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Abstract: We first calculate the heat capacities of the nonlinear electrodynamics (NED) black hole for
fixed mass and electric charge, and the electric capacitances for fixed mass and entropy. Then, we
study the properties of the Ruppeiner thermodynamic geometry of the NED black hole. Lastly, some
discussions on the thermal stability of the NED black hole and the implication to the flatness of its
Ruppeiner thermodynamic geometry are given.
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1. Introduction

The thermodynamics of black holes are established on the basis of the definitions of the entropy
and temperature of black hole [1–4]. The temperature of the horizon of a black hole is proportional to
its surface gravity. In Einstein gravity, the entropy of the horizon of a black hole is proportional to its
horizon area (the entropy area law of a black hole). Using the brick-wall method [5], one can check the
entropy area law of a black hole. However, the result from the brick-wall model depends on the choice
for the membrane near the horizon. Whether the entropy of a black hole satisfies the entropy area law
will depend on the adopted gravity theory.

For the thermodynamic system described by the N thermodynamic variables including the
entropy, the internal energy, and so on, one can construct the corresponding thermodynamic
geometry associated with the entropy, the internal energy and other thermodynamic variable [6–9].
The Ruppeiner geometry can reflect the fluctuation property of an equilibrium thermodynamic
system. The curvature scalar of the Ruppeiner geometry is related to the correlation volume
of a thermodynamic system, and its divergent point is the critical point of the thermodynamic
phase transition. The properties of the thermodynamic geometries of the black hole have been
widely studied [10–38]. It has been found that the Ruppeiner thermodynamic geometry of the
Reissner–Nordström (RN) black hole is flat [37]. On the other hand, some regular black hole
solutions have been found in the gravity theory coupling to nonlinear electrodynamics (NED) [39–42].
The regular NED black hole with exponential mass function approaches to the RN black hole
asymptotically [40]. The entropy of black hole depends on the action of gravity theory [43–48].
In the NED gravity theory, the entropy of a black hole is still the Bekenstein entropy [1,2,49]. So,
it is expected that, like the Ruppeiner thermodynamic geometry of the RN black hole, the Ruppeiner
thermodynamic geometry of the regular NED black hole with exponential mass function will be flat.

In this paper, we study the thermodynamic properties and the properties of thermodynamic
geometry of the regular NED black hole. In Section 2, we calculate the heat capacity and the
electric capacitance of the NED black hole. In Section 3, we study the properties of the Ruppeiner
thermodynamic geometry of NED black hole. Lastly, we discuss some problems on the thermodynamic
properties of the NED black hole.
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2. Thermodynamic Properties of NED Black Hole

The action of Einstein gravity coupling to the nonlinear electrodynamics is [50]

S =
1

16π

∫
d4x
√
−g(R + 4L(F)), (1)

where g and R are the metric determinant and Ricci curvature scalar associated with metric gµν,
L = L(F) is the Lagrangian of the NED source with F = 1

4 FµνFµν. By defining P = 1
4 PµνPµν with

Pµν = LFFµν, then one has the Legendre transformation

L = 2PHP −H, H = 2FLF −L, (2)

where H = H(P) is a function of P, LF = dL
dF and HP = dH

dP . In the dual H representation,
the energy-momentum tensor is given as

Tµν =
1

4π
HPPµλPλ

ν −
1

4π
gµν(2PHP −H). (3)

Recently, some regular solutions in Einstein gravity coupling to the nonlinear electrodynamics
have been obtained [51,52]. For the static, spherically symmetric metric

ds2 = − f dt2 + f−1dr2 + r2(dθ2 + sin2 ϕdϕ2), (4)

where f = 1− 2m(r)
r with m(r) the mass function, the Einstein field equation yields [40]

m(r) =
∫
−r2Hdr. (5)

For

H = Pe−U , U =
q

2M

√
−2q2P, (6)

the mass function takes the exponential form

m(r) = Me−
q2

2Mr , (7)

where M and q are the mass and electric charge of the NED spacetime. The NED black hole possesses
the two horizons with the outer (inner) horizon radius r+ (r−). For the ratio χ = q/M = χm with
χm = 2/

√
e, the two horizons of NED black hole coincide, as shown in Figure 1.

In the following, we will discuss the thermal and electric properties of the NED black hole. From

T+ =
1

4π

d f
dr
|r=r+ , (8)

the outer horizon temperature of the NED black hole TNED+ is obtained as

TNED+ =
2Mr+ − q2

8πMr2
+

. (9)

From f (r+) = 0, one gets the mass of NED spacetime. The mass M includes the mass of NED
black hole (the mass enclosed by the outer horizon of NED black hole) and the mass outside the outer
horizon of NED black hole.

