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Abstract

:

This paper is concerned with invariance    (  F 1  ,  F 2  )   -scrambled sets under iterations. The main results are an extension of the compound invariance of Li–Yorke chaos and distributional chaos. New definitions of    (  F 1  ,  F 2  )   -scrambled sets in non-autonomous discrete systems are given. For a positive integer k, the properties    P ( k )    and    Q ( k )    of Furstenberg families are introduced. It is shown that, for any positive integer k, for any    s ∈ [ 0 , 1 ]   , Furstenberg family     M ¯   ( s )     has properties    P ( k )    and    Q ( k )   , where     M ¯   ( s )     denotes the family of all infinite subsets of    Z +    whose upper density is not less than s. Then, the following conclusion is obtained. D is an    (  M ¯   ( s )  ,  M ¯   ( t )  )   -scrambled set of    ( X ,  f  1 , ∞   )    if and only if D is an    (  M ¯   ( s )  ,  M ¯   ( t )  )   -scrambled set of    ( X ,  f  1 , ∞   [ m ]   )   .
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1. Introduction


Chaotic properties of a dynamical system have been extensively discussed since the introduction of the term chaos by Li and Yorke in 1975 [1] and Devaney in 1989 [2]. To describe some kind of unpredictability in the evolution of a dynamical system, other definitions of chaos have also been proposed, such as generic chaos [3], dense chaos [4], Li–Yorke sensitivity [5], and so on. An important generalization of Li–Yorke chaos is distributional chaos, which is given in 1994 by B. Schweizer and J. Smítal [6]. Then, theories related to scrambled sets are discussed extensively (see [7,8,9,10,11,12] and others). In 1997, the Furstenberg family was introduced by E. Akin [13]. J. Xiong, F. Tan described chaos with a couple of Furstenberg Families.    (  F 1  ,  F 2  )   -chaos has also been defined [14]. Moreover,   F  -sensitivity was given in [15] and shadowing properties were discussed in [16]. Most existing papers studied the chaoticity in autonomous discrete systems    ( X , f )   . However, if a sequence of perturbations to a system are described by different functions, then there are a sequence of maps to describe them, giving rise to non-autonomous systems. Non-autonomous discrete systems were precisely introduced in [17], in connection with non-autonomous difference equations (see [18,19] and some references therein).



Let    ( X , ρ )    (briefly, X) be a compact metric space and consider a sequence of continuous maps     f n  : X → X , n ∈ N   , denoted by     f  1 , ∞   =  (  f 1  ,  f 2  , ⋯ )    . This sequence defines a non-autonomous discrete system    ( X ,  f  1 , ∞   )   . The orbit of any point    x ∈ X    is given by the sequence     (  f 1 n   ( x )  )  = O r b  ( x ,  f  1 , ∞   )    , where     f 1 n  =  f n  ∘ ⋯ ∘  f 1     for    n ≥ 1   , and    f 1 0    is the identity map.



For    m ∈ N   , define


     g 1  =  f m  ∘ ⋯ ∘  f 1   ,     g 2  =  f  2 m   ∘ ⋯ ∘  f  m + 1    ,   ⋯ ,     g p  =  f  p m   ∘ ⋯ ∘  f  ( p − 1 ) m + 1    ,   ⋯ .   











Call    ( X ,  g  1 , ∞   )    a compound system of    ( X ,  f  1 , ∞   )   .



Also, denote    g  1 , ∞     by    f  1 , ∞   [ m ]     and denote     f n k  =  f  n + k − 1   ∘ ⋯ ∘  f n     for    n ≥ 1   . By [5], if     (  f n  )   n = 1  ∞    converges uniformly to a map f. Then, for any    m ≥ 2 ( m ∈ N )   , the sequence     (  f n  n + m − 1   )   n = 1  ∞    converges uniformly to    f m   .



In the present work, some notions relating to Furstenberg families and properties    P ( k )   ,    Q ( k )    are recalled in Section 2 and Section 3. Section 4 states some definitions about    (  F 1  ,  F 2  )   -chaos. In Section 5, it is proved that, under the conditions of property    P ( k )    and positive shift-invariant,    f  1 , ∞     is    (  F 1  ,  F 2  )   -chaos (strong    (  F 1  ,  F 2  )   -chaos, strong   F  -chaos) implies    f  1 , ∞   [ k ]    (   k ∈  Z +    ) is    (  F 1  ,  F 2  )   -chaos (strong    (  F 1  ,  F 2  )   -chaos, strong   F  -chaos). If the conditions property    Q ( k )    and negative shift-invariant both hold, the above conclusion can be inversed. As a conclusion, for arbitrary s and t in    [ 0 , 1 ]   , for every    k ∈  Z +    ,    f  1 , ∞     and    f  1 , ∞   [ k ]     can share the same    (  M ¯   ( s )  ,  M ¯   ( t )  )   -scrambled set (Theorem 3).



