stage of the three-level adaptive MCTF decomposition.
MC and IMC are motion compensation and inverse operators, respectively. Scene change information is
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reflected in the choice of the filter bank, which propagates to the lower temporal levels. The coefficients
ατ and βτ(τ = 1, 2, 3) along the branches are filter-based weighting factors. Since 3-D wavelet-based
SVC is usually based on the underlying open-loop MCTF structure, its RD performance is further
complicated by the inherent problem of the propagation of the quantization errors along the temporal
wavelet decomposition tree [42]. Therefore, the selection of the Lagrange multiplier for wavelet-based
SVC should be addressed differently.
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3. Proposed Lagrange Multiplier Selection Algorithm

In this section, we introduce the proposed content adaptive Lagrange multiplier selection
algorithm for the 3-D wavelet-based SVC codec.

3.1. Lagrange Multiplier Selection Bottlenecks in 3-D Wavelet-Based SVC

Lagrange multiplier based mode decision is one of the most important technologies in SVC [43].
In the adaptive MCTF framework of 3-D wavelet-based SVC, each temporal subband frame in Figure 2
is assigned to one out of four frame modes, including “bi-direction” (denoted as m1), “uni-left”
(denoted as m2), “uni-right” (denoted as m3) and “intra” (denoted as m4) modes. The ENH-MC-EZBC
SVC codec incorporates an optional rate-distortion (R-D) optimized mode decision algorithm. The goal
of an R-D optimized mode-selection algorithm is to choose the best mode from available coding
frame modes. The mode that minimizes distortion subject to a rate constraint is chosen as the best
frame mode. Let F = (f1, f2, f3, . . . , fK) denote a group of K frames. For a vector of coding mode
allocations M = (m1, m2, m3, m4) and a bitrate constraint RT, this optimization problem can be
expressed by:

M∗ = arg min
M

D(F, M), s.t. R(F, M) ≤ RT, (5)

where M∗, D(F, M) and R(F, M) denote the vector of best mode allocations, distortion metric, and
coded bitrate. This may be written as an unconstrained problem using a Lagrange optimization
method as:

M∗ =
K

∑
i=1

arg min
M

J(Fi), (6)
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where J(Fi) is the Lagrange cost for the ith frame and is given as:

J(Fi) = D(Fi, Mi) + λ · R(Fi, Mi), (7)

where D(Fi, Mi) is the distortion term between the current frame and its reference frame, and R(Fi, Mi)

the bitrate term representing the expected number of bits allocated to the ith frame, with a specific λ.
Accurate R-D model is crucial in the determination of the Lagrange multiplier. It is worthwhile to

mention that the R-D relationships can be quite different for various temporal subbands (T-bands).
Unfortunately, it cannot to maximize coding efficiency through utilizing a fixed Lagrange multiplier
at each temporal layer. Consequently, the conventional Lagrange multiplier selection method is not
optimal as it does not consider the content characteristics of the T-bands.

3.2. Analyzing the Distortion Relationship between Temporal Subbands and Reconstructed Frames

The distortion fluctuation exhibited by the 3-D wavelet-based SVC codecs can be better understood
by analyzing the distortion propagation during MCTF. In the ENH-MC-EZBC codec, the adaptive
MCTF framework has been implemented using either the Haar or the 5/3 filter to improve the coding
performance. As shown in Figure 2, the coefficients ατ and βτ (τ = 1, 2, 3) along the branches are
filter-based weighting factors, which are given in Table 1.

Table 1. Coefficients ατ and βτ depending on the mode of the current frame.

