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Abstract: In this paper, we examine two widely-used approaches, the polynomial chaos expansion
(PCE) and Gaussian process (GP) regression, for the development of surrogate models. The theoretical
differences between the PCE and GP approximations are discussed. A state-of-the-art PCE approach
is constructed based on high precision quadrature points; however, the need for truncation may
result in potential precision loss; the GP approach performs well on small datasets and allows a fine
and precise trade-off between fitting the data and smoothing, but its overall performance depends
largely on the training dataset. The reproducing kernel Hilbert space (RKHS) and Mercer’s theorem
are introduced to form a linkage between the two methods. The theorem has proven that the two
surrogates can be embedded in two isomorphic RKHS, by which we propose a novel method named
Gaussian process on polynomial chaos basis (GPCB) that incorporates the PCE and GP. A theoretical
comparison is made between the PCE and GPCB with the help of the Kullback–Leibler divergence.
We present that the GPCB is as stable and accurate as the PCE method. Furthermore, the GPCB is
a one-step Bayesian method that chooses the best subset of RKHS in which the true function should
lie, while the PCE method requires an adaptive procedure. Simulations of 1D and 2D benchmark
functions show that GPCB outperforms both the PCE and classical GP methods. In order to solve
high dimensional problems, a random sample scheme with a constructive design (i.e., tensor product
of quadrature points) is proposed to generate a valid training dataset for the GPCB method. This
approach utilizes the nature of the high numerical accuracy underlying the quadrature points while
ensuring the computational feasibility. Finally, the experimental results show that our sample strategy
has a higher accuracy than classical experimental designs; meanwhile, it is suitable for solving high
dimensional problems.

Keywords: Gaussian process; polynomial chaos expansion; reproducing kernel Hilbert space;
Kullback–Leibler divergence; experimental design

1. Introduction

Computer simulations are widely used in learning tasks, where a single simulation is an instance
of the system [1,2]. A simple approach to the learning task is to randomly sample input variables and
run the simulations for each input to obtain the features of the systems. Similar approaches are utilized
in Monte Carlo techniques [3]. However, even a single simulation can be computationally costly
due to its high complexity, and so, obtaining a trustworthy result via sufficient simulations becomes
intractable. Mathematical methods and statistical theorems are introduced to generate surrogate models
to replace the simulations, especially when dealing with complex systems with many parameters [4,5].
Although the main drawback of surrogate models is that only approximations can be obtained,
they are computationally efficient whilst maintaining the essential information of the systems, hence
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analyzing the properties of the system. Attempting to construct surrogate models with an acceptable
number of simulations necessitates the development of robust techniques to determine their reliability
and validity [6–8]. Plenty of researchers are working on improving sampling strategies to decrease
the number of simulations, which makes the task more significant [9]. With an increasing number
of surrogate models being developed, there needs to be a comprehensive understanding of the
uncertainties introduced by those models. The main purpose of uncertainty quantification (UQ) is
to establish a relationship between input and output, i.e., the propagation of input uncertainties,
and then to quantify the difference between surrogate models and original simulations. UQ can
provide a measure of the surrogate model’s accuracy and an indication of how to update the model at
the same time [10–12].

Denote f as a function (or simulator) of the original system, then given experimental design X,
the output Y = f (X) is produced, where caption notation is used because the input and output are
usually vectors (or matrices) in simulations. From a statistical perspective, the input uncertainties are
introduced by their randomness, so we represent the input with a random variable x, whose prior
probability density function (PDF) is p(x), such as the multivariate Gaussian distribution; as for the
output uncertainties, a common technique is to integrate the system uncertainty and the approximation
error as a noise term ε. In fact, the output y is also a random variable y = f (x) + ε determined by
f , x and ε. Now, suppose a surrogate f̄ (x) is constructed to approximate f (x), then UQ is used
to identify the distribution and statistical features (for example, Kullback–Leibler divergence) of
y, which are essential to the validation and verification of surrogates. Basically, there are two
preconditions that need to be satisfied: firstly, the surrogate models are well defined, i.e., any f̄ is
a measurable function with respect to (w.r.t) corresponding probability space p(x); secondly, techniques
are needed that learn from the prior information to obtain the best guess of the true function.

There is a number of studies proposing different surrogates for specific applications in the
literature, such as multivariate adaptive regression splines (MARS) [13], support vector regression
(SVR) [14], artificial neural network (ANN) [15] for reliability and sensitivity analyses and kriging [16]
for structural reliability analysis. We mainly focus on two popular methods that have been extensively
studied recently. One popular method that is extensively studied in the literature is the polynomial
chaos expansion (PCE), also known as a spectral approach [17]. PCE aims to represent an arbitrary
random variable of interest as a spectral expansion function of other random variables with prior
PDF. Xiu et al. [18–20] have generalized the PCE in terms of the Askey scheme of polynomials, so the
surrogates can be expressed by a series of orthogonal polynomials w.r.t the distributions of the input
variables. These polynomials can be extended as a basis of a polynomial space. In general, methods
used to solve PCE problems are categorized as two types: intrusive and non-intrusive. The main idea
behind the intrusive methods is the substitution of the input x and output f (x) with the truncated
PCE and calculating the coefficients with the help of Galerkin projection [21]. However, the explicit
formation of f is required to compose the Galerkin system, and a specific algorithm or program is
needed to solve a particular problem. It is for these reasons that the intrusive models are not widely
used; non-intrusive methods have been developed to avoid these limitations [21,22]. There are two
main aspects of the non-intrusive methods: one is the choice of sampling strategies, for example
Monte Carlo techniques; the other one is computational approaches. These two aspects are not
independent of each other: for example, if x ∼ N(0, 1), then the Gaussian quadrature method is
introduced to solve the numerical integration and X is the set of corresponding quadrature points.
Another one of the more common methods in constructing surrogate models is the Gaussian process
(GP), which is actually a Bayesian approach. Instead of attempting to identify a specific real model of
the system, the GP method provides a posterior distribution over the model in order to make robust
predictions about the system. As described in the highly influential works [23–26], the GP can be
treated as a distribution over functions with properties controlled by a kernel. For the two prerequisites
discussed in the previous paragraph, the GP generates a surrogate model that lies in a space spanned
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by kernels; meanwhile, Bayesian linear regression or classification methods are introduced to utilize
the prior information.

Both the PCE and GP methods build surrogates, but there are some differences between them.
The PCE method builds surrogates of a random variable y as a function of another prior random
variable x rather than the distribution density function itself. The PCE surrogates are based on the
orthogonal polynomial basis corresponding to the p(x), so it is simple to obtain the mean and standard
deviation of y. In contrast, the GP utilizes the covariance information so that it performs better in
capturing the local features. Although both the PCE and GP approaches are feasible methods to
compute the mean and standard deviation of y, the PCE performs more efficiently than the GP method.

As mentioned above, both the PCE and GP methods have their own trade-offs to consider when
building surrogates, and there exists a connection to be explored. According to Paul Constantine’s
work [27], ordinary kriging (i.e., GP in geostatistics) interpolation can be viewed as a transformed
version of the least squares (LS) problem, and the PCE can be viewed as the least squares with selected
basis and weights. However, the GP reverts to interpolation when the noise term is zero. When taking
the noise term into consideration, the Gaussian process with the kernel (i.e., covariance matrix) XTX
can be viewed as a ridge regression problem [28] with a regularization term. Furthermore, different
numerical methods can affect the precision of the PCE method, as well. For example, Xiu [20] analyzed
the aliasing error w.r.t the projection method and interpolation method. Thus, the inherent connection
of the two models cannot be simply summarized as an LS solution, and how to output a model with
high precision remains an interesting question.

