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Abstract: Recent progress of theories and applications regarding statistical models with generalized
exponential functions in statistical science is giving an impact on the movement to deform the
standard structure of information geometry. For this purpose, various representing functions are
playing central roles. In this paper, we consider two important notions in information geometry,
i.e., invariance and dual flatness, from a viewpoint of representing functions. We first characterize a
pair of representing functions that realizes the invariant geometry by solving a system of ordinary
differential equations. Next, by proposing a new transformation technique, i.e., conformal flattening,
we construct dually flat geometries from a certain class of non-flat geometries. Finally, we apply the
results to demonstrate several properties of gradient flows on the probability simplex.
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1. Introduction

The theory of information geometry has elucidated abundant geometric properties equipped
with a Riemannian metric and mutually dual affine connections. When it is applied to the study of
statistical models described by the exponential family, the logarithmic function plays a significant role
in giving the standard information geometric structure to the models [1,2].

Inspired by the recent progress of several areas in statistical physics and mathematical
statistics [3–10] which have exploited theoretical interests and possible applications for generalized
exponential families, one research direction in information geometry is pointing to constructions of
deformed geometries based on the standard one, keeping its basic properties. A typical and classical
example of such a deformation would be the alpha-geometry [1,2], a statistical definition of which can
be regarded as a replacement of the logarithmic function by suitable power functions. Hence, for the
purpose of the generalization and flexible applicability, much attention is paid to various uses of such
replacements by representing functions as important tools [3,4,11,12].

Two major characteristics of the standard structure are dual flatness and invariance [2]. Dual
flatness (or Hessian structure [13]) produces fruitful properties such as the existence of canonical
coordinate systems, a pair of conjugate potential functions and the canonical divergence (relative
entropy). In addition, they are connected with the Legendre duality relation, which is also fundamental
in the generalization of statistical physics. On the other hand, the invariance of geometric structure
is crucially valuable in developing mathematical statistics. It has been proved [14] that invariance
holds for only the structure with a special triple of a Riemannian metric and a pair of mutually dual
affine connections, which are respectively called the Fisher information and the alpha-connections (see
Section 3 for their definitions). The study of these two characteristics from a viewpoint of representing
functions would contribute to our geometrical understanding.
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In this paper, we first characterize a pair of representing functions that realizes the invariant
information geometric structure. Next, we propose a new transformation to obtain dually flat
geometries from a certain class of non-flat information geometries, using concepts from affine
differential geometry [15,16]. We call the transformation conformal flattening, which is a generalization
of the way to realize the corresponding dually flat geometry from the alpha-geometry developed
in [17,18]. As applications and easy consequences of the results, we finally show several properties of
gradient flows associated with realized dually flat geometries. Focusing on geometric characteristics
conserved by the transformation, we discuss the properties such as a relation between geodesics and
flows, the first integral of the flows and so on. These properties are new and general. Hence, they
refine the arguments of the flows in [18], where only the alpha-geometry is treated.

The paper is organized as follows. In Section 2, we introduce preliminary results, explaining
several existing methods to construct the information geometric structure that includes a dually
flat structure and the alpha-structure and so on. We also give a short summary of concepts from
affine differential geometry, which will be used in this paper. Section 3 provides a characterization
of representing functions that realize invariant geometry, i.e., the one equipped with the Fisher
information and a pair of the alpha-connections. The characterization is obtained by solving a simple
system of ordinary equations. In Section 4, we first obtain a certain class of information geometric
structure by regarding representing functions as immersions into an ambient affine space. Then, we
demonstrate the conformal flattening to realize the corresponding dually flat structure, and discuss
their properties and relations with generalized entropies or escort probabilities [19]. Section 5 exhibits
the geometric properties of gradient flows with respect to a conformally realized Riemannian metric.
These flows are reduced to the well-known replicator flow [20] (Chapter 16) when we consider the
standard information geometry. Suitably choosing its pay-off functions, we see that the flow follows a
geodesic curve or conserves a divergence from an equilibrium. In the final section, some concluding
remarks are made.

Throughout the paper, we use a probability simplex as a statistical model for the sake of simplicity.

2. Preliminaries

2.1. Information Geometry of Sn and Rn+1
+

Let us represent an element p ∈ Rn+1 with its components pi, i = 1, · · · , n+ 1 as p = (pi) ∈ Rn+1.
Denote, respectively, the positive orthant by

Rn+1
+ := {p = (pi) ∈ Rn+1|pi > 0, i = 1, · · · , n + 1},

and the relative interior of the probability simplex by

Sn :=

{
p ∈ Rn+1

+

∣∣∣∣∣n+1

∑
i=1

pi = 1

}
.