Frame Mode α1 α2 α3 β1 β2 β3

bi-direction −1/2 1 −1/2 1/4 1 1/4
uni-left −1 1 0 1/2 1 0

uni-right 0 1 −1 0 1 1/2
intra N/A N/A N/A N/A 1 N/A

In the Haar MCTF, the original frames are filtered temporally with a two-tap Haar filter along the
motion trajectory. For the connected pixels, the low-frequency subbands and high-frequency subbands
are implemented by the following lifting structure:

Hi(m, n) = I2i+1(m, n)− Ĩ2i(m− dm, n− dn), (8)

Li

(
m− dm, n− dn

)
= I2i

(
m− dm, n− dn

)
+ (1/2) · H̃i

(
m− dm + dm, n− dn + dn

)
. (9)

For the 5/3-based MCTF, the temporal analysis can be written as:

Hi(m, n) = I2i+1(m, n)− (1/2) · Ĩ2i(m− dm, n− dn)− (1/2) · Ĩ2i+2(m + dm, n + dn), (10)

Li

(
m− dm, n− dn

)
= I2i(m, n) + (1/4) · H̃i

(
m− dm − dm, n− dn − dn

)
+ (1/4) · H̃i−1

(
m− dm + dm, n− dn + dn

)
, (11)

where Hi and Li denote the temporal high- and low-frequency subbands of the ith (i = 1, 2, · · ·K)

frame of a video sequence, respectively; I2i(m, n) represents the pixel value at position (m, n) in frame
f2i; Ĩ2i(m− dm, n− dn) and Ĩ2i+2(m + dm, n + dn) denote the interpolated values of pixel (m, n) in the
frame 2i and 2i + 2, respectively. H̃ is the interpolated value of pixel in the high-frequency frame;
(dm, dn) is the motion vector in frame f2i; dm is the closest integer value to dm, and dn is defined in the
same way.

For mathematical convenience, we only consider the case in the lifting structure of one-level
5/3 inverse MCTF in the following. Thus, according to the Equations (10) and (11), the errors in the
reconstructed f2i(m, n) and f2i+1(m, n) can be formulated as:

εf2i = −(1/4) · εHi−1 + 1 · εLi − (1/4)εHi , (12)
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εf2i+1
= −(1/8) · εHi−1 + (1/2) · εLi + (3/4) · εHi + (1/2) · εLi+1 − (1/8) · εHi+1 , (13)

where εf denotes the reconstruction error of frame f. The assumption supposes that the distortion
in each T-band can be modeled as independent and identically-distributed zero-mean additive
white noise. Let σ2

L and σ2
H be the error variance of pixels in low-frequency subbands and that of

pixels in high-frequency subbands, respectively. Also, let σ2
f2i

and σ2
f2i+1

denote the error variance in the
reconstructed video frames. Accordingly, the distortions in the reconstructed frames are expressed as:

σ2
f2i

= 1 · σ2
L + (1/8) · σ2

H, σ2
f2i+1

= (1/2) · σ2
L + (19/32) · σ2

H. (14)

The distortion associated with different T-bands will contribute differently to distortion in the
reconstructed frames. Typically, this difference is quantified by analyzing the weighting factor for
inverse MCTF. The weighting factor indicates how much a unit distortion in a specified subband
contributes to the overall distortion in the reconstructed video. The derivation of its weighting factors
is given as:

ωL = (1/2)2 + (1)2 + (1/2)2 = 1.5, (15)

ωH = (−1/8)2 + (−1/4)2 + (3/4)2 + (−1/4)2 + (−1/8)2 ≈ 0.7188. (16)

This results in distortion fluctuation across the reconstructed frames after one-level inverse MCTF.
When multi-level MCTF is involved, the weighting factor of each temporal subband is modeled as:

ωLL = ωL ·ωL, ωLH = ωL ·ωH, ωLLL = ωLL ·ωL, ωLLH = ωLL ·ωH, . . . (17)

Therefore, the distortion relationship between the T-bands and the reconstructed frame can be
derived in the same way but with an iterative calculation. That is, the distortion for the original video
sequences (denoted as D) after T levels MCTF decomposition can be derived by:

D =
K
∑

i=1
Di

=
K
∑

i=1

(
T
∑

t=1

t−1
∏
j=1
ω

(j)
i_Hd(t)

i_H +
T
∏

t=1
ω

(t)
i_Ld(T)

i_L

) , (18)

where d(t)
i_H, and d(T)

i_L are the reconstruction distortion (namely error variance) of the high-frequency
subbands in the tth (1 ≤ t ≤ T) temporal level, and low-frequency subbands in the highest temporal
level, respectively. Additionally, ω(j)

i_H and ω(t)
i_L represent the weighting factors dependent on the

motion estimation algorithm and the wavelet filter pair used for MCTF.