There are connections between the PCE and GP methods that have been explored by R. Schobi, etc.
They introduced a new meta-modeling method naming PC-kriging [29] (polynomial-chaos-based
kriging) to solve the problems like rare event estimation [30], structural reliability analysis [31], quantile
estimation [32], etc. In their papers, the PCE models can be viewed as a special form of GP where
a Dirac function is introduced as the kernel. They also proposed the idea that the PCE models have
better performance in capturing the global features and that the GP models approximate the local
characteristics. We would like to describe the PC-kriging method as a GP model with a PCE-form
trend function along with a noise term. The global features are dominated by the PCE trend, and local
structures (residuals) are approximated by the ordinary GP process. The PC-kriging model thus
introduces the coefficients as parameters to be optimized, and the solution can be derived by Bayesian
linear regression with the basis consisting of the PCE polynomials. They also use the LARSalgorithms
to calibrate the model and to select a sparse design. They construct a rigid framework to optimize the
parameters, validate and calibrate the model and evaluate the model accuracy.

Unlike the PC-kriging, which takes the PCE as a trend, this paper focuses on the construction
of the kernel in the GP to solve the regression problems, through which we can combine the two
methods into a unified framework, unifying positive aspects from both and in so doing refining the
surrogates. In other words, we wish to find the connection between the GP and the PCE by analyzing
the attribution of their solutions, and we want to propose a new approach to achieve high-precision
predictions. The main idea of this paper is described as follows. Firstly, the PCE surrogate is embedded
in a Hilbert space whose bases are the orthonormal polynomials themselves, then a suitable inner
product and a Mercer kernel [33] are defined to build a reproducing kernel Hilbert space (RKHS) [33].
Secondly, on the other hand, the kernel of the GP can be de-composited as the product of eigenfunctions,
and we can define an inner product to generate a RKHS, as well. We have explicitly elaborated the
two procedures respectively and proven that the two RKHS are isometrically isomorphic. Hence,
a connection between these two approaches has been established via RKHS. Furthermore, we can
obtain a solution of the PCE model by solving a GP model with the Mercer kernel w.r.t the PCE
polynomial basis. We name this approach Gaussian processes on polynomial chaos basis (GPCB).
In order to illustrate the capability of the GPCB method, we use the Kullback–Leibler divergence [34]
to explicitly compare the PDFs of the posterior prediction of the GPCB and PCE method. Provided
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that the true function can be approximated by a finite number of PCE bases, it can be concluded that
the GPCB can converge to the optimal subset of the RKHS wherein the true function lies.

The experimental design from the PCE model, i.e., the full tensor product of quadratures in each
dimension, is used in the GPCB. We have overcome two concerns about the PCE and GP, respectively.
Firstly, the PCE is based on a truncated polynomial basis, while the GPCB keeps all polynomials,
which can be regarded as maintaining information in every feature. Secondly, the GP’s behavior
depends on the experimental design; however, it often achieves the optimal result in local small
datasets. The quadrature points derived from the PCE model are distributed evenly in the input space,
and those points have high numerical precision w.r.t the polynomial basis; hence, they can work well
with the GPCB. However, we must admit that the GPCB is still a GP approach, so when the dimension
of input variables grows, the computational burden is on the table. In order to cope with the high
dimensional problems, sampling strategies to lower the number of experimental designs are put on
the table. The AK-MCSmethod [35] is a useful tool that adaptively selects new experimental designs;
however, the experimental design tends to validate the selected surrogate model. We propose a new
method that is model-free and that makes full use of the quadrature points. We randomly choose
a sparse subset from the quadrature points to form a new experimental design while maintaining the
accuracy. Several classical sampling strategies like MC, Halton and LHS are introduced to compare
their capabilities. Our sample scheme has superior performance under the conditions in this paper.
The GPCB is a novel method to build surrogate models, and it can be used for various physical
problems such as reliability analysis and risk assessment.

This paper is divided into two parts. In Part 1, we discuss the mathematical rigor of the method:
a brief summary of PCE and GP is presented in Section 2; the reproducing kernel Hilbert space
(RKHS) is introduced to connect these two methods in Section 3; the GPCB method is proposed based
on the discussion in Section 4; meanwhile, a theoretical Kullback–Leibler divergence between the
GPCB and PCE method is demonstrated. In Part 2, an explicit Mehler kernel is presented with the
Hermite polynomial basis in the last part of Section 4; several tests of the GPCB with some benchmark
functions are presented in Section 5, along with the random constructive sampling method for high
dimensional problems.

2. Brief Review of PCE and GP

Firstly, we want to have a clear idea of how the PCE and GP work under the circumstances that,
e.g., only samples of input X and output Y are obtained. Different assumptions are made to cope with
PCE and GP, respectively, and the processing procedures are presented in the following subsections.

2.1. Polynomial Chaos Expansion

Just as discussed in Section 2.2, the output is assumed to be represented by a model y = f (x) + ε,
where f (x) : x ∈ Ω → R is the real function underneath and ε ∼ N (0, σ2

ε ). Here, we define
x = (x1, x2, . . . , xd)

T as a d-dimensional vector of independent random variables in a bounded domain
Ω ⊂ Rd. Suppose {xi, i = 1, . . . , d} are independent and identically distributed; the joint PDF has
the form p(x) = ∏d

i=1 p(xi). In the context of PCE, we aim to seek a surrogate of the model f (x) as
an expansion of a series of orthonormal polynomials φα(x):

f (x) = ∑
α∈Nd

βαφα(x), α = {α1, . . . , αd} (1)

where α is the multi-index, φα(x) = ∏d
i=1 φ

(i)
αi (xi),

∫
Ωi

φ
(i)
m (xi)φ

(i)
n (xi)pi(xi)dxi = δmn with Ωi the

marginal domain of Ω and δmn the Kronecker delta. Xiu et al. [20] have summarized various
correspondences between the distribution and polynomial basis to form generalized polynomial chaos.
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It is proven that the original model f (x) can be approximated to any degree of accuracy in a strong
sense [20], e.g., mean-square norm ‖ f (x)−∑α∈ND βαφα(x)‖ in an L2 norm defined on Ω, although f is
not necessarily the span of orthonormal polynomial bases. Since we are unable to calculate an infinite
series, the truncation scheme corresponding to multi-index α is introduced such that we can rearrange
the polynomials. For simplicity, we can rewrite Equation (1) in the following form:

f (x) u
M

∑
l=0

βlφl(x) , fP, (2)

We can simply solve the above system via the ordinary least squares method or the non-intrusive
method. Specifically, we focus on the non-intrusive projection method, whereby we can directly obtain
the coefficients by taking the expectation value of Equation (2) multiplied by φl(x):

βl =
∫

f (x)φl(x)p(x)dx ≈
N

∑
i=1

ωi f (Xi)φl(Xi), l = 0, . . . , M (3)

where the second equation is derived by the numerical integration techniques, such as the Gaussian
quadrature rule, and {Xi, i = 1, . . . , N} and {ωi, i = 1, . . . , N} are the corresponding nodes and
weights. The integration is exact when f (x) is of polynomial complexity. Together with Equations (2)
and (3), fP(x) has the form:

fP(x) ≈
M

∑
l=0

[
N

∑
i=1

ωi f (Xi)φl(Xi)

]
φl(x) ,

M

∑
l=0

βlφl(x). (4)

{ f (Xi), i = 1, . . . , N} remain unknown to us, and usually, they are substituted by {Yi, i = 1, . . . , N}.
Note Yi = f (Xi) + εi, so such a substitution will introduce noise into the surrogate; hence,
the approximation error is neglected as a source of uncertainty.