In this paper, it is always assumed that all the maps    f n   ,    n ∈ N   , are surjective. It should be noted that this condition is needed by most papers dealing with this kind of system (for example, [20,21,22,23]). It is assumed that sequence     (  f n  )   n = 1  ∞    converges uniformly. The aim of this paper is to investigate the    (  F 1  ,  F 2  )   -scrambled sets of    f  1 , ∞    .




2. Furstenberg Families


Let   P   be the collection of all subsets of the positive integers set     Z +  =  { 0 , 1 , 2 , … }    . A collection    F ⊂ P    is called a Furstenberg family if it is hereditary upwards, i.e.,     F 1  ⊂  F 2     and     F 1  ∈ F    imply     F 2  ∈ F   . Obviously, the collection of all infinite subsets of    Z +    is a Furstenberg family, denoted by   B  .



Define the dual family    k F    of a Furstenberg family   F   by


    k F =  { F ∈ P :  Z +  − F ∉ F }   = { F ∈ P : F  ∩  F ′  ≠ ϕ    for   any     F ′   ∈ F }   .   











It is clear that    k F    is a Furstenberg family and    k ( k F ) = F    (see [13]).



For    F ∈ P   ,    i ∈  Z +    , let    F − i = { j − i ≥ 0 : j ∈ F }    and    F + i = { j + i ≥ 0 : j ∈ F }   . Furstenberg family   F   is positive shift-invariant if    F + i ∈ F    for every    F ∈ F    and any    i ∈  Z +    . Furstenberg family   F   is negative shift-invariant if    F − i ∈ F    for every    F ∈ F    and any    i ∈  Z +    . Furstenberg family   F   is shift-invariant if it is positive shift-invariant and negative shift-invariant.



The following shows a class of Furstenberg families which is related to upper density.



Let    F ⊂ P   . The upper density and the lower density of F are defined as follows:


    μ ¯   ( F )  =  lim sup  n → ∞     # ( F ∩ { 0 , 1 , … ,  n − 1 } )  n  ,    μ ̲   ( F )  =  lim inf  n → ∞     # ( F ∩ { 0 , 1 , … ,  n − 1 } )  n  ,   








where    # ( A )    denotes the cardinality of the set A.



For any s in    [ 0 , 1 ]   , set     M ¯   ( s )  =  { F ∈ B :  μ ¯   ( F )  ≥ s }    .



Proposition 1.

For any s in    [ 0 , 1 ]   ,     M ¯   ( s )     is shift-invariant Furstenberg family. And     M ¯   ( 0 )  = B   .





Proof. 






	(i)

	
Let     F 1  ,  F 2  ∈  M ¯   ( s )  ,  F 1  ⊂  F 2    , then,    ∀ n ∈ N    (where    N = { 1 , 2 , 3 , … }   ),


    μ ¯   (  F 1  )  =  lim sup  n → ∞     # (  F 1  ∩  { 0 , 1 , … ,  n − 1 }  )  n  ≤  lim sup  n → ∞     # (  F 2  ∩  { 0 , 1 , … ,  n − 1 }  )  n  =  μ ¯   (  F 2  )    











Thus,     F 1  ∈  M ¯   ( s )     (i.e.,     μ ¯   (  F 1  )  ≥ s   ) implies     F 2  ∈  M ¯   ( s )     (i.e.,     μ ¯   (  F 1  )  ≥ s   ). So,     M ¯   ( s )   ( ∀ s ∈  [ 0 , 1 ]  )     are Furstenberg families.




	(ii)

	
Let    F ∈  M ¯   ( s )    , that is,     μ ¯   ( F )  =  lim sup  n → ∞     # ( F ∩ { 0 , 1 , … ,  n − 1 } )  n  ≥ s   . Denote    F = {  t 1  ,  t 2  , ⋯ }    (where     t k  ∈  Z +    ,     t  k 1   <  t  k 2    (  k 1  <  k 2  )    ), then    F + i = {  t 1  + i ,  t 2  + i , ⋯ }    and    F − i =  {  t  k 1   − i ,  t  k 2   − i , ⋯ }   (  t  k j   − i ≥ 0 )     for any    i ∈  Z +    .


    lim sup  n → ∞     # ( ( F + i ) ∩ { 0 , 1 , … ,  n − 1 } )  n  =  lim sup  n → ∞     # (  {  t 1  + i ,  t 2  + i , ⋯ }  ∩  { 0 , 1 , … ,  n − 1 }  )  n    










   =  lim sup  n → ∞     # (  {  t 1  ,  t 2  , ⋯ }  ∩  { 0 , 1 , … ,  n − 1 }  )  n  =  μ ¯   ( F )  ≥ s   








and


    lim sup  n → ∞     # ( ( F − i ) ∩ { 0 , 1 , … ,  n − 1 } )  n  ≥  lim sup  n → ∞     # ( F ∩ { 0 , 1 , … ,  n − 1 } ) − i  n  =  μ ¯   ( F )  ≥ s   











So,     M ¯   ( s )     is shift-invariant.