3.3. Adaptive Lagrange Multiplier Selection

As described in Subsection 2.2, the Lagrange multiplier λ is usually used to guide the bit allocation
of each subband so that the overall distortion can be minimized and also with balanced the rate and
distortion among the reconstructed frames. To our best knowledge, a larger λwill result in a higher
coding distortion with less coding bits. Contrarily, a smaller λwill lead to a lower coding distortion
with more coding bits. Therefore, we can allocate more bits to the T-bands with more detailed
information by decreasing the subband-level Lagrange multiplier.

We define a weighting factor vector as Ω = (ω1,ω2, . . .ωK), which indicates the contribution of
a unit quantization error in each temporal subband to the overall distortion in the reconstructed video
sequence. To obtain the weighting factor of the MCTF process, we need to employ a novel derivation,
which involves the complicated motion compensation process and temporal subband content
characteristics statistics. For computing these weighting factors, we utilize the mutual information,
gradient per pixel, and texture homogeneity to measure the temporal subband content features.
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Mutual information (MI) is a measurement of similarity between frames which can detect the
differences among successive frames [44]. In this paper, we utilize MI to measure the similarity
between the temporal subband frames. A large difference between frames (corresponding to the high
motion activity) leads to a low MI value, while a small change between frames responds to a high MI
value [45,46].

Let X be a discrete random variable with a set of possible outcomes AX = {a1, a2, . . . , aL} with
possibilities {p1, p2, . . . , pL}, pX(x = al) = pll ≥ 0, and ∑

x∈AX

pX(x) = 1. According to the information

theory, the entropy of X is:
H(X) = − ∑

x∈AX

pX(x) log pX(x). (19)

The joint entropy of discrete random variables X and Y is:

H(X, Y) = − ∑
x,y∈AX,AY

pXY(x, y) log[pXY(x, y)]. (20)

The MI between random variable X and Y is given by:

I(X, Y) = − ∑
x,y∈Ax,Ay

pXY(x, y) log
pXY(x, y)

pX(x)pY(y)
. (21)

The relation between MI and joint entropy is given by:

I(X, Y) = H(X) + H(Y)−H(X, Y). (22)

In a YUV formatted video sequence, let us consider a gray level video sequence with intensity
value ranging from 0 to L − 1 (e.g., L = 256 for 8-bit depth). For the luminance component Y,
PY

i,i+1(x, y) (0 ≤ x, y ≤ L− 1) is the probability that a pixel with gray level x in frame fi has a gray level
y in frame fi+1. Let MIY

i,i+1 be the MI of the luminance component. So we can obtain the MIY
i,i+1 value

as shown below:

MIY
i,i+1 = −

L−1

∑
x=0

L−1

∑
y=0

PY
i,i+1(x, y) log

[
PY

i,i+1(x, y)/PY
i (x)P

Y
i+1(y)

]
, (23)

where PY
i (x) and PY

i+1(y) are the possibilities that a pixel with gray level x in frame fi and a pixel with
gray level y in frame fi+1, respectively.

The gradient based subband content complexity measure has been considered in our Lagrange
multiplier selection scheme. Here, the gradient per pixel (GPP) of the temporal subband is defined by:

GPPi =
1

M×N

N−1

∑
n=0

M−1

∑
m=0

(|Ii(m, n)− Ii(m + 1, n)|) + (|Ii(m, n)− Ii(m, n + 1)|), (24)

where M and N are the width and height of the temporal subband, and Ii(m, n) is the pixel value at
position (m, n).