2.2. Gaussian Process Regression

The analysis of the Gaussian process regression model [26] is reviewed in this section.
A Gaussian prior is placed over function f (x), i.e., f (x) ∼ GP(m(x), k(x, x)), where m is the mean
function and k is the kernel function, which is positive semi-definite bounded. More specifically,
let X = {Xi, i = 1, . . . , N} ∈ ΩN be the input data, and let Y = {Yi, i = 1, . . . , N} ∈ RN be the
output data, then we have Y = f (X) + ε with f (X) ∼ N (m(X), k(X, X)) and ε ∼ N (0, σ2

ε I). Bear in
mind that the mathematical expression of f (x) is implicit, so f (x) is approximated to achieve the
best guess prediction fG in the statistical sense. With the help of Bayes’ theorem, prediction and
corresponding variance at a new point x can be obtained by the following equations [36]:

pG( f (x)|Y, X, x, θ) = N ( fG(x), cov( fG(x))),

fG(x) , E[ f (x)|Y, X, x, θ] = KT
x [K + σ2

ε I]−1Y,

cov( fG(x)) = Kxx − KT
x [K + σ2

ε I]−1Kx.

(5)

where K = k(X, X) ∈ RN×N as the covariance matrix with Kij = k(Xi, Xj) and Kx = k(X, x) ∈ RN×1,
Kxx = k(x, x) ∈ R are defined similarly. Note that Equation (5) shows that the mean value of the
posterior distribution can be expressed as a linear combination of N kernel functions as follows:

fG(x) =
N

∑
i=1

αik(Xi, x), α = (K + σ2
ε I)−1Y (6)
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3. Links between the PCE and GP

The basic concepts of PCE and GP are discussed in Section 2. GP generates a surrogate based on
Bayes’ theorem and the Gaussian hypothesis; however, it is controlled by the kernel function and the
experimental design and usually does not utilize prior distribution information; PCE substitutes the
model with orthonormal polynomials, which is more computational efficient, but performs badly when
facing noisy or big data. This section aims to build a connection between PCE and GP; hence, they can
be studied in the same structure and be combined to improve the performance of the surrogates.
The reproducing kernel Hilbert space will be of great help to build such a bridge, and we are going to
present it as follows.

3.1. Generate an RKHS from a Mercer Kernel Constructed by the PCE Basis

We have obtained a complete orthonormal basis {φl} of Hilbert space H := span{φl(x)} with
inner product < f (x), g(x) >=

∫
f (x)g(x)p(x)dx in Section 2.1. We can see that the PCE method

generates surrogates, which are actually a linear combination of {φl}, so there exists a unique
expansion f = ∑l flφl ∈ H. According to Mercer’s theorem [33], we aim to define a kernel having the
following form:

k(x, x′) = ∑
l

λlφl(x)φl(x′) s.t. k(x, x) < ∞ f or ∀x ∈ Ω. (7)

If we have positive weights λl that satisfy ∑l λlφ
2
l (x) < ∞, then for any x ∈ Ω, together with the

Cauchy–Schwarz inequality, we have:

| f (x)| ≤
√

∑
l

< f (x), φl(x) >2

λl

√
∑

l
λlφ

2
l (x). (8)

| f (x)| is point-wise bounded because f (x) ∈ H for any x ∈ Ω. By checking the right side of the above
inequality, the second term is ensured in advance, then f (x) lies in a subspace ofH such that:

HP =

{
f ∈ H

∣∣∣ < f , f >HP= ∑
l

< f (x), φl(x) >2

λl
< ∞, ∑

l
λlφ

2
l (x) < ∞

}
. (9)

Proposition 1. HP defined in Equation (9) is an RKHS with Mercer kernel defined in Equation (7).

3.2. Generate an RKHS from the Reproducing Kernel Map Construction

We aim to compose a space of functions in which all the GP surrogates are embedded.
Given Equation (6) and an arbitrary experimental design X, define a space of functions as follows:

H′G =

{
f (x) =

N

∑
i=1

fik(x, Xi)
∣∣∣N ∈ N, X ∈ ΩN , x ∈ Ω, fi ∈ R,

N

∑
i=1

N

∑
j=1

fi f jk(Xi, Xj) < +∞

}
. (10)

Proposition 2. H′G is a pre-Hilbert space with the inner product < ·, · >H′G

Now thatH′G is a pre-Hilbert space and given the norm ‖ f (x)‖H′G =
√
< f (x), f (x) >H′G , we can

define a closure ofH′G asHG derived by the classical Hilbert space theory. This is an abstract space
where the norm ofH′G extends to the closureHG. Thus, we have a Hilbert spaceHG.

Proposition 3. HG defined above is the unique RKHS of the kernel k(·, ·).
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3.3. Reproducing Kernel Hilbert Spaces as a Linkage

HP and HG are RKHS with the Mercer kernel and GP kernel, respectively. We are going to
investigate the relationship between the two RKHS, by which we can discuss the two approaches in
a unified structure. Let X be a sample set and GP kernel k(·, ·) be a real positive semi-definite kernel,
then according to Mercer’s theorem, k(Xi, Xj) has an eigenfunction expansion:

k(Xi, Xj) = ∑
l

λlφl(Xi)φl(Xj), (11)

where the eigenfunctions {φl} are orthonormal, i.e., < φl , φl′ >=
∫

φl(x)φl′(x)p(x)dx = δll′

and {λl , φl} satisfies ∑l λlφ
2
l (x) < ∞. Let fX(x) ∈ HG with experimental design X, then we can

rewrite it according to Equations (10) and (11):

fX(x) =
N

∑
i=1

fi ∑
l

λlφl(Xi)φl(x) = ∑
l

[
λl

N

∑
i=1

fiφl(Xi)

]
φl(x) , ∑

l
cl(X)φl(x). (12)

where cl(X) is identically determined by l and X, and it has a similar form as a function lies in HP.
Actually, given fX(x), gX ′(x) ∈ HG, we have:

< fX(x), gX ′(x) >HG =
N

∑
i=1

N′

∑
j=1

figj

[
∑

l
λlφl(Xi)λlφl(X′j)/λl

]

= ∑
i

{[
λl

N

∑
i=1

fiφl(Xi)

] [
λl

N′

∑
j=1

gjφl(X′j)

]}
/λl

= ∑
l

cl(X)cl(X ′)/λl

= ∑
l
< fX(x), φl >< gX ′(x), φl > /λl

=< fX(x), gX ′(x) >HP .

(13)

The above equation gives us the information that their inner product stands in HP, as well, so
we can conclude that fX lies inHP. It also shows us that the two inner products are equivalent. Next,
we are going to propose a rigid theorem to prove that the two spaces are isometrically isomorphic.