Let p(X) be a probability distribution of a random variable X taking a value in the finite sample
space Ω = {1, 2, · · · , n, n + 1}. We consider a set of distributions p(X) with positive probabilities, i.e.,
p(i) = pi > 0, i = 1, · · · , n + 1, defined by

p(X) =
n+1

∑
i=1

piδi(X), δi(j) = δ
j
i (the Kronecker’s delta),

which is identified with Sn. A statistical model in Sn is represented with parameters ζ = (ζ j), j =
1, · · · , d ≤ n by
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pζ(X) =
n+1

∑
i=1

pi(ζ)δi(X),

where each pi is smoothly parametrized by ζ. For such a statistical model, ζ j can also be regarded as
coordinates of the corresponding submanifold in Sn. For simplicity, we shall consider the full model,
i.e., d = n and the parameter set is bijective with Sn via pi(ζ)’s.

The information geometric structure [2] on Sn denoted by (g,∇,∇∗) is composed of the pair of
mutually dual torsion-free affine connections ∇ and ∇∗ with respect to a Riemannian metric g. If we
write ∂i := ∂/∂ζ i, i = 1, · · · , n, the mutual duality requires components of (g,∇,∇∗) to satisfy

∂igjk = Γij,k + Γ∗ik,j. (1)

Let L and M be a pair of strictly monotone (i.e., one-to-one) smooth functions on the interval (0, 1).
One way of constructing such a structure (g,∇,∇∗) is to define the components as follows [2,11]:

gij(p) = ∑
X∈Ω

∂iL(pζ(X))∂j M(pζ(X)), i, j = 1, · · · , n, (2)

Γij,k(p) = ∑
X∈Ω

∂i∂jL(pζ(X))∂k M(pζ(X)), i, j, k = 1, · · · , n, (3)

Γ∗ij,k(p) = ∑
X∈Ω

∂kL(pζ(X))∂i∂j M(pζ(X)), i, j, k = 1, · · · , n. (4)

In this paper, we call L and M representing functions. It is easy to verify the mutual duality (1).
(Positive definiteness of g needs additional conditions.)

When the curvature tensors of both ∇ and ∇∗ vanish, (g,∇,∇∗) is called dually flat [2]. It is
known that (g,∇,∇∗) is dually flat if and only if there exist two special coordinate systems denoted
by θi(p) and ηi(p), i = 1, · · · , n, respectively, where (θi) is ∇-affine, (ηi) is ∇∗-affine and they are
biorthogonal, i.e.,

g

(
∂

∂θi ,
∂

∂ηj

)
= δ

j
i .

We give examples. For a real number α, define L(α)(u) := 2u(1−α)/2/(1− α) and L(1) := ln u. If we set
L(u) = L(α)(u) and M(u) = L(−α)(u), then they derive the alpha-structure [2] (gF,∇(α),∇(−α)), where
gF is the Fisher information and ∇(±α) are the alpha-connections (see Section 3). In particular, if we
choose α = 1, it defines the standard dually flat structure (gF,∇(e) := ∇(1),∇(m) := ∇(−1)), where
∇(e) and ∇(m) are called the e- and m-connection, respectively [2]. Similarly, the φ-log geometry [3]
can also be introduced in the same way by taking L(u) = logφ(u) and M(u) = u.

One traditional way to construct a general information geometric structure (g,∇,∇∗), without
using representing functions, is by means of contrast functions (or divergences) [2,21]. In our case, let
ρ be a function on Sn × Sn satisfying ρ(p, r) ≥ 0, ∀p, r ∈ Sn with equality if and only if p = r. For a
vector field ∂i, let (∂i)p denote its tangent vector at p. When we define

gij(p) = −(∂i)p(∂j)r ρ(p, r)
∣∣

p=r , i, j = 1, · · · , n, (5)

Γij,k(p) = −(∂i)p(∂j)p(∂k)r ρ(p, r)
∣∣

p=r , i, j, k = 1, · · · , n, (6)

Γ∗ij,k(p) = −(∂i)p(∂j)r(∂k)r ρ(p, r)
∣∣

p=r , i, j, k = 1, · · · , n, (7)

we can confirm that (1) holds. If g is positive definite, we say that ρ is a contrast function or a divergence
that induces the structure (g,∇,∇∗).