	(iii)

	
Obviously,


    M ¯   ( 0 )  =  { F ∈ B :  μ ¯   ( F )  ≥ 0 }  =  { F ∈ B :  lim sup  n → ∞     # ( F ∩ { 0 , 1 , … ,  n − 1 } )  n  ≥ 0 }  = B .   








This completes the proof.









☐






3. Properties    P ( k )   ,    Q ( k )    of Furstenberg Families


Definition 1.

Let k be a positive integer and   F   be a Furstenberg family.




	(1) 

	
For any    F ∈ F   , if there exists an integer    j ∈ { 0 , 1 , ⋯ , k − 1 }    such that     F  k , j   =  { i ∈  Z +  : k i + j ∈ F }  ∈ F   , we say   F   have property    P ( k )   ;




	(2) 

	
If     F k  =  { k i + j ∈  Z +  : j ∈  { 0 , 1 , ⋯ , k − 1 }  , i ∈ F }  ∈ F   , we say   F   have property    Q ( k )   .











The following proposition is given by [24]. For completeness, we give the proofs.



Proposition 2.

For any    s ∈ [ 0 , 1 ]    and any    k ∈  Z +    ,     M ¯   ( s )     have properties    P ( k )    and    Q ( k )   .





Proof. 






	(1)

	
If    k = 1   ,    ∀ F ∈  M ¯   ( s )    ,     F  1 , 0   =  { i ∈  Z +  : i ∈ F }  = F   , i.e., there exists an integer    j = 0    such that     F  k , j   ∈  M ¯   ( s )    . The following will discuss the case    k > 1   .



If    s = 0   ,     M ¯   ( 0 )  = B   .    ∀ F ∈ B   ,    ∀ k ∈  Z +    , obviously, there exist    j ∈ { 0 , 1 , … ,  k − 1 }    such that     F  k , j   ∈ B   .



If    0 < s ≤ 1   , suppose properties    P ( k )    does not hold. Then there exists a    F ∈  M ¯   ( s )     such that     μ ¯   (  F  k , j   )  < s    for every    j ∈ { 0 , 1 , … ,  k − 1 }   .



For any    j ∈ { 0 , 1 , … ,  k − 1 }   , put     ε j  > 0    which satisfied     μ ¯   (  F  k , j   )  < s −  ε j    . One can find a sufficiently large number N such that,    n ≥ N   ,     # n   (  F  k , j   )  < n  ( s −  ε j  )     (where     # n   (  F  k , j   )     denotes the cardinality of the set     F  k , j   ∩  { 0 , 1 , … ,  n − 1 }    ). Then     # n   (  F  k , j  c  )  > n − n  ( s −  ε j  )    , where    F  k , j  c    denotes the complementary set of    F  k , j    .



Give an integer    m = k n +  l m  > k N   ,     l m  ∈  { 0 , 1 , … ,  k − 1 }    . By the definition of    F  k , j    ,    k i + j ∉ F    if    i ∉  F  k , j     . And    k  i 1  +  j 1  ≠ k  i 2  +  j 2     if     i 1  ,  i 2  ∈  { 0 , 1 , … ,  n − 1 }    ,     j 1  ,  j 2  ∈  { 0 , 1 , … ,  k − 1 }     and     j 1  ≠  j 2    . Then


    # m   (  F c  )  ≥  ∑  j = 0   k − 1    # n   (  F  k , j  c  )  >  ∑  j = 0   k − 1    ( n − n  ( s −  ε j  )  )  .   











So,


    # m   ( F )  < m −  ∑  j = 0   k − 1    ( n − n  ( s −  ε j  )  )  .   








Put    ε = m i n {  ε j  : j = 0 , 1 , … ,  k − 1 }   , then


    μ ¯   ( F )  =  lim sup  n → ∞      # m   ( F )   m  ≤  lim  n → ∞     m −  ∑  j = 0   k − 1    ( n − n  ( s −  ε j  )  )   m  ≤  lim  n → ∞     m − k ( n − n ( s − ε ) )  m    










   =  lim  n → ∞     k n +  l m  − k n + k n  ( s − ε )    k n +  l m    = s − ε < s   











This contradicts to     μ ¯   ( F )  ≥ s   .




	(2)

	
Similarly, just consider the case    k > 1   ,    0 < s ≤ 1   .