Theorem 1. The reproducing kernel Hilbert space HG of a given kernel k is isometrically isomorphic to the
spaceHP.

According to the proof of Theorem 1 in Appendix A.4, it is reasonable to introduce a weighted l2

space l2
1/λ because it is difficult to find a direct linear map betweenHG (where cl varies according to X

and k) andHP (where cl varies according to the distribution of x). Figure 1 shows two flowcharts used
to describe different processes in generating the RKHS.

Furthermore, the GP prediction is a combination of the kernel functions, which consist of
infinite eigenfunctions, while the PCE prediction is always a combination of finite polynomial bases.
The Kullback–Leibler divergence (KL divergence) is a useful criterion to indicate the performance of
different surrogate models. We are going to present the comparison of the GPCB and PCE methods
with the help of KL divergence in the next section.
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Gaussian Process

Well defined
kernel

function k(·, ·)
Sampling X

Space HG
defined in

Equation (10)

RKHS
with k(·, ·)

Eigenfunction
expansion in
Equation (11)

Isomorphic
to l2

1/λ

Distribution of x

Known
Basis {φ(x)} Parameter λ

Space HP
defined in

Equation (9)

Mercer Kernel
defined in

Equation (7)

Isomorphic
to l2

1/λ

RKHS with
Mercer kernel

Figure 1. Left: Generate the reproducing kernel Hilbert space (RKHS) with the reproducing kernel
map; right: generate the reproducing Mercer kernels with the polynomial chaos expansion (PCE) basis.

4. Gaussian Process on Polynomial Chaos Basis

HG and HP are isomorphic as discussed in previous Section 3, so it is natural to come up with
the idea that GP can be conducted with k(·, ·) as the Mercer Kernel generated by polynomial basis in
the PCE, and the new model is called Gaussian process on polynomial chaos basis (GPCB). In fact,
the GPCB generates a PCE-like model, but with a different philosophy. Note that the posterior
distribution of the predictions regarding experimental design {X, Y} can be calculated analytically,
so we are able to compute the KL divergence as well, which are presented as follows.

4.1. Comparison of the PCE and GPCB with the Kullback–Leibler Divergence

The true distribution of the system is always implicit in practice. Without loss of generality,
the underlying true system is assumed to be fP̄(x) = ∑M̄

l=0 β̄lφl(x) if fP̄(x) ∈ C0(Ω̄) such that it can
be approximated by the polynomials to any degree of accuracy [20].

Firstly, we presume that M̄ ≤ M, i.e., β in Equation (4) is an unbiased estimator of β̄. Hence,
the PCE approximation can be considered as a precise approximate of the true function. We compare
the performance of the GPCB and the PCE method by comparing their difference in the posterior
distribution of the prediction. It is known that given experimental design {X, Y} and kernel function
k(x, x′) = ∑∞

l=0 λlφl(x)φl(x′), the distribution of the prediction of the GPCB reads:

pG( fG(x)) = N (KT
x K−1

Y Y, Kxx − KT
x K−1

Y Kx) , N (µ1, Σ1), (14)

where conditions X, Y, x are dropped in pG( fG(x)|X, Y, x) for simplicity and KY = K + σ2 I.
Similarly, the prediction of the PCE with the projection method is fP(x) = φΦTWY, which is
derived from the estimation β = ΦTWY. Here, φ = φ(x) ∈ R1×(P+1), Φ = φ(X) ∈ RN×(P+1),
W = diag{ω1, . . . , ωN} is a diagonal matrix. The corresponding prediction variance is
cov( fP(x)) = φcov(β)φT = σ2φΦTW2ΦφT . Dropping the conditions in pP( fP(x)|X, Y, x) as well,
the previous results indicate:

pP( fP(x)) = N (φΦTWY, σ2φΦTW2ΦφT) , N (µ2, Σ2). (15)

We can evaluate the discrepancy between pG( fG(x)) and pP( fP(x)), hence comparing their
performance. The KL divergence can be calculated analytically:

DKL (pP, pG) =
1
2

(
−1 +

Σ2

Σ1
+ log

Σ1

Σ2
+

(µ1 − µ2)
2

Σ1

)
,

1
2

(
−1 + b− log b +

a2

Σ2
b
)

, (16)



Entropy 2018, 20, 191 9 of 22

where a, b are simplified notations for the corresponding parts in Equation (16). In fact, b is the
point-wise ratio between the posterior variances of the predictions, and a represents the difference
between the posterior mean of the prediction. We discuss the properties of DKL starting from a special
case to the general conditions hereafter.

Let k be a truncated kernel with the M basis of PCE, i.e., k(x, x′) = ∑M
l=0 λlφl(x)φl(x′). Actually,

it can be seen as the assignment of {λl , l > M} with the value of zero, which can be achieved by
optimizing the value λl with a specific procedure. b can be simplified as:

b =
σ2φΦTW2ΦφT

φ
(

Λ−ΛΦTK−1
Y ΦΛ

)
φT

=
φΦTW2ΦφT

φΦTWK−1
Y KWΦφT

=
φΦTW2ΦφT

φΦTWU(S + σ2 I)−1UTUSUTWΦφT ∈
[

smax + σ2
ε

smax
,

smin + σ2
ε

smin

]
,

(17)

where Λ = diag{λl} is a diagonal matrix and K = USUT is the eigenvalue decomposition. Let smax be
the maximum eigenvalue and smin be the minimal one; the above interval holds because K is a positive
definite matrix. Note that b is an invariant with fixed x. On the other hand, the distribution of a is
as follows:

a = φ
(

ΦTWY−ΛΦTK−1
Y Y

)
= σ2

ε φΦTWK−1
Y Y

∼ N
(

σ2
ε φΦTWK−1

Y Ŷ, σ6
ε φΦTWK−1

Y K−1
Y WΦφT

)
.

(18)

Here, Ŷ denotes the mean value of the observations, i.e., the true response. It is necessary to state
that the randomness of a is brought by the random variable ε in observation Y. In fact, we have the
expectation of DKL(pP, pG) as follows:

Eε [DKL(pP, pG)] =
1
2

(
−1 + b− log b +

Eεa2

Σ2
b
)

=
1
2

(
−1 + b− log b + (var(c) + (Eεa)2)b/Σ2

)
≤ 1

2

(
−1 + b− log b +

σ2
ε + ‖Ŷ‖2

σ2
ε

(
σ2

ε

smin + σ2
ε

)2

b

)
.

(19)

Presume that the observation Y is normalized, as well as Ŷ; hence, ‖Ŷ‖2 can be estimated as O(1).
The main difference is affected by the kernel k(·, ·) (or Λ) and the term σ2

ε . More specifically, The
GPCB can achieve a smaller variance than the PCE method in a point-wise manner because b > 1,
and the differences between the predictions of the two methods is of the order of σ2

ε . Furthermore,
if σ2

ε is sufficient small, i.e., σ2
ε � smin, we have b → 1, thus Eε [DKL(pP, pG)] → 0. If σ2

ε = 0,
i.e., we investigate the noise-free models, then b = 1 and a = 0, which enforces Σ1 = Σ2 and µ1 = µ2,
respectively. This means that pG and pP are identical distributions, i.e., DKL (pP, pG) = 0.