With the statistical analysis, we observe that, if the subband belongs to the homogeneous regions,
the number of bits will be a smaller value, and it will relevantly increase with the complex of the
texture. Hence, the texture homogeneity of each subband is measured by calculating the ratio between
variance and mean of the subband, which is given by:
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Ratiok =
Variance

Mean
=

Variance

1
256

N−1
∑

n=0

M−1
∑

m=0
Ii(m, n)

, (25)

where Variance and Mean are the variance and mean value of each temporal subband, respectively.
Let W denote the synthesis gain matrix with regard to target video sequence. Therefore, the

associated temporal subband weighting factor Ω = (ω1,ω2, . . .ωK) for prediction can be calculated as:

ωi = ωfilter_i · (α ·GPPi + β · Ratioi)
−γ·MIi ·Wi→i+1, (26)

where α, β, and γ are model parameters updated by multiple linear regression analysis. For each
temporal subband frame i,ωfilter_i is the filter-based weighting factor using Equations (15)–(17); MIi,
GPPi, and Ratioi can be computed by Equations (23)–(25), respectively. As pointed out in [31], Wi→i+1
is the cross-subband error propagation, which reflects the importance of coefficients in each subband.

Similar to JPEG2000 [47], we assume that the distortions from various temporal subbands are
approximately additive. Equation (18) reveals that the total distortion is simply a linear combination
of the distortions of all the temporal subbands. It is noticeable that the wavelet coefficients within
each temporal subband obey the Gaussian distribution [48,49], hence, the distortion of the transform
coefficients can be expressed as follows:

di = k′
πe
6

(
Q

∏
q=1

σ2
q

)1/Q

2−ηriωi, (27)

where di and ri stand for the distortion and bitrate for the ith temporal subband frame, respectively.
σ2

q is the variance of the qth coefficient, Q the number of coefficients concerned. Besides, k′ and η are
the parameters related to the temporal decomposition scheme used and the corresponding slope for
SVC, respectively.

However, in practice, it is very difficult to determine the variance for a given coefficient, as required
by Equation (27). Based on the observation the variance of each coefficient can be estimated by:

σ2
q = βqσ

2
f , (28)

where βq is a parameter related to the wavelet transform, and σ2
f the variance of the residual pixel

values before wavelet transform. Therefore, Equation (27) can then be rewritten as:

di = k′ · πe
6
·
(

Q

∏
q=1

βqσ
2
f

)1/Q

· 2−ηri ·ωi. (29)

Moreover, the variance of the residual pixel value before wavelet transform σ2
f can be further

approximated using the mean absolute difference (MAD) by σ2
f ≈ 2MAD2. Consequently, the

distortion di for the i th subband can be expressed as:

di = k′ · πe
6 ·
(

Q
∏

q=1
βqσ

2
f

)1/Q

· 2−ηri ·ωi

= k′ · πe
6 ·
(

Q
∏

q=1
βq · 2MAD2

)1/Q

· 2−ηri ·ωi

= k · πe
6 ·MAD2 · 2−ηri ·ωi

, (30)

with k = 2k′
(

Q
∏

q=1
βq

)1/Q

a parameter related to the wavelet transform decomposition scheme used.
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According to Equations (26)–(30), it is easy to compute the Lagrange multiplier λi of the ith
subband as:

λi = −
∂di
∂ri

∣∣∣∣
ri=Ri

, (i = 1, 2, . . . K), (31)

Correspondingly, Equation (31) can be written as:

λ1 = −ω1 · 2−η · ∂d1
∂r1

∣∣∣
r1=R1

λ2 = −ω2 · 2−η · ∂d2
∂r2

∣∣∣
r2=R2

...

λK = −ωK · 2−η · ∂dK
∂rK

∣∣∣
rK=RK

, (32)

Based on Equations (30)–(32), a more practical Lagrange multiplier expression is then derived as:

λi = ϕMAD22−ηriωi, (33)

with ϕ = 6.2 an empirical constant suitable for different sequences.
By means of Lagrange multiplier λi, the RDO objective function Equation (7) can be rewritten as:

J(Fi) = Di(Fi, Mi) + λi · Ri(Fi, Mi)

=
K
∑

i=1
ωidi(ri) + λi(

K
∑

i=1
Ri − RT)

=
K
∑

i=1

[
T
∑

t=1

t−1
∏
j=1
ω

(j)
i_Hd(t)

i_H(ri) +
T
∏

t=1
ω

(t)
i_Ld(T)

i_L(ri)

]
+ λi · (

K
∑

i=1
Ri − RT)

, (34)

where ω(j)
i_Hd(t)

i_H(Ri) denote the weighted distortion term for the high-frequency subbands, and

ω
(t)
i_Ld(T)

i_L(Ri) the weighted distortion term for the low-frequency subbands. Only the frame mode with
the minimum Lagrange cost J(Fi) is finally chosen as the best frame mode.