Suppose properties    Q ( k )    does not hold. Then there exists an integer    F ∈  M ¯   ( s )     such that     μ ¯   (  F k  )  < s   . Put    ε > 0    which satisfied     μ ¯   (  F k  )  < s − ε   . One can find a sufficiently large number N such that,    m ≥ N   ,     # m   (  F k  )  < m  ( s − ε )    . Give a    m = k n +  l m  > k N  ( m ≥ N )    ,     l m  ∈  { 0 , 1 , … ,  k − 1 }    . By the definition of    F k   ,    k i + j ∈  F k   ( j ∈  { 0 , 1 , … ,  k − 1 }  )     if    i ∈ F   . And    k  i 1  +  j 1  ≠ k  i 2  +  j 2     if     i 1  ≠  i 2     and     j 1  ,  j 2  ∈  { 0 , 1 , … ,  k − 1 }    . Then


   k  (  # n   ( F )  )  ≤  # m   (  F k  )  < m  ( s − ε )  .   











So,


    μ ¯   ( F )  ≤  lim  n → ∞     m ( s − ε )   k n   =  lim  n → ∞      ( k n +  l m  )   ( s − ε )    k n   = s − ε ≤ s .   











This contradicts to     μ ¯   ( F )  ≥ s   .



This completes the proof.









☐






4.    (  F 1  ,  F 2  )   -Chaos in Non-Autonomous Systems


Now, we state the definition of    (  F 1  ,  F 2  )   -chaos in nonautonomous systems.



Definition 2.

Let    ( X , ρ )    be a compact metric space,    F 1    and    F 2    are two Furstenberg families.    D ⊂ X    is called a    (  F 1  ,  F 2  )   -scrambled set of    ( X ,  f  1 , ∞   )    (briefly,    f  1 , ∞    ), if    ∀  x ≠ y ∈ D   , the following two conditions are satisfied:




	(i) 

	
   ∀ t > 0   ,     n ∈ N : ρ (  f 1 n   ( x )  ,  f 1 n   ( y )  ) < t  ∈  F 1    ;




	(ii) 

	
   ∃ δ > 0   ,     n ∈ N : ρ (  f 1 n   ( x )  ,  f 1 n   ( y )  ) > δ  ∈  F 2    .









The pair    ( x , y )    which satisfies the above two conditions is called an    (  F 1  ,  F 2  )   -scrambled pair of    f  1 , ∞    .



   f  1 , ∞     is said to be    (  F 1  ,  F 2  )   -chaotic if there exists an uncountable    (  F 1  ,  F 2  )   -scrambled set of    f  1 , ∞    . If     F 1  =  F 2  = F   ,    f  1 , ∞     is said to be   F  -chaotic and    ( x , y )    is an   F  -scrambled pair.    f  1 , ∞     is said to be strong    (  F 1  ,  F 2  )   -chaotic if there are some    δ > 0    and an uncountable subset    D ⊂ X    such that for any    x , y ∈ D    with    x ≠ y   , the following two conditions holds:




	(i) 

	
    n ∈ N : ρ (  f 1 n   ( x )  ,  f 1 n   ( y )  ) < t  ∈  F 1     for all    t > 0   ;




	(ii) 

	
    n ∈ N : ρ (  f 1 n   ( x )  ,  f 1 n   ( y )  ) > δ  ∈  F 2    .









   f  1 , ∞     is said to be strong   F  -chaos if it is strong    (  F 1  ,  F 2  )   -chaotic and     F 1  =  F 2  = F   .





Let us recall the definitions of Li-Yorke chaos and distributional chaos in non-autonomous systems (see [25,26]).



Definition 3.

Assume that    ( X ,  f  1 , ∞   )    is a non-autonomous discrete system. If    x , y ∈ X    with    x ≠ y   ,    ( x , y )    is called a Li–Yorke pair if


    lim sup  n → ∞   ρ  (  f 1 n   ( x )  ,  f 1 n   ( y )  )  > 0    a n d     lim inf  n → ∞   ρ  (  f 1 n   ( x )  ,  f 1 n   ( y )  )  = 0 .   











The set    D ⊂ X    is called a Li–Yorke scrambled set if all points    x , y ∈ D    with    x ≠ y   ,    ( x , y )    is a Li–Yorke pair.    f  1 , ∞     is Li–Yorke chaotic if X contains an uncountable Li–Yorke scrambled set.