We can conclude that the expected value of DKL(pP, pG) is bounded by a certain constant, which
mainly depends on the σ2

ε and Λ. In other words, since σ2
ε is given in the prior, and the Λ are optimized;

hence, the DKL(pP, pG) is constrained, which means that the GPCB is as stable as the PCE method.
Nonetheless, if fP has reached a desired prediction precision, then fG with the kernel constructed with
the same basis can have a desirable precision, as well as smaller variance.

Secondly, we consider that M̄ > M, where the β of the PCE method is not an unbiased estimate
of β̄ any longer. Let pP̄ denote the PCE approximation with the M̄ basis; under the circumstance,
k(x, x′) = ∑M̄

k=0 λlφl(x)φl(x′) is achieved by tuning the value of Λ via a certain learning method; hence,
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DKL(pP̄, pG) is also bounded by a constant according to Equation (19), i.e., the GPCB can converge to
the precise PCE prediction pP̄, as well. However, the KL divergence DKL(pP̄, pP) is given as:

DKL (pP̄, pP) =
1
2

(
−1 +

Σ̄
Σ2
− log

Σ̄
Σ2

+
(µ̄− µ2)

2

Σ1

)
,

1
2

(
−1 + b̄− log b̄ +

ā2

Σ1

)
,

b̄ =
φΦTW2ΦφT + φrΦT

r W2ΦrφT
r + φAφT

r
φΦTW2ΦφT ≥ 1,

ā = φrΦT
r WY ∼ N

(
φrΦT

r WŶ, σ2
ε φrΦT

r W2ΦrφT
r

)
.

(20)

We denote φr as the basis that belongs to the model fP̄, but fP. It is shown that the biased PCE
fP has smaller variance, however with a bias whose mean value depends on φr. We notice that φr

represents the high-order polynomials; hence, the bias can be considerably large for general cases,
and so is the DKL (pP̄, pP). We can conclude that even though the biased PCE has smaller variance, the
relatively large bias can lead to a false prediction.

In fact, if the underlying system is smooth enough to be modeled by a polynomial approximation,
then we can adaptively increase the number of polynomial bases (and the experimental designs if
necessary) to reach a precise approximation. However, on the other hand, we can directly use the
GPCB method, which is a one-step Bayesian approximation, that converges to the hypothetical true
system fP̄. Roughly speaking, the GPCB finds M̄ automatically by tuning the parameters Λ instead
of adaptively changing the value of P in the PCE method. It indeed provides more convenience for
computation. The key problem is the evaluation of Λ. Specifically, we introduce the Mehler kernel [37],
which is an analytic expression of the Mercer kernel constructed by Hermite polynomials, and discuss
the learning procedure of Λl .

4.2. Construction of the Kernel with Hermite Polynomials

Recall that we have {φα} in PCE as an orthonormal basis, then we regard them as eigenfunctions
of a kernel k(·, ·). Since p(x) follows the standard Gaussian distribution, then φ

(i)
l (xi) = Hel(xi)/

√
l!,

where xi is the i-th variable of x and Hel(xi) is the Hermite polynomial of degree l:

Hel(xi) = (−1)le
x2

i
2

dl

dxl
i
e−

x2
i
2 . (21)

Here, we denote the real l-th multi-index of the l-th polynomial in Equation (2) as
α(l) = (α

(l)
1 , . . . , α

(l)
d ), |α(l)| = α

(l)
1 + . . . + α

(l)
d and α(l)! = α

(l)
1 ! . . . α

(l)
d !, then according to the previous

analysis, we can get φα(l)(x) = Heα(l)(x)/
√

α(l)!. We have Mehler kernel Me(X, X ′) [37] with
orthonormal Hermite polynomials as eigenfunctions:

Me(x, x′) = exp

{
−

DxDT
x + Dx′DT

x′

2

}[
exp

d

∑
i=1

ρixix′i

]
=

∞

∑
l=0

ρα(l)φα(l)(x)φα(l)(x′), (22)

where the eigenvalue is λα(l) = ρα(l) = ∏d
i=1 ρ

α
(l)
i

i for parameter ρ, Dx is the symbol representing the
row gradient operator, i.e., Dx = (∂/∂x1, . . . , ∂/∂xd), and Dx′ is defined similarly. Specifically, in the
one-dimensional case:

Me(x, x′) =
1√

1− ρ2
exp

(
−ρ2(x2 + x′2)− 2ρxx′

2(1− ρ2)

)
=

∞

∑
l=0

ρlφl(x)φl(x′), (23)

where the eigenvalue λl = ρl > 0. The truncated kernel MeM(x, x′) = ∑M
l=0 ρlφl(x)φl(x′), and its

attribution can be investigated by varying ρ and M. Figure 2a illustrates the truncated kernel
MeM(x, x′), which shows that MeM(x, x′) tends to converge to Me(x, x′) as M grows. Figure 2b
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shows the values of Me(x,−0.8) with different ρ. It presents to us that the influence of eigenvalue λl is
greater on the Mehler kernel.
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Figure 2. Comparison of the effect of M and ρ on the 1D Mehler kernel with one fixed point {−0.8}.
(a) Kernel value of MeM(x,−0.8) with ρ = 0.5; (b) kernel value of Me(x,−0.8).

4.3. Learning the Hyper-Parameter ρ of Me(x, x′)

It is clear that λl = ρl has a great impact on the kernel values, hence affecting the convergence
of the fG(x). We start with a simple example, where f (x) = 5 + x + exp(x), x ∼ N (0, 22) is the true
underlying function, and the noise term is ignored in the observation. Considering the Taylor expansion
of exp(x), f (x) can be approximated by the PCE with sufficiently large M. In fact, we can calculate
the projection < f (x), φl(x) > to seek the value of M. When l > M, < f (x), φl(x) >≈ 0. On the other
hand, as discussed in Section 4.1, the GPCB can find M automatically by tuning the hyper-parameter
ρ. Let the experimental design X be the zeros of He10(x) of Equation (21), i.e., quadrature points
corresponding to degree 10; we compare the performance of the GPCB with ρ equal to 0.1, 0.45, 0.7,
respectively. The results are displayed in Figure 3. Note that the projection value is the absolute value
of the true value in the figure for better illustration. It shows that we are able to approximate f (x) with
polynomials up to degree 40. If ρ = 0.45 for the Mehler kernel, the GPCB almost converges to exact
f (x), whereas ρ = 0.1 leads to a fast convergence rate and ρ = 0.7 results in a slow convergence rate.

0 10 20 30 40 50 60 70 80 90 100
10

-15

10
-10

10
-5

10
0

10
5

Figure 3. Projections on the first 100 polynomials of f (x) and the Gaussian process on polynomial
chaos basis (GPCB) with ρ = 0.1, 0.45, 0.7.
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Figure 3 shows that the ρ has a crucial impact on the performance of the GPCB method,
so a tractable method to optimize ρ is needed. A natural criterion is the KL divergence, which can be
minimized by finding the optimal hyper-parameters ρ. We discussed the KL divergence of the GPCB
and the PCE surrogates under the assumption that the PCE surrogate model can approximate the true
system to any degree of accuracy. However, the distribution of the real system is usually unknown,
which makes the calculation of KL divergence intractable. In fact, it can be easily deduced that the
minimization of KL divergence is equivalent to minimizing the negative log marginal likelihood ∆,
which (actually is 2∆) reads:

∆ = YTK−1
Y Y + log

[
(2π)N |KY|

]
(24)

It is important to optimize ρ and σ2
ε to obtain a suitable kernel to get an accurate approximation.