A contrast function ρ of the form:
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ρ(p, r) = ψ(θ(p)) + ϕ(η(r))−
n

∑
i=1

θi(p)ηi(r) (8)

always induces the corresponding dually flat structure. Conversely, it is known [2] that if (g,∇,∇∗)
is dually flat, then there exists the unique contrast function of the form (8) that induces the structure.
Hence, it is called the canonical divergence of (g,∇,∇∗) and we say that the functions ψ and ϕ are
potentials. By setting p = r, we see that a dually flat structure naturally gives the Legendre duality
relations at each p, i.e., the function ϕ, is the Legendre conjugate of ψ satisfying

ηi =
∂ψ

∂θi , θi =
∂ϕ

∂ηi
.

Applying the idea of affine hypersurface theory [15] is also one of the other ways to construct the
information geometric structure. Let D be the canonical flat affine connection on Rn+1. Consider an
immersion f from Sn into Rn+1 and a vector field ξ on Sn that is transversal to the hypersurface f (Sn)

in Rn+1. Such a pair ( f , ξ), called an affine immersion, defines a torsion-free connection∇ and the affine
fundamental form g on Sn via the Gauss formula as

DX f∗(Y) = f∗(∇XY) + g(X, Y)ξ, X, Y ∈ X (Sn), (9)

where X (Sn) is the set of tangent vector fields on Sn and f∗ denotes the differential of f . By regarding
g as a (pseudo-) Riemannian metric, one can discuss the realized structure (g,∇) on Sn.

We say that ( f , ξ) is non-degenerate and equiaffine if g is non-degenerate and DXξ is tangent to Sn

for any X ∈ X (Sn), respectively. The latter ensures that the volume element θ on Sn defined by

θ(X1, · · · , Xn) = det( f∗(X1), · · · , f∗(Xn), ξ), Xi ∈ X (Sn)

is parallel to ∇ [15] (p.31). It is known [15,16] that there exists a torsion-free dual affine connection ∇∗
satisfying (1) if and only if ( f , ξ) is non-degenerate and equiaffine. In this case, the obtained structure
(g,∇,∇∗) on Sn is not dually flat in general. However, there always exists a positive function σ and a
dually flat structure (g̃, ∇̃, ∇̃∗) on Sn that hold the following relations [16]:

g̃ = σg, (10)

g(∇̃XY, Z) = g(∇XY, Z)− d(ln σ)(Z)g(X, Y), (11)

g(∇̃∗XY, Z) = g(∇∗XY, Z) + d(ln σ)(X)g(Y, Z) + d(ln σ)(Y)g(X, Z). (12)

Furthermore, there exists a specific contrast function ρ(p, r) for (g,∇,∇∗) called the geometric divergence.
Then, a contrast function ρ̃(p, r) that induces (g̃, ∇̃, ∇̃∗) is given by the conformal divergence ρ̃(p, r) =
σ(r)ρ(p, r). These properties of the structure (g,∇) realized by the non-degenerate and equiaffine
immersion are called 1-conformal flatness [16].

3. Characterization of Invariant Geometry by Representing Functions

Suppose that a pair of representing functions (L, M) defines an information geometric structure
(g,∇,∇∗) by (2), (3) and (4). In this section, we consider the condition of (L, M) such that (g,∇,∇∗) is
invariant. This is equivalent [2,14] to g which is the Fisher information gF defined by

gF
ij(p) = ∑

X∈Ω
pζ(∂i ln pζ)(∂j ln pζ) (13)

and a pair of dual connections satisfies ∇ = ∇(α) and ∇∗ = ∇(−α) for a certain α ∈ R, where ∇(α) is
the α-connection defined by
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Γ(α)
ij,k = ∑

X∈Ω
pζ

(
∂i∂j ln pζ +

1− α

2
(∂i ln pζ)(∂j ln pζ)

)
(∂k ln pζ). (14)

Hence, gij expressed in (2) by functions L(u) and M(u) coincides with the Fisher information if
and only if the following equation holds:

dL
du

dM
du

= 1/u. (15)

Similarly, we derive a condition for Γij,k expressed in (3) to be the α-connection. First, note that
the following relations hold:

∂i ln pζ = (∂i pζ)
1
pζ

, ∂i∂j ln pζ = (∂i∂j pζ)
1
pζ
− (∂i pζ)(∂j pζ)

1
p2

ζ

. (16)