3.4. Summary of the Proposed Algorithm

The detailed procedure of the proposed Lagrange multiplier selection algorithm is outlined in the
following Algorithm 1.

In order to access the accuracy of the proposed R− λ model, R2 is utilized as the quantitative
metric which can measure the degree of data variation from a given model [50]:

R2 = 1−
∑
i

(
Xi − X̂i

)2

∑
i

(
Xi − Xi

)2 , (35)

where Xi and X̂i, respectively, are the actual and the estimated values of the ith data point. X is
the mean of all the data points. The maximum R2 value is 1, which occurs when Xi = X̂i for any i.
The closer the value of R2 is to 1, the more accurate the model is. In our experiment, for each test
sequence, the λ value of each MCTF level is fitted at the target bitrate by the proposed R− λmodel.
The R2 statistics for four-level MCTF are tabulated in Table 2. From this table, we can notice that the R2

values are all close to 1. Consequently, it can be concluded that the analytical R− λmodel works well
for sequences at the different temporal decomposition levels. This is a crucial point of our approach.
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Algorithm 1 An efficient algorithm for content adaptive Lagrange multiplier selection

Step 1 Initialization: Input a video sequence with K frames for illustration. Obtain the frame rate, total number
of frames, target bitrate, etc., from the configuration file or manual input.

Step 2 Modeling the distortion relationship between the temporal subbands and reconstructed frames.
Step 3 Temporal subband weighting factor calculation (for temporal subband i)

(3-1) Calculate MI value MIY
i,i+1 of luminance component between fi and fi+1 by Equation (23);

(3-2) GPPk calculation for each subband according to Equation (24);
(3-3) Texture homogeneity Ratiok calculation for each subband according to Equation (25);
(3-4) Apply MIY

i,i+1, GPPk, and Ratiok into Equation (26) to compute temporal subband weighting
factorωi.

Step 4 Lagrange multiplier selection: Carry out the adaptive Lagrange multiplier selection scheme by means of
Equations (30)–(33).

Step 5 Model parameters update: Parameters update using multiple linear regression analysis.
Step 6 Temporal subband frame mode selection:

(6-1) Calculate the Lagrange cost J(Fi) for the temporal subband frame i with mode
M = (m1, m2, m3, m4).

(6-2) Output the best frame mode M∗ with the minimum cost J(Fi).

Step 7 Loop until all frames are encoded:

Set i := i + 1, if i < K, going to Step 2 until the end of encoding, else report the related encoding
parameters and exit.

Table 2. The R2 values of each MCTF level for test video sequences.

Sequences
MCTF Level

1st 2nd 3rd 4th

Football 0.9921 0.9894 0.9951 0.9975
Foreman 0.9860 0.9954 0.9967 0.9982

Soccer 0.9984 0.9962 0.9981 0.9993
Crew 0.9976 0.9983 0.9989 0.9991

Ice 0.9787 0.9899 0.9935 0.9980
City 0.9843 0.9894 0.9932 0.9982

Johnny 0.9885 0.9891 0.9964 0.9989
KristenAndSara 0.9932 0.9967 0.9970 0.9985

Stockholm 0.9924 0.9962 0.9984 0.9990
Basketball 0.9787 0.9812 0.9899 0.9988

Cactus 0.9949 0.9950 0.9966 0.9990
Park_joy 0.9815 0.9843 0.9957 0.9981

Traffic 0.9870 0.9932 0.9960 0.9991
PeopleOnStreet 0.9893 0.9919 0.9949 0.9993

Average 0.9888 0.9919 0.9957 0.9986

4. Experimental Results

In this section, extensive experiments have been conducted to verify the effectiveness of the
proposed content adaptive Lagrange multiplier selection algorithm for 3-D wavelet-based SVC.