Classical methods like gradient-based techniques can be used to search for the optimal ρ; however,
it may perform poorly because it is locally optimized. As we can see in Equation (23), it is indicated
that ρ should take a value between zero and one, so we can propose a global method to solve our
optimization problem. The algorithm for generating a GPCB approximation is given in Algorithm 1:

Algorithm 1: General procedure of the GPCB method with the Mehler kernel.
Input: Simulator y(x), prior distribution p(x)
Output: A GPCB approximation fG(x)
Data: ∆0 = ∞, ∆1 = 0, ρ0 = 0.001, ρ1 = 0.999, eps = 1e− 6

1 Initialize polynomial basis φl(x) w.r.t p(x);
2 Construct corresponding Mehler kernel according to Equation (22);
3 Sample an experimental design {X, Y} with Y = y(X);
4 while |∆0 − ∆1| ≥ eps do
5 Divide [ρ0, ρ1] into 10 intervals to get ρ(0) = min{ρ0, ρ1}, ρ(1), . . . , ρ(10) = max{ρ0, ρ1};
6 Calculate ∆ according to Equation (24) w.r.t ρ(i) to get ∆(i);
7 Select the first two minimal ∆(i) to get ∆(i1), ∆(i2);
8 Assign ∆0 = ∆(i1), ∆1 = ∆(i2);
9 Assign ρ0 = ρ(i1), ρ1 = ρ(i2);

10 end
11 Select ρ with minimal ∆, together with Equation (22) and Equation (5), to obtain fG(x).

5. Numerical Investigation

In this section, we investigate the GPCB method for various benchmark functions. Firstly,
we investigate the same example in Figure 3; however, the noise term is considered, i.e., y = f (x) + ε =

5+ x + exp(x) + ε is the observation, where x ∼ N (0, 22), ε ∼ N (0, 0.12). Three methods, i.e., GP with
the RBF kernel, PCE and GPCB, are implemented. It is necessary to note that the Monte Carlo
(MC) sampling strategy is used in the normal GP approaches, and Gaussian quadrature points are
introduced in the GPCB approach. The main reason is that the quadrature points are too sparse for the
widely-used kernels to capture the local features. For example, in this case, P = 10 in PCE, then the
maximum quadrature point is 10.376, which is beyond 3σx. In the first set of experiments, let P = 10
in PCE, which means 11 sample points are used in the experiments; furthermore, 10,000 samples
are introduced as test dataset to output the ECDF (empirical cumulative distribution function) and
RMSE (root-mean-squared error). The GP algorithm is implemented by the gpml toolbox [38] written
in MATLAB with four different kernels, i.e., linear, quadratic, Gaussian and Matérn-3/2 kernels.
The comparisons of the results are displayed in Figure 4.



Entropy 2018, 20, 191 13 of 22

-4 -2 0 2 4

0

5

10

15

20

25

30

35

40

(a) (b)

0 5 10 15 20 25

-3

-2

-1

0

1

2

3

4

(c)

Figure 4. Comparisons among the GP, polynomial chaos expansion (PCE) and GPCB surrogates for the
1D example. (a) Comparison of the KL divergence, P = 10; (b) comparison of the ECDF of prediction,
P = 10; (c) comparison of the RMSE with different degrees P in the 1D example.

Figure 4a illustrates the point-wise KL divergence between the true value of f (x) and the
predictions on the interval [−4, 4] based on Equation (16). It is clear that the distribution of GPCB
prediction is statistically closest to the true response, although the GP methods with quadratic,
Gaussian and Matérn-3/2 kernels outperform the GPCB at some points. Figure 4b compares
the ECDF of y based on the test dataset. It shows that both the PCE and GPCB have a similar
ECDF with the true value. Upon closer inspection, which is shown in the magnified subregion,
it is obvious that the ECDF of the GPCB is almost exactly the same as the real ECDF, which
shows that GPCB has actually captured the feature of f (x) with high precision. At the same time,
the RMSEs of the PCE, linear kernel, quadratic kernel, Gaussian kernel, Matérn-3/2 kernel and
GPCB are 1.0570, 37.3526, 23.6383, 25.6044, 27.4498, 0.4108, respectively. We have implemented another
experiment, which uses the degree P (i.e., the number of experimental design) as the second set of
experiments, which are illustrated in Figure 4c. Figure 4c shows that GPCB generally outperforms the
ordinary GP with the RBF kernel, which indicates that GPCB performs better with a few (or sparse)
training points. It is notable that the PCE and GPCB perform with almost the same precision when
the degree is greater than 16. It echoes the idea that PCE and GPCB are statistical equivalent, as we
present in Section 4.1.

Similar experiments are conducted with a two-dimensional function, which is expressed
as f (x) = exp(x1)/ exp(x2). Let x1, x2 ∼ N (0, 1), y = f (x) + ε be the real model where ε is
an independent noise term with a normal distribution N(0, 0.12 I2). Unlike the first test function,
this test example is a limit state function. Let the maximum degree for each dimension pt be seven
for the PCE method, which makes 64 training points in total. Another dataset of 10,000 independent
samples is introduced as the test set to calculate the ECDF and RMSE, as well. Similarly, we have the
point-wise KL divergence in the region [−2, 2;−2, 2] as shown in Figure 5a. It is clear that the GPCB
is globally closer to the true distribution than other methods. The GP with quadratic, Gaussian and
Matérn-3/2 kernels can approximate the center part well, while the PCE does not seem to perform
as well. Figure 5b shows that the six methods except the linear kernel are able to reconstruct the
distribution of the prediction, and upon closer observation, we find that the ECDF of the GPCB and
Matérn-3/2 kernel are the best approximations among the six methods. We also consider another
set of experiments focusing on the number of experimental designs, which equals (pt + 1)2 for the
2D function. The RMSEs of the three methods with respect to different pt are displayed in Figure 5c.
It also shows that the PCE and GPCB generally outperform the normal GP approaches, and the GPCB
has the best performance.
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Figure 5. Comparisons among the GP, PCE and GPCB surrogates for the 2D example. (a) Comparison
of the KL divergence with pt = 7; (b) comparison of the ECDF of prediction, pt = 7 ; (c) comparison of
the RMSE with different degrees pt in the 2D example.

To summarize, the GPCB generates a surrogate of infinite series, while the PCE can only generate
a surrogate with up to P + 1 polynomials, and they tend to behave with similar precision when P
is large enough. A set of sparse quadrature points sampled in the PCE, which are derived from
the Gaussian quadrature rule, is a good design for the GPCB. The GPCB with those training points
generally performs better than the normal GP methods and PCE. However, the size of such a training
set grows dramatically with the dimension (N = (pt + 1)d in total), so it is not practical in real-life
applications. We aim to present a strategy of sampling from those quadrature points, namely candidate
points in the next section, and analyze the performance of our algorithm on the selected points.

5.1. A Random Constructive Design in High Dimensional Problems

As the dimension of a system grows, so do the number of design points of PCE due to a tensor
product of quadrature points in each dimension. It is possible that PCE could deal with thousands
of points of training data with acceptable computational time; however, it becomes expensive for
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GP approaches, including our GPCB approach. Monte Carlo sampling techniques can substitute
quadrature design; however, these are not always stable. Other sampling strategies like Halton
sampling and Latin hypercube sampling [39] are widely used.