M =
1
2

r+e
q2

2Mr+ , (10)
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which approaches 1
2 r+ as χ→ 0. The Misner-Sharp energy enclosed by the sphere surface of radius r

in the spherically symmetric spacetime takes [53]

ENED =
1
2

r(1− f ). (11)
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Figure 1. The metric function f (x) with x = r
M for the four cases: (a) χ = 0.5; (b) χ = 1.0, (c) χ = 1.2,

(d) χ = 1.2130615.

Putting f (r+) = 0 in Equation (11) gives

ENED+ =
1
2

r+, (12)

where ENED+ denotes the energy inside the outer horizon of the NED black hole, which is less than
the mass of NED spacetime.

In the process that the outer horizon radius of the NED black hole increases dr+, the energy
ENED+ correspondingly increases dENED+ = 1

2 dr+. In this process, the entropy of the outer horizon
increases dSNED+ = 2πr+dr+ and the heat energy flowing into the black hole through the outer
horizon is dQ = TNED+dSNED+. According to Ref. [54], the volume enclosed by the outer horizon of
the NED black hole is given as VNED+ = 4

3 πr3
+. The work done by the outer horizon of the NED black

hole is dA = pNED+dVNED+, where pNED+ = − q2

16πMr3
+

is the radial pressure on the outer horizon.

As a result, the first law of thermodynamics for the NED black hole is expressed as

dENED+ = dQ− dA = TNED+dSNED+ − pNED+dVNED+. (13)

The thermal stability of the NED black hole may be checked by determining the sign of its
heat capacity [55]. The heat capacity of the NED black hole associated with the outer horizon is
defined as [56]

C+X = T+

(
∂S+

∂T+

)
X
= 2πr+T+

(
∂r+
∂T+

)
X

, (14)

where the subscript X denotes the thermodynamic process with thermodynamic quantity X fixed.
The heat capacity defined by Equation (14) differs from the one given by Equation (58) in Ref. [57].
For the latter definition, the heat capacity for a fixed M is zero.
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According to Equation (14), the heat capacity of the NED black for a fixed M is obtained as

C+M =
2πr2

+(2Mr+ − q2)

q2 . (15)

For a fixed q, the heat capacity is given as

C+q =
2πr2

+(4M2r2
+ − q4)

4M2r2
+ − 4Mq2r+ − q4

. (16)

Letting y+ = ln[ 1
2 x+] with x+ = r+

M , then there is −1 ≤ y+ ≤ 0 (0.736 < x+ ≤ 2).
Substituting q2 = −2Mr+y+ into Equations (15) and (16) yields

C+M = −2πr2
+[1 + y−1

+ ], (17)

C+q =
2πr2

+(1− y2
+)

y2
+ − 2y+ − 1

. (18)

Clearly, C+M is non-negative and thus the NED black hole is thermally stable in the process with
M fixed. At y+ = y(1)+ ' −0.414, C+q is divergent, and for y+ < y(1)+ it is positive.

From the formula for the electrostatic field E = − r3

2q
d
dr (

1
r2

dσ
dr ) [40], the electric field of NED black

hole is obtained as

E =
8Mqr− q3

8Mr3 e−
q2

2Mr . (19)

Integrating the electric field E gives the electric potential of the NED black hole as [49]

Φ(r) = −
∫

Edr =
q2 − 6Mr

4qr
e−

q2
2Mr + C̃, (20)

with C̃ an integration constant. Taking Φ(0) = 0, then C̃ = 0 and Φ(∞) = − 3M
2q . Under this boundary

condition, the electric potential on the outer horizon of the NED black hole is given as

Φ+ = Φ(r+) =
q2 − 6Mr+

8Mq
. (21)

For the extremal black hole, the electric potential on the horizon of the NED black hole reduces to
Φext = − q

4M = − 1
2
√

e .
The electric capacitance of the NED black hole is defined as

K+X = β+

(
∂q

∂φ+

)
X

, (22)

where β+ = T−1
+ is the inverse temperature of the outer horizon of the NED black hole and φ+ is

defined as

φ+ = β+Φ+ =
πr2

+(q
2 − 6Mr+)

q3 − 2Mqr+
. (23)