4.1. Video Test Sequences

The experimental results over all video coding schemes are reported for fourteen standard test
sequences based on YUV color format with 4:2:0 color sampling and 8 bits of precision per sample,
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including five different resolutions: CIF (352 × 288, 30 fps), 4CIF (704 × 576, 30 fps), 720p (1280 × 720,
60 fps), 1080p (1920 × 1080, 50 fps), and 2K (2560 × 1600, 30 fps), which are listed in Table 3. We also
plot the temporal information (TI) and spatial information (SI) indices [51,52] of all source sequences
in Figure 3. It demonstrates that the test sequences cover a wide range of video contents in terms of
motion and spatial details. For each of the resolutions, the test sequences are decoded at different
target bitrates (CIF and 4CIF: 256, 384, 512, 640, 768, 896, 1024 kbps; 720p: 384, 512, 640, 768, 896, 1024,
1536 kbps; 1080p and 2K: 2048, 3072, 4096, 5120, 6144, 7168, 10240 kbps).

Table 3. Properties of standard video test sequences.

Sequences Resolution K1 Characteristics

Football 352 × 288 260 Fast camera and human subject motion, highly spatial details
Foreman 352 × 288 300 Fast camera and content motion with pan at the end

Soccer 352 × 288 300 Fast changes in motion, rapid camera panning
Crew 704 × 576 300 Multiple moderate objects movement

Ice 704 × 576 240 Still background and moderate human subject motion
City 704 × 576 300 Fast camera motion, high detail of buildings

Johnny 1280 × 720 100 Still background and low local motion
KristenAndSara 1280 × 720 100 Still background and moderate local motion

Stockholm 1280 × 720 100 Moderate camera panning, high detail of buildings
Basketball 1920 × 1080 100 Fast camera and human subject motion, highly spatial details

Cactus 1920 × 1080 100 Circling motion and highly spatial details
Park_joy 1920 × 1080 100 Camera and content motion, high detail of trees

Traffic 2560 × 1600 100 Moderate translational motion and highly spatial details
PeopleOnStreet 2560 × 1600 100 Still background and many human subject motion

1 The number of frames in the test video sequence.
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4.2. Experimental Setup

In this paper, all the algorithms are implemented with ANSI C in Microsoft Visual C++ 6.0
and MATLAB R2012b programming environments. Our experiments are conducted on a 4-core
(i5-2400@3.10GHz) computer equipped with RAM 8 GB that is also used to measure the computational
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complexity of our method. In the simulation, each group of pictures (GOP) contains 16 frames. During
the MCTF process, motion estimation is implemented using a full-search with quarter–pixel accuracy
on the dyadic wavelet coefficients. The block size varies from 4 × 4 to 128 × 128, and the search range
of both the horizontal and vertical dimension is [–16, 15]. The default Lagrange multiplier values are
given in the rate-distortion optimized mode selection process. All the other encoder settings are set
identically for all methods.

4.3. Performance Evaluation

To evaluate the effectiveness of our algorithm, we have implemented it on the 3-D wavelet-based
SVC reference software ENH-MC-EZBC configured with the common test conditions as suggested in
configure file. In the simulation, we have performed the following five representative codecs with the
same configuration. Recently, these codecs deliver the best coding performance for scalable coding of
video datasets [53]:

• MC-EZBC: the original MC-EZBC without employing proper RDO scheme.
• RPI-MC-EZBC: the bidirectional MC-EZBC from Rensselaer Polytechnic Institute which uses

Haar filters for the conventional MCTF framework with the default Lagrange multiplier value for
all the temporal decomposition levels.

• RWTH-MC-EZBC: the improved version of MC-EZBC from RWTH Aachen University, which uses
longer filters instead of Haar filters for the conventional MCTF framework with the corresponding
fixed Lagrange multiplier for each temporal decomposition level.

• ENH-MC-EZBC: the enhanced MC-EZBC using an adaptive MCTF framework with the
corresponding fixed Lagrange multiplier for each temporal decomposition level.