In this work, we want to utilize the high accuracy of quadrature points and also want to reduce
the massive number of points. Let x ∈ Rd, and pt is the maximum degree in each dimension, so pt + 1
quadrature points are needed in each dimension, which makes the total number of tensor products
of quadrature points be #{Xc} = (pt + 1)d. We seek to find a subset of the candidate design Xc.
Furthermore, we wish to obtain a subset having a good coverage rate in the space. Therefore,
we proposed the random definite design in our paper. Note that the LHS design can be extended
to a larger interval (1, (pt + 1)D) and can produce points at midpoints (endpoints), so we use the
LHS design to sample N indices from the interval. More specifically, we presume that the points in
Xc are equally important, so we arrange those points with a certain order to get their indices. Then,
we sample from the indices with the LHS design, and each index is related to a certain quadrature
point. It can be easily implemented by the MATLAB built-in function lhsdesign. The corresponding N
points are what we need.

Take a three-dimensional input space as an example, where xi ∼ N (0, 1), i = 1, 2, 3. Set pt = 6,
then #{Xc} = 343. The candidate design and its subset of 50 points X are illustrated in Figure 6.
We can see from the figure that our sampling is sparse in the whole set of candidate points, and it
behaves uniformly in dimension one as illustrated in Figure 6b, with similar conclusions in the other
two dimensions. When projecting our sampling from dimension three to get Figure 6c, we can see
that the selected points almost cover every point of Xc, which means it has all features in dimensions
one and two, i.e., quadrature point values of the two dimensions. It shows that such a method can
generate a sparse subset meanwhile guaranteeing the coverage rate in the whole candidate design.
We name it the random constructive design.
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Figure 6. Left: Xc and X in 3D view; the blue dots represent the quadrature points, while the red points
represent our samplings; middle: this shows the sparsity of our sampling in Xc; right: this shows that
our sampling actually covered almost every feature of Xc. (a) Xc and X in 3D view; (b) one slice of Xc;
(c) projection of X on Xc in dimensions one and two.

Now, we want to find out whether these samples retain their capability of accuracy. Firstly,
we use the PCE method to test those samples. We will look into the benchmark Ishigami function [40]:
f (x) = sin(x1) + 7 sin2(x2) + 0.1x4

3 sin(x1), where four different sampling strategies are compared
here. Set pt = 15, and the candidate design Xc has a size of 4096. The error term ε is eliminated in
this simulation for the accuracy test. The RMSE are computed on 10,000 independently-sampled data,
and the results are presented below in Figure 7. It can be seen that our sample always performs better
than other samples. When the number of samples surpasses 900, the RMSE becomes 1.0605× 10−5,
which equals the RMSE with the whole candidate points. Therefore, we only select 20% of Xc and
get the same precision. Furthermore, if we set our precision to be 10−2, only 400 points are needed.
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This shows that the quadrature points have high precision in numerical calculation. In other words,
the points in the candidate set are good points.
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Figure 7. Comparison of the RMSE between four sampling strategies with the PCE method.

Then, the random constructive design is used with the PCE, GP and GPCB methods for the
Ishigami function, with the noise term added in the observations. We take the RMSE as a criterion
to compare their performance, and the results are illustrated in Figure 8. Figure 8a shows that the
GPCB is always better than the PCE method, and they tend to behave the same. However, as the
number of sampling points grows, the GP with the quadratic kernel, Gaussian kernel and Matérn-3/2
kernel generally outperform the other methods. We can see that the Ishigami function is a bounded
function; therefore, it is likely to fill the whole observation space as the number of samples increases,
hence improving the accuracy of the GP method. We plot the ECDF with respect to the three methods
when N = 1000 in Figure 8b. It is clear that the GP with the quadratic kernel, Gaussian kernel and
Matérn-3/2 kernel can almost recover the true distribution of the response, which is beyond the
capability of the PCE and GPCB.
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Figure 8. Comparisons among the GP, PCE and GPCB surrogates for the Ishigami function.
(a) Comparison of the RMSE; (b) comparison of the ECDF; N = 1000.

A six-dimensional problem is being tested with the G-function [41], which is not like the Ishigami
function and is unbounded in the domain [−∞, ∞]6:

f (x) =
6

∏
i=1

|4xi − 2|+ ai
1 + ai

, where ai =
i− 2

2
, ∀i = 1, . . . , 6 (25)
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The experiment is performed with the same approaches, and the results are shown below in
Figure 9. Figure 9a shows that the GPCB outperforms the PCE and GP with the Gaussian Kernel, and it
has similar precision with the quadratic and Matérn-3/2 kernels. We notice that the GPCB is more
stable than the PCE method, which behaves badly especially when N = 150, 300. Figure 9b shows that
none of these three methods can reconstruct the probability of y very well; however, we can note that
the GPCB is still comparatively the closest.
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Figure 9. Comparisons among the GP, PCE and GPCB surrogates for the G-function. (a) Comparison
of the RMSE; (b) comparison of the ECDF; N = 1000.

Finally, we are going to present a more complicated model with 15 dimensional functions with
the following form:

f (x) = aT
1 x + aT

2 sin(x) + aT
3 cos(x) + xT Mx. (26)

The distribution of x is the product of 15 independent distributions, i.e., xi ∼ N (0, 1), i = 1, . . . , 15.
This function is introduced by the work of O’Hagan, where a1, a2, a3, M are defined in [42]. We can
see that this function is dominated by the linear and quadratic term, so it may be well approximated
by the low-order PCE model. Let pt = 3 in the PCE model; we can see from Figure 10a that the GP
with the quadratic kernel performs best among the six methods, while the PCE performs better than
the GPCB and other GP methods. On the other hand, the GPCB is always generally better than the GP
method except with the quadratic kernel for this function. When N = 1000, the PCE can generate y,
which follows the real distribution according to the ECDF in Figure 10b.

0 200 400 600 800 1000

1

1.5

2

2.5

3

3.5

(a) (b)

Figure 10. Comparisons among the GP, PCE and GPCB surrogates for Equation (26). (a) Comparison
of the RMSE; (b) comparison of the ECDF; N = 1000.
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6. Conclusions

This paper has examined two different surrogates of computational models, i.e., polynomial chaos
expansion and Gaussian process regression. First, we present a brief review of these two approaches.
Next, we discuss the relationship between PCE and GP and find that PCE and GP surrogates are
embedded in two isomorphic RKHS. Mercer’s theorem is introduced to generate a kernel based on
a PCE basis, by which a new approach is proposed, which we name GPCB. An example shows that
with the same experimental design, GPCB tends to retain useful information in a suitable subspace
of the RKHS by changing the hyper-parameters, whereas PCE simply sets the information of the
residual to zero. We further investigate the approximation performance on two test functions in
1D and 3D, respectively, and their approximation properties are illustrated. In order to deal with
the high dimensional scenario, a random constructive design from the quadrature points is used to
generate an experimental design. The results give us several directions for choosing models: basically,
the GPCB outperforms the PCE, but when the original model can be well approximated by low-order
PCE (Figure 10), it seems cumbersome to introduce the GPCB and GP; when the response function
is bounded (Figure 8), if we have enough training resources, the GP can be a better choice; when the
objective function is unbounded (Figures 4 and 9) or cannot be approximated by finite polynomials
(Figure 5), we should probably choose the GPCB.