On the other hand, we have

∂i∂jL(pζ) = (∂i∂j pζ)
dL
du

(pζ) + (∂i pζ)(∂j pζ)
d2L
du2 (pζ), (17)

∂k M(pζ) = (∂k pζ)
dM
du

(pζ). (18)

Substituting (16), (17) and (18) into (3) and (14), and comparing them, we obtain (15) again and

d2L
du2

dM
du

= −1 + α

2u2 . (19)

Expressing L′ := dL/du and L′′ := d2L/du2, we have the following ODE from (15) and (19):

L′′

L′
= −1 + α

2u
. (20)

By integrations, we get

ln L′ = − (1 + α)

2
ln u + c (21)

and

L(u) = c1u(1−α)/2 + c2, M(u) = c3u(1+α)/2 + c4, (22)

where c and ci, i = 1, · · · , 4 are constants with a constraint c1c3 = 4/(1 − α2). Thus, (L, M) is
essentially a pair of representing functions that derives the alpha-geometry and there is only freedom
of adjusting the constants for the invariance of geometry. If we require solely (15), which implies that
only a Riemannian metric g is the Fisher information gF, there still remains much freedom for (L, M).

4. Affine Immersion of the Probability Simplex

Now we consider the affine immersion with the following assumptions.
Assumptions:

1. The affine immersion ( f , ξ) is nondegenerate and equiaffine,
2. The immersion f is given by the component-by-component and common representing function

L, i.e.,
f : Sn 3 p = (pi) 7→ x = (xi) ∈ Rn+1, xi = L(pi), i = 1, · · · , n + 1,

3. The representing function L : (0, 1) → R is sign-definite, concave with L′′ < 0 and strictly
increasing, i.e., L′ > 0. Hence, the inverse of L denoted by E exists, i.e., E ◦ L = id.

4. Each component of ξ satisfies ξ i < 0, i = 1, · · · , n + 1 on Sn.
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Remark 1. From the assumption 3, it follows that L′E′ = 1, E′ > 0 and E′′ > 0. Regarding sign-definiteness
of L, note that we can adjust L(u) to L(u) + c by a suitable constant c without loss of generality since the
resultant geometric structure is unchanged (See Theorem 1) by the adjustment. For a fixed L satisfying the
assumption 3, we can choose ξ that meets the assumptions 1 and 4. For example, if we take ξ i = −|L(pi)|, then
( f , ξ) is called centro-affine, which is known to be equiaffine [15] (p.37). The assumptions 3 and 4 also assure
positive definiteness of g (the details are described in the proof of Theorem 1). Hence, ( f , ξ) is non-degenerate
and we can regard g as a Riemannian metric on Sn.

4.1. Conormal Vector and the Geometric Divergence

Define a function Ψ on Rn+1 by

Ψ(x) :=
n+1

∑
i=1

E(xi),

then f (Sn) immersed in Rn+1 is expressed as a level surface of Ψ(x) = 1. Denote by Rn+1 the dual
space of Rn+1 and by 〈ν, x〉 the pairing of x ∈ Rn+1 and ν ∈ Rn+1. The conormal vector [15] (p.57)
ν : Sn → Rn+1 for the affine immersion ( f , ξ) is defined by

〈ν(p), f∗(X)〉 = 0, ∀X ∈ TpSn, 〈ν(p), ξ(p)〉 = 1, (23)

for p ∈ Sn. Using the assumptions and noting the relations:

∂Ψ
∂xi = E′(xi) =

1
L′(pi)

> 0, i = 1, · · · , n + 1,

we have

νi(p) :=
1
Λ

∂Ψ
∂xi =

1
Λ(p)

E′(xi) =
1

Λ(p)
1

L′(pi)
, i = 1, · · · , n + 1, (24)

where Λ is a normalizing factor defined by

Λ(p) :=
n+1

∑
i=1

∂Ψ
∂xi ξ i =

n+1

∑
i=1

1
L′(pi)

ξ i(p). (25)

Then, we can confirm (23) using the relation ∑n+1
i=1 Xi = 0 for X = (Xi) ∈ X (Sn). Note that v : Sn →

Rn+1 defined by

vi(p) = Λ(p)νi(p) =
1

L′(pi)
, i = 1, · · · , n + 1,

also satisfies

〈v(p), f∗(X)〉 = 0, ∀X ∈ TpSn. (26)