For a fixed M, the electric capacitance of the NED black hole is obtained as

K+M =
8M(q3 − 2Mqr+)2

3q6 − 22Mq4r+ + 4M2q2r2
+ + 24M3r3

+

, (24)
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or

K+M =
8My+(1 + y+)2

3y3
+ + 11y2

+ + y+ − 3
. (25)

As y+ → −1, there is K+M → 0+. At y+ = y(2)+ ' −0.632, K+M is divergent and it is positive for

y+ > y(2)+ . For a fixed S+, the electric capacitance of the NED black hole is

K+S =
8Mq2(4M2r2

+ − q4)

q6 − 6Mq4r+ − 20M2q2r2
+ + 24M3r3

+

, (26)

or

K+S =
8My+(1− y2

+)

y3
+ + 3y2

+ − 5y+ − 3
. (27)

As y+ → −1, K+S → 0+. K+S is divergent at y+ = y(3)+ ' −0.483, and is positive for y+ > y(3)+ .
Equations (25) and (27) show that the NED black hole with a small charge/mass ratio is electrostatically
stable in the process with M fixed and the one with S+ fixed.

The NED black hole possesses the two horizons for χ < χm. The observer outside the outer
horizon may detect the thermal properties of the outer horizon. We live in the spacetime with a
cosmological horizon lying in the outside of us. Similarly, one can imagine that there are some observers
inside the inner horizon of the NED black hole. For such a kind of observers, the inner horizon will
be of equal importance as the outer horizon for us. In order to get a complete understanding for the
thermal properties of the black hole with two horizons, we also need to study the thermal properties
of its inner horizon.

The entropy and temperature of the inner horizon of the NED black hole are SNED− = πr2
− and

TNED− = 2Mr−−q2

8πMr2
−

, respectively. From pNED− = −ρNED(r−), the radial pressure on the inner horizon

of the NED black hole is given as pNED− = − q2

16πMr3
−

. Similar to the case of the outer horizon, the first

law of thermodynamics for the inner horizon of NED black hole is

dENED− = TNED−dSNED− − pNED−dV−, (28)

where ENED− = 1
2 r− is the energy inside the inner horizon of the NED black hole and V− = 4

3 πr3
− is

the volume enclosed by the inner horizon of the NED black hole [54].
In terms of y− = ln r−

2M with y− < −1, TNED− is expressed as

TNED− =
1 + y−
4πr−

, (29)

which is a negative temperature. The two heat capacities of the NED black hole associated with the
inner horizon are

C−M = −2πr2
−[1 + y−1

− ], (30)

C−q =
2πr2

−(1− y2
−)

y2
− − 2y− − 1

. (31)

Clearly, both C−M and C−q are negative definite. This implies that the inner horizon of the NED
black hole is thermally unstable.
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Putting r = r− in Equation (20) with C̃ = 0 gives the electric potential on the inner horizon of the
NED black hole as

Φ− =
q2 − 6Mr−

8Mq
. (32)

The two electric capacities of the NED black hole associated with the inner horizon are

K−M =
8My−(1 + y−)2

3y3
− + 11y2

− + y− − 3
, (33)

K−S =
8My−(1− y2

−)

y3
− + 3y2

− − 5y− − 3
. (34)

At y− = y(2)− ' −3.49, K−M is divergent, and it is positive for y<y(2)− . At y− = y(3)− ' −4.05,

K−S is divergent, and it is positive for y>y(3)− .

3. Thermodynamic Geometry of NED Black Hole

Some thermodynamic properties of the thermodynamic system may be studied by the
thermodynamic geometry method [6–8]. The Ruppeiner thermodynamic metric takes the
following form [9]

dS2
R = − ∂2S

∂Xi∂X j dXidX j = gR
ij dXidX j, i, j = 1, 2, (35)

where S is the entropy of the thermodynamic system, and Xi (i = 1, 2, ...) denote the other
thermodynamic quantities.