• Proposed method: our codec with the proposed content adaptive Lagrange multiplier
selection method.

In the experiments, only the luminance component is taken into consideration since human
visual system is less sensitive to color than to luminance. For reasons of brevity, the average peak
signal-to-noise ratios (PSNR) (dB) and the standard deviation of PSNR (PSNR STD) on luminance
component have been used as quality metric, which are defined as follows:

PSNR = 10log10

(
2552

MSE

)
, (36)

PSNR STD =

√√√√√√K ·
K−1
∑

i=0
PSNR2

i −
(

K−1
∑

i=0
PSNRi

)2

K · (K− 1)
, (37)

where MSE denotes the mean square error between the original frame and reconstructed frame, PSNRi
stands for the PSNR of the ith reconstructed frame and K the number of video frames in a sequence.
Note that a higher PSNR means that a better RD performance is achieved. Meanwhile, the smaller the
PSNR STD value, the better the video quality perceived by the end user, and vice versa.

4.3.1. Comparison of Rate-Distortion Performance

To verify the overall rate-distortion (R-D) performance of the proposed Lagrange multiplier
selection approach, we compare it with the successful coding schemes on the framework of
motion-compensated subband coding (MCSBC): ENH-MC-EZBC, RWTH-MC-EZBC, RPI-MC-EZBC,
and MC-EZBC. Let “Scheme 1”, “Scheme 2”, “Scheme 3”and “Scheme 4” denote our method compared
to the ENH-MC-EZBC, RWTH-MC-EZBC, RPI-MC-EZBC, and MC-EZBC, respectively.

Figure 4 shows the R-D curves of five codecs for six selected test sequences (“Soccer”, “Crew”,
“Stockholm”, “Basketball”, “Park_joy”, and “PeopleOnStreet”) at different target bitrates. Obviously, it
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is observed that the codec with the proposed algorithm achieves the best R-D performance among all
codecs. From these figures, we can see that our method is noted with average PSNR improvement
over other methods about 0.53–3.2 dB. As shown in Figure 4a, for the “Soccer” sequence, the
proposed algorithm yields 0.79, 1.15, 1.4, and 2.7 dB higher PSNR values than the ENH-MC-EZBC,
RWTH-MC-EZBC, RPI-MC-EZBC, and MC-EZBC in average, respectively.
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Average PSNR gains for all the test sequences are also displayed in Figure 5, one can see that
the proposed Lagrange multiplier algorithm achieves an average of 0.5–3.57 dB improvement in
PSNR results. The PSNR gains are more especially significant for the test sequences with complex
texture and/or highly moving objects, such as “Foreman”, “Soccer”, “City”, “Stockholm”, “Basketball”,
and “Park_joy” sequences. These test sequences contain abrupt changes over frames in video content
characteristics with fast moving objects and highly spatial details and tend to be encoded with various
coding types. Thus, for all target bitrates ranges, our method shows the remarkable superiorities of RD
performances with higher PSNR gains by performing content-adaptive Lagrange multiplier selection.Entropy 2018, 20, x  15 of 20 
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Figure 6 shows the average PSNR of test video sequences “Soccer” and “Park_joy” at different
target bitrates for various Lagrange multiplier values, where the ideal points and the points obtained
by the proposed Lagrange multiplier selection are respectively marked. The observation indicates
again that the proposed Lagrange multiplier results in the near-ideal rate-distortion performance for
3-D wavelet-based SVC at different target bitrates.
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In addition, we also investigate PSNR variations during video reconstruction. Since high
fluctuation of frame PSNR values may cause perceptual annoying to viewers, the fluctuation of
PSNR values is one of the vital factors for video coding applications. The standard deviation of
PSNR (PSNR STD) is utilized to measure for the smoothness of video quality. The smaller PSNR
STD value result in the smoother PSNR variation and hence more consistent video quality over the
video frames. Figure 7 illustrates the average PSNR STD values over different target bitrates for
the proposed algorithm and the other four methods. Compared to the four methods, the proposed
algorithm achieves more stable visual quality with substantially smaller PSNR fluctuations as depicted
in Figure 7. From this figure, we can see that the proposed Lagrange multiplier selection algorithm
reduces the PSNR standard deviations of all frames by up to 3.58 with respect to RPI-MC-EZBC. As
shown in Figure 7, our method generates the minimum PSNR fluctuation over the entire sequence than
the other three methods. Hence, we reach the conclusion that the proposed method can be beneficial
for controlling the fluctuations of qualities in the reconstructed video and produce more stable visual
quality than others.
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4.3.2. Comparison of Subjective Performance