Furthermore, it follows, from (24), (25) and the assumption 4, that

Λ(p) < 0, νi(p) < 0, i = 1, · · · , n + 1,

for all p ∈ Sn.
It is known [15] (p.57) that the affine fundamental form g can be represented by

g(X, Y) = −〈ν∗(X), f∗(Y)〉, X, Y ∈ TpSn.
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In our case, it is calculated via (26) as

g(X, Y) = −Λ−1〈v∗(X), f∗(Y)〉 − X(Λ−1)〈v, f∗(Y)〉

= − 1
Λ

n+1

∑
i=1

(
1

L′(pi)

)′
L′(pi)XiYi =

1
Λ

n+1

∑
i=1

L′′(pi)

L′(pi)
XiYi, X, Y ∈ TpSn. (27)

Hence, g is positive definite from the assumptions 3 and 4, and we can regard it as a Riemannian
metric.

Utilizing these notions from affine differential geometry, we can introduce a geometric
divergence [16] as follows:

ρ(p, r) = 〈ν(r), f (p)− f (r)〉 =
n+1

∑
i=1

νi(r)(L(pi)− L(ri))

=
1

Λ(r)

n+1

∑
i=1

L(pi)− L(ri)

L′(ri)
, p, r ∈ Sn. (28)

It is easily checked that ρ is actually a contrast function of the 1-conformally flat structure
(g,∇,∇∗) using (5), (6) and (7).

4.2. Conformal Flattening Transformation

As is described in the preliminary section, by 1-conformally flatness there exists a positive
function, i.e., conformal factor σ that relates (g,∇,∇∗) with a dually flat structure (g̃, ∇̃, ∇̃∗) via the
conformal transformation (10), (11) and (12). A contrast function ρ̃ that induces (g̃, ∇̃, ∇̃∗) is given as
the conformal divergence:

ρ̃(p, r) = σ(r)ρ(p, r), p, r ∈ Sn. (29)

from the geometric divergence ρ in (28).
For an arbitrary function L within our setting given by the four assumptions, we prove that we

can construct a dually flat structure (g̃, ∇̃, ∇̃∗) by choosing the conformal factor σ carefully. Hereafter,
we call this transformation conformal flattening.

Define

Z(p) :=
n+1

∑
i=1

νi(p) =
1

Λ(p)

n+1

∑
i=1

1
L′(pi)

,

then it is negative because each νi(p) is negative. The conformal divergence to ρ with respect to the
conformal factor σ(r) := −1/Z(r) is

ρ̃(p, r) = − 1
Z(r)

ρ(p, r).

Theorem 1. If the conformal factor is σ = −1/Z, then the information geometric structure (g̃, ∇̃, ∇̃∗) on
Sn that is transformed from the 1-conformally flat structure (g,∇,∇∗) via (10), (11) and (12) is dully flat.
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Furthermore, the conformal divergence ρ̃ that induces (g̃, ∇̃, ∇̃∗) on Sn is canonical where Legendre conjugate
potential functions and coordinate systems are explicitly given by

θi(p) = xi(p)− xn+1(p) = L(pi)− L(pn+1), i = 1, · · · , n, (30)

ηi(p) = Pi(p) :=
νi(p)
Z(p)

=
1/L′(pi)

n+1

∑
k=1

1/L′(pk)

, i = 1, · · · , n, (31)

ψ(p) = −xn+1(p) = −L(pn+1), (32)

ϕ(p) =
1

Z(p)

n+1

∑
i=1

νi(p)xi(p) =
n+1

∑
i=1

Pi(p)L(pi). (33)

Proof. Using given relations, we first show that the conformal divergence ρ̃ is the canonical divergence
for (g̃, ∇̃, ∇̃∗):

ρ̃(p, r) = − 1
Z(r)

〈ν(r), f (p)− f (r)〉 = 〈P(r), f (r)− f (p)〉

=
n+1

∑
i=1

Pi(r)(xi(r)− xi(p))

=
n+1

∑
i=1

Pi(r)xi(r)−
n

∑
i=1

Pi(r)(xi(p)− xn+1(p))−
(

n+1

∑
i=1

Pi(r)

)
xn+1(p)

= ϕ(r)−
n

∑
i=1

ηi(r)θi(p) + ψ(p). (34)

Next, let us confirm that ∂ψ/∂θi = ηi.
Since θi(p) = L(pi) + ψ(p), i = 1, · · · , n, we have

pi = E(θi − ψ), i = 1, · · · , n + 1,

by setting θn+1 := 0. Hence, we have

1 =
n+1

∑
i=1

E(θi − ψ).