Assume that    ( X ,  f  1 , ∞   )    is a non-autonomous discrete system. For any pair of points    x , y ∈ X   , define the upper and lower (distance) distributional functions generated by    f  1 , ∞     as


    F  x y  *   ( t ,  f  1 , ∞   )  =  lim sup  n → ∞    1 n   ∑  i = 1  n   χ  [ 0 , t )    ( ρ  (  f 1 i   ( x )  ,  f 1 i   ( y )  )  )    








and


    F  x y    ( t ,  f  1 , ∞   )  =  lim inf  n → ∞    1 n   ∑  i = 1  n   χ  [ 0 , δ )    ( ρ  (  f 1 i   ( x )  ,  f 1 i   ( y )  )  )    








respectively. Where    χ  [ 0 , t )     is the characteristic function of the set    [ 0 , t )   , i.e.,     χ  [ 0 , t )    ( a )  = 1    when    a ∈ [ 0 , t )    or     χ  [ 0 , t )    ( a )  = 0    when    a ∉ [ 0 , t )   .



Definition 4.

   f  1 , ∞     is distributionally chaotic if exists an uncountable subset    D ⊂ X    such that for any pair of distinct points    x , y ∈ D   , we have that     F  x y  *   ( t ,  f  1 , ∞   )  = 1    for all    t > 0    and     F  x y    ( t ,  f  1 , ∞   )  = 0    for some    δ > 0   .



The set D is a distributionally scrambled set and the pair    ( x , y )    a distributionally chaotic pair.





It is not difficult to obtain that the pair    ( x , y )    is a    (  M ¯   ( 0 )  ,  M ¯   ( 0 )  )   -scrambled pair if and only if    ( x , y )    is a Li–Yorke scrambled pair, and the pair    ( x , y )    is a    (  M ¯   ( 1 )  ,  M ¯   ( 1 )  )   -scrambled pair if and only if    ( x , y )    is a distributionally scrambled pair. In fact,


    M ¯   ( 0 )  = B ,  M ¯   ( 1 )  =  { F ∈ B :  lim sup  n → ∞     # ( F ∩ { 1 , 2 , … ,  n } )  n  = 1 }  .   











Then,     { n ∈ N : ρ  (  f 1 n   ( x )  ,  f 1 n   ( y )  )  < t }  ∈  M ¯   ( 0 )     for any    t > 0    and     { n ∈ N : ρ  (  f 1 n   ( x )  ,  f 1 n   ( y )  )  > δ }  ∈  M ¯   ( 0 )     for some    δ > 0    is equivalent to that     lim sup  n → ∞   ρ  (  f 1 n   ( x )  ,  f 1 n   ( y )  )  > 0    and     lim inf  n → ∞   ρ  (  f 1 n   ( x )  ,  f 1 n   ( y )  )  = 0   .     { n ∈ N : ρ  (  f 1 n   ( x )  ,  f 1 n   ( y )  )  < t }  ∈  M ¯   ( 1 )     for any    t > 0    and     { n ∈ N : ρ  (  f 1 n   ( x )  ,  f 1 n   ( y )  )  > δ }  ∈  M ¯   ( 1 )     for some    δ > 0    is equivalent to that     F  x y  *   ( t ,  f  1 , ∞   )  = 1    and     F  x y    ( δ ,  f  1 , ∞   )  = 0   .



Hence,    (  M ¯   ( 0 )  ,  M ¯   ( 0 )  )   -chaos is Li–Yorke chaos and    (  M ¯   ( 1 )  ,  M ¯   ( 1 )  )   -chaos is distributional Chaos.




5. Main Results


Theorem 1.

Let    F 1    and    F 2    are two Furstenberg families with property    P ( k )   , where k is a positive integer.    F 1    is positive shift-invariant. If the system    ( X ,  f  1 , ∞   )    is    (  F 1  ,  F 2  )   -chaos, then the system    ( X ,  f  1 , ∞   [ k ]   )    is    (  F 1  ,  F 2  )   -chaos too.





Proof. 

If D is an    (  F 1  ,  F 2  )   -scrambled set of    f  1 , ∞    , the following proves that D is an    (  F 1  ,  F 2  )   -scrambled set of    f  1 , ∞   [ k ]    .




	(i)

	
Since X is compact and     f i   ( i ∈ N )     are continuous, then, for any    j ∈ { 1 , 2 , … ,  k − 1 }   ,     f  s 1   , … ,   f  s  k − j       are uniformly continuous (where     f  s 1   , … ,   f  s  k − j       are freely chosen from the sequence     f i   ( i ∈ N )    ). That is, for any    δ > 0   , there exists a     δ *  > 0   ,    ∀ a , b ∈ X   ,    ρ  ( a , b )  <  δ *     implies    ρ (  f  s  k − j    ∘ ⋯ ∘  f  s 1    ( a )  ,  f  s  k − j    ∘ ⋯ ∘  f  s 1    ( b )  ) < δ    (   j = 1 , 2 , … ,  k − 1   ).