For the black hole with two horizons described by the two thermodynamic quantities,
the Ruppeiner metric associated with the entropy of the outer horizon takes the form

gR
+ = (gR

+ij) = −

 ∂2S+
∂X1∂X1

∂2S+
∂X1∂X2

∂2S+
∂X2∂X1

∂2S+
∂X2∂X2

 , (36)

with (X1, X2) = (M, q) and i(j) = 1, 2. According to Equation (36), the Ruppeiner metric matrix of the
NED black hole is obtained as

gR
+ =

 2πr2
+(3q6+2Mq4r++4M2q2r2

+−8M3r3
+)

M2(−q2+2Mr+)3 − 8πq5r2
+

M(−q2+2Mr+)3

− 8πq5r2
+

M(−q2+2Mr+)3 − 4πr2
+(3q4−4Mq2r++4M2r2

+)

(q2−2Mr+)3

 , (37)

with the determinant detgR
+ = − 8π2r4

+(q
4+4M2r2

+)

M2(−q2+2Mr+)3 .
The components of Christoffel connection associated with the Ruppeiner metric (36) read

Γ1
11 =

FA,1 − BA,2

2(AF− B2)
, Γ1

12 =
FA,2 − BF,1

2(AF− B2)
, Γ1

22 =
FB,2 − BF,2

2(AF− B2)
, (38)

Γ2
11 =

AB,1 − BA,1

2(AF− B2)
, Γ2

12 =
AF,1 − BA,2

2(AF− B2)
, Γ2

22 =
AF,2 − BF,1

2(AF− B2)
, (39)
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where A = gR
+11, B = gR

+12 and F = gR
+22. For the Ruppeiner metric (37), the components of Christoffel

connection are

Γ1
11 =

2q6(3q4 − 4Mq2r+ + 20M2r2
+)

M(−q2 + 2Mr+)3(q4 + 4M2r2
+)

, (40)

Γ1
12 =

2q5(3q4 − 4Mq2r+ + 20M2r2
+)

(q2 − 2Mr+)3(q4 + 4M2r2
+)

, (41)

Γ1
22 = −

2Mq4(3q4 − 4Mq2r+ + 20M2r2
+)

(q2 − 2Mr+)3(q4 + 4M2r2
+)

, (42)

Γ2
11 =

q5(q2 + 2Mr+)(3q4 − 4Mq2r+ + 20M2r2
+)

M2(−q2 + 2Mr+)3(q4 + 4M2r2
+)

, (43)

Γ2
12 = −

q4(3q6 + 2Mq4r+ + 12M2q2r2
+ + 40M3r3

+)

M(−q2 + 2Mr+)3(q4 + 4M2r2
+)

, (44)

Γ2
22 = −

q3(3q6 + 2Mq4r+ + 12M2q2r2
+ + 40M3r3

+)

(q2 − 2Mr+)3(q4 + 4M2r2
+)

. (45)

The Ricci tensor of the Ruppeiner thermodynamic geometry associated with the Ruppeiner
metric (36) are

RR
11 = AR, RR

12 = RR
21 = BR, RR

22 = FR, (46)

where

R =
A[F,2B,1 − (F,1)

2] + B(A,2B,2 − F,2 A,1) + F[A,1F,1 − (A,2)
2]

4(AF− B2)2 . (47)

For the Ruppeiner metric (37), all the components of the Ricci tensor are zero and thus the Ricci
scalar of the Ruppeiner thermodynamic geometry is zero.

Similarly, one can construct the Ruppeiner thermodynamic geometry metric associated with

the inner horizon of the NED black hole as gR
−ij =

∂2S−
∂Xi∂Xj

. The corresponding Christoffel connection
components may be obtained from Equations (40)–(45) under the substitution r+ → r−. So, the Ricci
tensor of the Ruppeiner thermodynamic geometry associated with the inner horizon of the NED black
hole is also zero.

4. Discussions

The thermodynamic properties and the Ruppeiner thermodynamic geometry of the NED black
hole have been studied. The thermodynamic systems related to the outer horizon and the inner horizon
of the NED black hole satisfy the first law of thermodynamics with the internal energy ENED± = 1

2 r±.
It should be mentioned that the NED black hole releases heat energy when the inner horizon entropy
increases, since the inner horizon temperature is negative. Equations (17) and (18) shows that the
outer horizon of the NED black hole with a big χ is thermally stable. Equations (30) and (31) means
that the inner horizon of the NED black hole is always thermally unstable, since there are C−M < 0
and C−q < 0 for an arbitrary value of χ < χm. For a black hole with two horizons, there are two
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effective thermodynamic systems. One system associated with outer horizon may be described by the
thermodynamic quantities SNED+, M and q. The other associated with inner horizon may be described
by SNED−, M and q. Both of the Ruppeiner thermodynamic geometries associated with the outer and
inner horizons of the NED black hole are flat. This reflects that there is no interaction between the
particles in the two thermodynamic systems [58]. As a result, there exists no thermodynamic phase
transition of the NED black hole.
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