Differentiating by θ j, we obtain

0 =
∂

∂θ j

n+1

∑
i=1

E(θi − ψ) =
n+1

∑
i=1

E′(θi − ψ)

(
δi

j −
∂ψ

∂θ j

)

= E′(xj)−
(

n+1

∑
i=1

E′(xi)

)
∂ψ

∂θ j .

This implies that

∂ψ

∂θ j =
E′(xj)

∑n+1
i=1 E′(xi)

= ηj.

Together with (34) and this relation, ϕ is confirmed to be the Legendre conjugate of ψ.
The dual relation ∂ϕ/∂ηi = θi follows automatically from the property of the

Legendre transform.

The following corollary is straightforward because all the quantities in the theorem depend
on only L:
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Corollary 1. Under the assumptions, the dually flat structure (g̃, ∇̃, ∇̃∗) on Sn, obtained by following the
above conformal flattening, does not depend on the choice of the transversal vector ξ.

Remark 2. Note that the conformal metric is given by g̃ = −g/Z and is positive definite. Furthermore,
the relation (12) means that the dual affine connections ∇∗ and ∇̃∗ are projectively (or -1-conformally)
equivalent [15,16]. Hence, ∇∗ is projectively flat. Furthermore, the above corollary implies that the realized
affine connection ∇ is also projectively equivalent to the flat connection ∇̃ if we use the centro-affine immersion,
i.e., ξ i = −L(pi) [15,16]. See Proposition 3 for an application of projective equivalence of affine connections.

Remark 3. In our setting, conformal flattening is geometrically regarded as normalization of the conormal
vector ν. Hence, the dual coordinates ηi(p) = Pi(p) can be interpreted as a generalization of the escort
probability [10,19] (see the following example). Similarly, ψ and −ϕ might be seen as the associated Massieu
function and entropy, respectively.

Remark 4. While the immersion f is composed of a representing function L under the assumption 2, the
corresponding M of a single variable does not generally exist for (g,∇,∇∗) nor (g̃, ∇̃, ∇̃∗). From the expressions
of the Riemann metrics g in (27) and g̃ = −g/Z, we see that the counterparts of the representing functions
M(pi) would be, respectively, −νi(p) and Pi(p), but note that they are multi-variable functions of p = (pi).

4.3. Examples

If we take L to be the logarithmic function L(t) = ln(t), then the conformally flattened geometry
immediately defines the standard dually flat structure (gF,∇(1),∇(−1)) on the simplex Sn. We see
that −ϕ(p) is the entropy, i.e., ϕ(p) = ∑n+1

i=1 pi ln pi and the conformal divergence is the KL divergence
(relative entropy), i.e., ρ̃(p, r) = D(KL)(r||p) = ∑n+1

i=1 ri(ln ri − ln pi).
Next, let the affine immersion ( f , ξ) be defined by the following L and ξ:

L(t) :=
1

1− q
t1−q, xi(p) =

1
1− q

(pi)
1−q,

and

ξ i(p) = −q(1− q)xi(p),

with 0 < q and q 6= 1. We see that the immersion is centro-affine scaled by the constant factor
q(1− q). Then, we see that the immersion realizes the alpha-structure (gF,∇(α),∇(−α)) on Sn with
q = (1 + α)/2. The geometric divergence is the alpha-divergence, i.e.,

ρ(p, r) =
4

1− α2

(
1−

n+1

∑
i=1

(pi)
(1−α)/2(ri)

(1+α)/2

)
.

Following the procedure of conformal flattening described in the above, we have [17]

Ψ(x) =
n+1

∑
i=1

((1− q)xi)1/1−q, Λ(p) = −q, (constant)

νi(p) = −1
q
(pi)

q, σ(p) = − 1
Z(p)

=
q

∑n+1
k=1 (pi)q

,

and obtain a dually flat structure (g̃F, ∇̃, ∇̃∗) via the formulas in Theorem 1:

ηi = Pi =
(pi)

q

∑n+1
k=1 (pk)

q
, θi =

1
1− q

(pi)
1−q − 1

1− q
(pn+1)

1−q = lnq(pi)− ψ(p),
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ψ(p) = − lnq(pn+1), ϕ(p) = lnq

(
1

expq(Sq(p))

)
, g̃F = − 1

Z(p)
gF.

Here, lnq and Sq(p) are the q-logarithmic function and the Tsallis entropy [10], respectively, defined by

lnq(t) =
t1−q − 1

1− q
, Sq(p) =

∑n+1
i=1 (pi)

q − 1
1− q

.