Since D is an    (  F 1  ,  F 2  )   -scrambled set of    f  1 , ∞    , then,    ∀ x ≠ y ∈ D   , for the above    δ *   , we have


   F =  { n ∈ N : ρ  (  f 1 n   ( x )  ,  f 1 n   ( y )  )  <  δ *  }  ∈  F 1  .   











And because    F 1    have property    P ( k )   , there exists some    j ∈ { 1 , 2 , … ,  k − 1 }    such that


    F  k , j   =  { i ∈  Z +  : k i + j ∈ F }  =  { i ∈  Z +  : ρ  (  f 1  k i + j    ( x )  ,  f 1  k i + j    ( y )  )  <  δ *  }  ∈  F 1  .   











By the selection of    δ *   , we put     s r  = k i + j + r  ( r = 1 , 2 , … ,  k − j )    , then


    F  k , j   ⊂  { i ∈  Z +  : ρ  (  f 1  k i + j + k − j    ( x )  ,  f 1  k i + j + k − j    ( y )  )  < δ }  =  { i ∈  Z +  : ρ  (  f 1  k ( i + 1 )    ( x )  ,  f 1  k ( i + 1 )    ( y )  )  < δ }  .   











Write     F  k , j   + 1 =  { i + 1 : i ∈  Z +  , k i + j ∈  F 1  }   ( ∀ j = 1 , 2 , … ,  k − 1 )    , then     F  k , j   + 1 ⊂  { i ∈  Z +  : ρ  (  f 1  k i    ( x )  ,  f 1  k i    ( y )  )  < δ }    .



By the positive shift-invariant of    F 1    and     F  k , j   ∈  F 1    , we have     F  k , j   + 1 ∈  F 1    . And with the hereditary upwards of    F 1   , for any    x , y ∈ D : x ≠ y   ,    ∀ δ > 0   ,     { i ∈  Z +  : ρ  (  f 1  k i    ( x )  ,  f 1  k i    ( y )  )  < δ }  ∈  F 1    .




	(ii)

	
Since D is a    (  F 1  ,  F 2  )   -scrambled set of    f  1 , ∞    , then, for the above    x , y ∈ D ( x ≠ y )   ,    ∃  ε *  > 0   , such that    E =  { n ∈  Z +  : ρ  (  f 1 n   ( x )  ,  f 1 n   ( y )  )  >  ε *  }  ∈  F 2    . And because    F 2    have property    P ( k )   , then, there exists some    j ∈ { 1 , 2 , … ,  k − 1 }    such that


    E  k , j   =  { i ∈  Z +  : k i + j ∈ E }  =  { i ∈  Z +  : ρ  (  f 1  k i + j    ( x )  ,  f 1  k i + j    ( y )  )  >  ε *  }  ∈  F 2  .   











X is compact and     f i   ( i ∈ N )     are continuous, then, for any    j ∈ { 1 , 2 , … ,  k − 1 }   ,     f  s 1   , … ,   f  s j      are uniformly continuous (where     f  s 1   , … ,   f  s j      are freely chosen from the sequence     f i   ( i ∈ N )    ). For the above     ε *  > 0   ,    ∃ ε > 0   ,    ∀ p , q ∈ X    satisfied    ρ ( p , q ) ≤ ε   , inequality    ρ  (  f  s j   ∘ ⋯ ∘  f  s 1    ( p )  ,  f  s j   ∘ ⋯ ∘  f  s 1    ( q )  )  ≤  ε *     holds.



The following will prove that     { i ∈  Z +  : ρ  (  f 1  k i    ( x )  ,  f 1  k i    ( y )  )  > ε }  ∈  F 2    .



Suppose     { i ∈  Z +  : ρ  (  f 1  k i    ( x )  ,  f 1  k i    ( y )  )  > ε }  ∉  F 2    , then


    Z +  −  { i ∈  Z +  : ρ  (  f 1  k i    ( x )  ,  f 1  k i    ( y )  )  > ε }  =  { i ∈  Z +  : ρ  (  f 1  k i    ( x )  ,  f 1  k i    ( y )  )  ≤ ε }  ∈ k  F 2  .   











By the selection of    ε *   , we put     s r  = k i + r  ( r = 1 , 2 , … ,  j )    , then


    { i ∈  Z +  : ρ  (  f 1  k i + j    ( x )  ,  f 1  k i + j    ( y )  )  ≤  ε *  }  ∈ k  F 2  .   











So,


    { i ∈  Z +  : ρ  (  f 1  k i + j    ( x )  ,  f 1  k i + j    ( y )  )  >  ε *  }  ∉ k  F 2  ,   











This contradicts     E  k , j   ∈  F 2    .



Hence, for    x ≠ y ∈ D    in (i), there exists a    ε > 0    such that     { i ∈  Z +  : ρ  (  f 1  k i    ( x )  ,  f 1  k i    ( y )  )  > ε }  ∈  F 2    .