Future work can extend the family of the Mercer kernel or equivalent kernel (other than the Mehler
kernel presented in this paper) beyond a classical approximation method. We can also analyze the
experimental design for GP regression in many ways. Although we can see that our sampling method
behaves fair enough in the experiments, there is also the opportunity to discover further suitable
experimental design schemes to fit different computational purposes, which would be of great interest.
The stability of our method will be investigated in future work, i.e., how many points are needed to
train a good surrogate and whether our method always produces a suitable design. Furthermore,
we can establish closer connections between numerical analysis and statistics via such combinations.
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Appendix A. Proofs of Proposition 1, Proposition 3, Proposition 2 and Theorem 1

Here, we use the same notations as in Section 3.

Appendix A.1. Proof of Proposition 1

Proof. Define the inner product in the above subspaceHP as follows:

< f (x), g(x) >HP= ∑
l

fl gl/λl . (A1)

Firstly, it is obvious that HP is a Hilbert space in H. Secondly, for any x ∈ Ω, k(x, ·) belongs to
HP because:

< k(x, ·), k(x, ·) >HP= ∑
l

< k(x, ·), φl(·) >2

λl
= ∑

i
λlφ

2
l (x) < ∞. (A2)

It also has the reproducing property for:
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< f (·), k(x, ·) >HP= ∑
l

flλlφl(x)/λl = f (x) f or ∀ x ∈ Ω, (A3)

We have the conclusion thatHP is an RKHS derived from the Mercer kernel.

Appendix A.2. Proof of Proposition 2

Proof. In fact, H′G is a space of all finite linear combinations of functions k(x, ·) : Ω → R,
so we can denote H′G := span{k(x, ·)|x ∈ Ω}, and the elements in H′G have the general form of
f (x) = ∑N

i=1 fik(x, Xi). Therefore, different N and all experimental designs X are allowed, which
enables that f (x) = ∑N

i=1 fik(x, Xi), g(x) = ∑N′
i=1 fik(x, X′i) ∈ H‘G. The linearity ofH′G is given by the

following explanation.
Let t1, t2 ∈ R be scalars, then we can rewrite t1 f (1)(x) + t2 f (2)(x) as a function f (x) such that:

f (x) =
N1

∑
i=1

t1 f (1)i k(x, X(1)
i ) +

N2

∑
j=1

t2 f (2)j k(x, X(2)
j ) ,

N

∑
l=1

flk(x, Xl), (A4)

where N = N1 + N2, { fl , l = 1, . . . , N} = {t1 f (1)i , i = 1, . . . , N1} ∪ {t2 f (2)j , j = 1, . . . , N2},
X = X(1) ∪ X(2). Additionally, we have:

N

∑
l=1

N

∑
m=1

fl fmk(Xl , Xm) =
N1

∑
i=1

N1

∑
i′=1

t2
1 f (1)i f (1)i′ k(X(1)

i , X(1)
i′ )

+
N2

∑
j=1

N2

∑
j′=1

t2
2 f (2)j f (2)j′ k(X(2)

j , X(2)
j′ ) + 2

N1

∑
i=1

N2

∑
j=1

t1t2 f (1)i f (2)j k(X(1)
i , X(2)

j )

<+ ∞,

(A5)

which means that t1 f (1)(x) + t2 f (2)(x) also belongs to H′G. Then, we would like to show that H′G is
an inner product space. Let the kernel function be positive semi-definite, and we define the inner
product ofH′G as follows:

< f (x), g(x) >H′G=
N

∑
i=1

N′

∑
j=1

figjk(Xi, X′j). (A6)

< ·, · >H′G is a well-defined inner product by checking the following conditions:

1. Symmetry: < f , g >H′G
= ∑i,j figjk(Xi, X′j) = ∑j,i gj fik(X′j, Xi) =< g, f >H′G

;
2. Bi-linearity:

< t1 f (1) + t2 f (2), g >H′G
=

N

∑
l=1

N′

∑
j=1

fl gjk(Xl , X′j)

=a
N1

∑
i=1

N′

∑
j=1

f (1)i gjk(X(1)
i , X′j) + b

N2

∑
i=1

N′

∑
j=1

f (2)i gjk(X(2)
i , X′j)

=a < f (1), g >H′G
+b < f (2), g >H′G

;

3. Positive-definiteness: It is obvious that < f , f >H′G
= f TK f ≥ 0 with the equality iff f = 0.
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Appendix A.3. Proofs of Proposition 3

Proof. Firstly, we can prove that the reproducing formula holds for the spaceH′G. For any X, k(X, x)
is a function of x and belongs toH′G. Furthermore, we have:

< f (·), k(x, ·) >H′G=
N

∑
i=1

fik(x, Xi) = f (x). (A7)

The above reproducing property is valid for any f ∈ H′G; thus, it is still valid for the closureHG
in the sense of generalizing the above equation as < f (·), k(x, ·) >HG= f (x). Then, we need to prove
thatHG is unique. Suppose that we have another Hilbert spaceHG′ , which is possibly an RKHS of the
kernel k(·, ·), then, for a specific X, we can get:

< k(x, X), k(x′, X) >H′G
= k(x, x′) =< k(x, X), k(x′, X) >HG′

. (A8)

This proves that the two inner products are the same on H′G; then, HG′ must contain
HG because it is the closure of H′G. HG′ must be equivalent to HG, otherwise we can find
a nonzero element f ∈ HG′ −HG such that it is orthogonal to HG. However, we can always get
that f =< f , k(·, X) >HG′

≡ 0 for a particular X, which is a contradiction.

Appendix A.4. Proofs of Theorem 1

Proof. Define a weighted l2 space such that:

l2
λ =

{
h
∣∣∣ < h, h >l2

λ
= ∑

l
λlh2

l < ∞

}
. (A9)

It is clear that {cl(X)} ∈ l2
1/λ for cl(X) defined in Equation (12). l2

1/λ is the completion
of the span of all {ci(X)}, then HG is isometrically isomorphic to l2

1/λ, because firstly,
cl(X) is identically determined by k(·, ·) and X, secondly, according to Equation (13),
< fX(x), gX ′(x) >HG= ∑l cl(X)cl(X ′)/λl . On the other hand, there exists a linear map such that:

T : l2
1/λ → HP, T(c) = ∑

l
clφl . (A10)

This is a surjective map for every f ∈ HP, { fi} ∈ l2
1/λ. Now, we need to prove that the projection

T is injective. Assume there exist c and c′ such that T(c) = T(c′), then:

0 = ‖T(c)− T(c′)‖2
HP

=< T(c− c′), T(c− c′) >HP= ∑
l
(ci − c′i)

2/λl < ∞, (A11)

which proves c = c′. Meanwhile,

< f (x), g(x) >HP= ∑
l

fl gl/λl , { fl}, {gl} ∈ l2
1/λ. (A12)

The inner products remain equal, so it is also clear thatHP is isometrically isomorphic to l2
1/λ.

To summarize, we can say thatHG andHP are isomorphic by establishing a Hilbert space l2
1/λ

to connect them; or it can be said that PCE and GP with the Mercer kernel generate surrogates in the
same Hilbert space.
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