Note that the escort probability appears as the dual coordinate ηi.

5. An Application to Gradient Flows on Sn

Recall the replicator flow on the simplex Sn for given functions fi(p) defined by

ṗi = pi( fi(p)− f̄ (p)), i = 1, · · · , n + 1, f̄ (p) :=
n+1

∑
i=1

pi fi(p), (35)

which is extensively studied in evolutionary game theory. It is known [20] (Chapter 16) that

(i) the solution to (35) is the gradient flow that maximizes a function V(p) satisfying

fi =
∂V
∂pi

, i = 1, · · · , n + 1, (36)

with respect to the Shahshahani metric gS (See below),
(ii) the KL divergence is a local Lyapunov function for an equilibrium called the evolutionary stable

state (ESS) for the case of fi(p) = ∑n+1
j=1 aij pj with (aij) ∈ R(n+1)×(n+1).

The Shahshahani metric gS is defined on the positive orthant Rn+1
+ by

gS
ij(p) =

∑n+1
k=1 pk

pi
δij, i, j = 1, · · · , n + 1.

Note that the Shahshahani metric induces the Fisher metric gF on Sn. Further, the KL divergence is the
canonical divergence [2] of (gF,∇(1),∇(−1)). Thus, the replicator dynamics (35) are closely related with
the standard dually flat structure (gF,∇(1),∇(−1)), which associates with exponential and mixture
families of probability distributions. In addition, investigation of the flow is also important from a
viewpoint of statistical physics governed by the Boltzmann–Gibbs distributions when we choose V(p)
as various physical quantities, e.g., free energy or entropy.

Similarly, when we consider various Legendre relations deformed by L, it would be of interest to
investigate gradient flows on Sn for a dually flat structure (g̃, ∇̃, ∇̃∗) or a 1-conformally flat structure
(g,∇,∇∗). Since g and g̃ can be naturally extended to Rn+1

+ as a diagonal form (we use the same
notation for brevity):

gij(p) =
1

Λ(p)
L′′(pi)

L′(pi)
δij, g̃ij(p) = − 1

Z(p)
gij(p), i, j = 1, · · · , n + 1 (37)

from (27), we can define two gradient flows for V(p) on Sn. One is the gradient flow for g, which is

ṗi = g−1
ii ( fi − f̄ H), f̄ H(p) :=

n+1

∑
k=1

Hk(p) fk(p), Hi(p) :=
g−1

ii (p)

∑n+1
k=1 g−1

kk (p)
, (38)

for i = 1, · · · , n + 1. It is verified that ṗ is tangent to Sn, i.e., ṗ ∈ TpSn and gradient of V, i.e.,

g(X, ṗ) =
n+1

∑
i=1

fiXi − f̄ H
n+1

∑
i=1

Xi =
n+1

∑
i=1

∂V
∂pi

Xi, ∀X = (Xi) ∈ X (Sn).
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In the same way, the other one for g̃ is defined by

ṗi = g̃−1
ii ( fi − f̄ H), f̄ H(p) :=

n+1

∑
k=1

Hk(p) fk(p), i = 1, · · · , n + 1. (39)

Note that both the flows reduce to (35) when L = ln.
From (37), the following consequence is immediate:

Proposition 1. The trajectories of the gradient flow (38) and (39) starting from the same initial point coincide
while velocities of time-evolutions are different by the factor-Z(p).

Taking account of the example with respect to the alpha-geometry and the conformally flattened
one given in subsection 4.3, the following result shown in [18] can be regarded as a corollary of the
above proposition:

Corollary 2. The trajectories of the gradient flow (39) with respect to the conformal metric g̃ for L(t) =

t1−q/(1− q) coincide with those of the replicator flow (35) while velocities of time-evolutions are different by
the factor-Z(p).

Next, we particularly consider the case when V(p) is a potential function or divergences. As for
a gradient flow on a manifold equipped with a dually flat structure (g̃, ∇̃, ∇̃∗), the following result
is known:

Proposition 2. [22] Consider the potential function ψ(p) and the canonical divergence ρ̃(p, r) of (g̃, ∇̃, ∇̃∗)
for an arbitrary prefixed point r. The gradient flows for V(p) = ±ψ(p) and V(p) = ±ρ(p, r) follow
∇̃∗-geodesic curves.