To obtain the subjective inspection of the reconstructed frames, we show the 8th reconstructed
frame of the “City” sequence at 896 kbps in Figure 8. From this figure, we can see that the visual
quality of the reconstructed frame by the proposed method is conspicuously better than those by the
other four methods. It can be plainly discerned that the frame processed by our codec presents less
blocking artifacts in the homogeneous regions, better preserved textures, and sharper appearance than
other codecs. In particular, it is worth noting that the regions with high spatial details (those enclosed
by red rectangles on buildings) are well preserved by the proposed algorithm whereas they are not
very clear by other reference codecs.
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Figure 8. Subjective visual quality comparisons of the 8th reconstructed frame of “City” sequence at
896 kbps.

4.3.3. Comparison of Computational Complexity

To measure the computational complexity, we define the encoding speed as the number of
frames which can be encoded in one second on the hardware platform with processor Intel Core i5
4-core CPU 3.10GHz. The computational complexity is considered as inverse value of the encoding
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speed, which is measured without any use of assemblers, threads, or other program optimization
techniques [6,7,15,28]. Table 4 demonstrates the encoding speed for the proposed algorithm,
ENH-MC-EZBC, RWTH-MC-EZBC, RPI-MC-EZBC, and MC-EZBC. As shown in Table 4, the encoding
speed of the proposed algorithm is about 1.14, 3.65, 4.65 times faster than RWTH-MC-EZBC,
RPI-MC-EZBC, and MC-EZBC, respectively. The reason is that for the sequences with strong
inter-frame dependencies, more bits are allocated to the reference frames which lead to better prediction
results. Thus, only small residual signals need to be processed in the following encoding steps,
which further result in computational complexity reductions. However, the encoding speed of
ENH-MC-EZBC is about 1.11 times faster than our algorithm. This is mainly due to the additional
operations on the statistics for video content characteristics. In general, the experimental results
demonstrate that the computing overhead brought by the proposed Lagrange multiplier selection
algorithm can be negligible when compared to the other four methods. Although our algorithm
encodes at average 3.07 frames per second, it is insufficient for real-time video processing applications.

Since the ENH-MC-EZBC reference software is non-optimized C++ implementation, development
of an efficient low-complexity 3-D wavelet-based scalable video coding scheme is an important practical
problem, which is necessary to be considered in our future work.

Table 4. Encoding speed comparison results.

Resolution
Encoding Speed

Ours ENH-MC-EZBC RWTH-MC-EZBC RPI-MC-EZBC MC-EZBC

CIF 5.31 5.82 4.87 1.52 1.21
4CIF 5.16 5.55 4.52 1.29 1.05
720p 3.05 3.57 2.71 0.87 0.64
1080p 1.09 1.34 0.83 0.35 0.29

2K 0.72 0.79 0.55 0.16 0.12
Average 3.07 3.41 2.70 0.84 0.66

5. Conclusions

In this paper, we present an efficient content adaptive Lagrange multiplier selection algorithm
for RDO in 3-D wavelet-based SVC. The wavelet filter types, subband coupling in the MCTF process,
and temporal subband content characteristics have been incorporated into our algorithm to select the
Lagrange multiplier adaptively. The simulation results demonstrate that the proposed algorithm turns
out to be much better than the reference methods in terms of both accuracy and effectiveness.

In a future work, we are going to extend our algorithm to other scalabilities, not merely
quality scalability. The overall video quality can be further improved by employing human visual
system-based perceptual features. In addition, development of a scalable low-complexity video codec
based on 3-D DWT is our main concern as well. Therefore, we will experiment in these directions to
obtain a more compelling result.
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