Combining with (i) and (ii),    f  1 , ∞   [ k ]     is    (  F 1  ,  F 2  )   -chaos.



This completes the proof.









☐





Theorem 2.

Let    F 1    and    F 2    are two Furstenberg families with property    Q ( k )   , where k is a positive integer.    F 2    is negative shift-invariant. If the system    ( X ,  f  1 , ∞   [ k ]   )    is    (  F 1  ,  F 2  )   -chaos, then the system    ( X ,  f  1 , ∞   )    is    (  F 1  ,  F 2  )   -chaos too.





Proof. 

If D is a    (  F 1  ,  F 2  )   -scrambled set of    f  1 , ∞   [ k ]    , the following prove that D is a    (  F 1  ,  F 2  )   -scrambled set of    f  1 , ∞    .




	(i)

	
Similar to Theorem 1, for any    j ∈ { 1 , 2 , … ,  k − 1 }   ,     f  s 1   , … ,   f  s j      are uniformly continuous (where     f  s 1   , … ,   f  s j      are freely chosen from the sequence     f i   ( i ∈ N )    ). That is, for any    δ > 0   , there exists a     δ *  > 0   ,    ∀ a , b ∈ X   ,    ρ  ( a , b )  <  δ *     implies    ρ (  f  s j   ∘ ⋯ ∘  f  s 1    ( a )  ,  f  s j   ∘ ⋯ ∘  f  s 1    ( b )  ) < δ    (   j = 1 , 2 , … ,  k − 1   ).



For any pair of distinct points    x , y ∈ D   , for the above    δ *   , one has


   F =  { n ∈  Z +  : ρ  (  f 1  k n    ( x )  ,  f 1  k n    ( y )  )  <  δ *  }  ∈  F 1  .   











By the selection of    δ *   , for    ∀ n ∈ F   ,    ∀ j ∈ { 1 , 2 , ⋯ , k − 1 }   , put     s r  = k i + j + r  ( r = 1 , 2 , … ,  j )    , then    ρ (  f 1  k n + j    ( x )  ,  f 1  k n + j    ( y )  ) < δ   . And because    F 1    have property    Q ( k )   , then


    F k  =  { k n + j ∈  Z +  : j = 1 , 2 , … ,  k − 1 , n ∈ F }  ∈  F 1  .   











Notice that     F k  ⊂  { m ∈  Z +  : ρ  (  f 1 m   ( x )  ,  f 1 m   ( y )  )  < δ }    , then     { m ∈  Z +  : ρ  (  f 1 m   ( x )  ,  f 1 m   ( y )  )  < δ }  ∈  F 1    .




	(ii)

	
Since D is an    (  F 1  ,  F 2  )   -scrambled set of    f  1 , ∞   [ k ]    , then, for the above    x , y ∈ D ( x ≠ y )   , there exist     ε *  > 0   , such that    E =  { n ∈  Z +  : ρ  (  f 1  k n    ( x )  ,  f 1  k n    ( y )  )  >  ε *  }  ∈  F 2    .



For any    j ∈ { 1 , 2 , … ,  k − 1 }   ,     f  s 1   , … ,   f  s j      are uniformly continuous (where     f  s 1   , … ,   f  s j      are freely chosen from the sequence     f i   ( i ∈ N )    ), then, for the above     ε *  > 0   , there exist    ε > 0    such that    ρ ( p , q ) < ε ( p , q ∈ X )    implies    ρ  (  f  s j   ∘ ⋯ ∘  f  s 1    ( p )  ,  f  s j   ∘ ⋯ ∘  f  s 1    ( q )  )  ≤  ε *   ( j = 1 , 2 , … ,  k − 1 )    . That is,    ρ  (  f 1 k   ( p )  ,  f 1 k   ( q )  )  >  ε *   ( p , q ∈ X )     implies    ρ (  f 1 j   ( p )  ,  f 1 j   ( q )  ) > ε  ( j = 1 , 2 , … ,  k − 1 )    .



   ∀ n ∈ E   ,    ∀ j = 1 , 2 , … ,  k − 1   , put     s r  = k  ( n − 1 )  + r  ( r = 1 , 2 , … ,  j )    , then


   ρ (  f 1  k ( n − 1 ) + j    ( x )  ,  f 1  k ( n − 1 ) + j    ( y )  ) > ε .   