As is described in Remark 2, ∇∗ and ∇̃∗ are projectively equivalent. One geometrically interesting
property of the projective equivalence is that ∇∗- and ∇̃∗- geodesic curves coincide up to their
parametrizations (i.e., a curve is ∇∗-pregeodesic if and only if it is ∇̃∗-pregeodesic) [15] (p.17).
Combining this fact with Propositions 1 and 2, we see that the following result holds:

Proposition 3. Let r ∈ Sn be an arbitrary prefixed point. The gradient flows (38) for V(p) = ±ρ(p, r) =
±ρ̃(p, r)/σ(r), V(p) = ±ρ̃(p, r) and V(p) = ±ψ(p) follow ∇̃∗-geodesic curves.

Finally, we demonstrate here another aspect of the flow (39). Let us particularly consider the
following functions fi:

fi(p) :=
L′′(pi)

(L′(pi))2

n+1

∑
j=1

aijPj(p), aij = −aji ∈ R, i, j = 1, · · · , n + 1. (40)

Note that fis are not integrable, i.e., non-trivial V satisfying (36) does not exist because of the
anti-symmetry of aij. Hence, for this case, (39) is no longer a gradient flow. However, we can
prove the following result:

Theorem 2. Consider the flow (39) with the functions fis defined in (40) and assume that there exists an
equilibrium r ∈ Sn for the flow. Then, ρ(p, r) and ρ̃(p, r) are the first integral (conserved quantity) of the flow.

Proof. By substituting (40) into f̄ H(p) in (39) and using the expression of g̃ii in (37), we have

f̄ H(p) =
1

∑n+1
k=1 L′(pk)/L′′(pk)

n+1

∑
i=1

1
L′(pi)

n+1

∑
j=1

aijPi(p).



Entropy 2018, 20, 186 12 of 13

By the relation E′(xi) = 1/L′(pi) and (31), it holds that

n+1

∑
i=1

1
L′(pi)

n+1

∑
j=1

aijPi(p) =
1

∑n+1
k=1 E′(xk)

n+1

∑
i=1

n+1

∑
j=1

aijE′(xl)E′(xj) = 0.

Hence, we see that f̄ H = 0 and the flow (39) reduces to

ṗi = g̃−1
ii (p) fi(p), i = 1, · · · , n + 1. (41)

Since r is an equilibrium point, we see from (40) that

n+1

∑
j=1

aijPj(r) = 0, i = 1, · · · , n + 1. (42)

Then, using (34), (41) and (42), we have

dρ̃(p, r)
dt

= −
n+1

∑
i=1

Pi(r)L′(pi) ṗi

= Z(p)Λ(p)
n+1

∑
i=1

Pi(r)
(L′(pi))

2

L′′(pi)
fi(p) = Z(p)Λ(p)

n+1

∑
i=1

Pi(r)

(
n+1

∑
j=1

aijPj(p)

)

= Z(p)Λ(p)
n+1

∑
i=1

n+1

∑
j=1

(Pi(p)− Pi(r))aijPj(p)

= Z(p)Λ(p)
n+1

∑
i=1

n+1

∑
j=1

(Pi(p)− Pi(r))aij(Pj(p)− Pj(r)) = 0.

Thus, ρ̃(p, r) is the first integral of the flow. It follows that ρ(p, r) is also the first integral of the flow
from the definition of conformal divergence (29).

Remark 5. From proposition 1, the same statement holds for the flow (38). The proposition implies the fact [20]
that the KL divergence is the first integral for the replicator flow (35) with the function fi(p) in (40) defined by
L(t) = ln t and Pj(p) = pj.

6. Conclusions

We have considered two important aspects of information geometric structure, i.e., invariance
and dual flatness, from a viewpoint of representing functions. As for the invariance of geometry,
we have proved that a pair of representing functions that derives the alpha-structure is essentially
unique. On the other hand, we have shown the explicit formula of conformal flattening that transforms
1-conformally flat structures on the simplex Sn realized by affine immersions to the corresponding
dually flat structures. Finally, we have discussed several geometric properties of gradient flows
associated to two structures.

Presently, our analysis is restricted to the probability simplex, i.e., the space of discrete probability
distributions. For the continuous case, the similar or related results are obtained in [23,24] without
using affine immersions. Extensions of the results obtained in this paper to continuous probability
space and the exploitation of relations to the literature are left for future work.

The conformal flattening can also be applied to the computationally efficient construction of a
Voronoi diagram with respect to the geometric divergences [18]. Exploring the possibilities of other
applications would be of interest.
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