Since    F 2    is negative shift-invariant, then    E − 1 ∈  F 2    . And because    F 2    have property    Q ( k )   , then      ( E − 1 )  k  ∈  F 2    , i.e.,     { k  ( n − 1 )  + j ∈  Z +  : n − 1 ∈ E − 1 , j = 1 , 2 , … ,  k − 1 }  ∈  F 2    . Combining      ( E − 1 )  k  ⊂  { m ∈  Z +  : ρ  (  f 1 m   ( x )  ,  f 1 m   ( y )  )  > ε }     with the hereditary upwards of    F 2   , we have     { m ∈  Z +  : ρ  (  f 1 m   ( x )  ,  f 1 m   ( y )  )  > ε }  ∈  F 2    .



By (i) and (ii), D is an    (  F 1  ,  F 2  )   -scrambled set of    f  1 , ∞    .



This completes the proof.









☐





Similarly, the following corollaries hold.



Corollary 1.

Let    F 1    and    F 2    are two Furstenberg families with property    P ( k )   , where k is a positive integer.    F 1    is positive shift-invariant. If the system    ( X ,  f  1 , ∞   )    is   F  -chaos (strong    (  F 1  ,  F 2  )   -chaos, or strong   F  -chaos), then the system    ( X ,  f  1 , ∞   [ k ]   )    is   F  -chaos (strong    (  F 1  ,  F 2  )   -chaos, or strong   F  -chaos).





Corollary 2.

Let    F 1    and    F 2    are two Furstenberg families with property    Q ( k )   , where k is a positive integer.    F 2    is negative shift-invariant. If the system    ( X ,  f  1 , ∞   [ k ]   )    is   F  -chaos (strong    (  F 1  ,  F 2  )   -chaos, or strong   F  -chaos), then the system    ( X ,  f  1 , ∞   )    is   F  -chaos (strong    (  F 1  ,  F 2  )   -chaos, or strong   F  -chaos).





Combining with Propositions 1 and 2, Theorems 1 and 2, and Corollarys 1 and 2, the following conclusions are obtained.



Theorem 3.

Let s and t are arbitrary two numbers in    [ 0 , 1 ]   , then




	(1) 

	
If D is an    (  M ¯   ( s )  ,  M ¯   ( t )  )   -scrambled set (or strong    (  M ¯   ( s )  ,  M ¯   ( t )  )   -scrambled set) of    f  1 , ∞    , then, for every    k ∈  Z +    , D is an    (  M ¯   ( s )  ,  M ¯   ( t )  )   -scrambled set(or strong    (  M ¯   ( s )  ,  M ¯   ( t )  )   -scrambled set) of    f  1 , ∞   [ k ]    .




	(2) 

	
For some positive integer k, if D is an    (  M ¯   ( s )  ,  M ¯   ( t )  )   -scrambled set (or strong    (  M ¯   ( s )  ,  M ¯   ( t )  )   -scrambled set) of    f  1 , ∞   [ k ]    , then D is an    (  M ¯   ( s )  ,  M ¯   ( t )  )   -scrambled set (or strong    (  M ¯   ( s )  ,  M ¯   ( t )  )   -scrambled set) of    f  1 , ∞    .











Proof. 






	(1)

	
By Proposition 1,     M ¯   ( s )     is shift-invariant (obviously positive shift-invariant). And because     M ¯   ( s )  ,  M ¯   ( t )     are two Furstenberg families with property    P ( k )    (Proposition 2). Then, according to the proof of Theorem 1, if D is an    (  M ¯   ( s )  ,  M ¯   ( t )  )   -scrambled set of    f  1 , ∞    , then, for every    k ∈  Z +    , D is an    (  M ¯   ( s )  ,  M ¯   ( t )  )   -scrambled set of    f  1 , ∞   [ k ]    .




	(2)

	
In the same way, (2) holds.



This completes the proof.









☐





With the preparations in Section 4, we have

Corollary 3.






	(1) 

	
If D is a Li–Yorke scrambled set (or distributionally scrambled set) of    f  1 , ∞    , then, for every    k ∈  Z +    , D is a Li–Yorke scrambled set (or distributionally scrambled set) of    f  1 , ∞   [ k ]    .




	(2) 

	
For some positive integer k, if D is a Li–Yorke scrambled set (or distributionally scrambled set) of    f  1 , ∞   [ k ]    , then, D is a Li–Yorke scrambled set (or distributionally scrambled set) of    f  1 , ∞    .











Remark 1.

In the non-autonomous systems, the iterative properties of Li–Yorke chaos and distributional chaos are discussed in [25,26] before. The conclusions in Corollary 3 remains consistent with them.







This paper has presented several properties of    (  F 1  ,  F 2  )   -chaos, strong    (  F 1  ,  F 2  )   -chaos, and strong   F  -chaos. There are some other problems, such as generically   F  -chaos and   F  -sensitivity, to discuss. Moreover, property    P ( k )    is closely related to congruence theory. Follow this line, one can consider other Furstenberg families which consist of number sets with some special characteristics.
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