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Abstract: In present work, the heart rate variability (HRV) characteristics, calculated by sample
entropy (SampEn), were used to analyze the driving fatigue state at successive driving stages.
Combined with the relative power spectrum ratio β/(θ + α), subjective questionnaire, and brain
network parameters of electroencephalogram (EEG) signals, the relationships between the different
characteristics for driving fatigue were discussed. Thus, it can conclude that the HRV characteristics
(RR SampEn and R peaks SampEn), as well as the relative power spectrum ratio β/(θ + α) of the
channels (C3, C4, P3, P4), the subjective questionnaire, and the brain network parameters, can
effectively detect driving fatigue at various driving stages. In addition, the method for collecting
ECG signals from the palm part does not need patch electrodes, is convenient, and will be practical to
use in actual driving situations in the future.

Keywords: HRV; sample entropy; driving fatigue; relative power spectrum ratio β/(θ + α);
brain networks

1. Introduction

Driver fatigue is one of the major causes of fatal road accidents according to the analysis of traffic
incidents causation [1,2]. Earlier research indicates that driving fatigue is responsible for 20–30% of
total road fatalities [3]. Therefore, it is particularly important to accurately and rapidly detect the
driving fatigue state. Researchers have investigated different methods for detecting the fatigue state,
which fall into the subjective method and the objective method. The former method, which determines
the driver fatigue state mainly according to drivers’ and researchers’ judgments [4,5], is easily affected
by drivers’ and researchers’ artificial subjective judgment errors. Therefore, it is generally used
as an auxiliary method for detecting driving fatigue, while for the latter, which mainly involves
extracting and analyzing characteristics of EEG [6–10], electromyogram (EMG) [11], electrocardiogram
(ECG) [12,13], electrooculogram (EOG) [14], visual characteristics [15], and facial movement, it is
widely used in the detection of driver fatigue [16]. In recent years, researchers have been devoted to
the objective method for analyzing driver fatigue.

Research shows that HRV is associated with physical fatigue [17,18]. Ltoh et al. thought it can be
distinguished by a different physiological fatigue degree of the human body using the characteristics
of HRV [19]. Hanlon et al. concluded that HRV changed significantly with the increase of drivers’
fatigue degree based on their driving fatigue test using motorcycle [20]. Studies have indicated that
HRV is significantly reduced when the human brain becomes fatigued [21–24]. Additionally, the
changes of HRV can be reflected by entropy indicators. There are different entropy methods that can
be used to calculate HRV value, such as SampEn, approximate entropy (ApEn), and Kolmogorov
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entropy [25]. Considering the fact that fewer samples are required, we have used SampEn to analyze
HRV characteristics in our study.

The EEG, which is sensitive to neural activity [26,27], is considered to be the most reliable indicator
for driving fatigue state judgment [28,29]. The study has shown that the parameters (such as C and G)
of the brain network change significantly when a person shifts from an alert to a fatigued state [30].
The interaction between the EEG signals from different channels has been quantified by a non-linear
measure known as the Synchronization likelihood (SL) [31]. A number of classical algorithms, based
on the energy [32,33] and entropy [34] for different frequency bands of EEG signals, have been used
to analyze the EEG characteristics of the driver fatigue. It is pointed out that the ratio (θ + α)/β,
which shows a clear indication of increasing fatigue as the ratio between the slow wave and fast wave
activities increased, is a reliable indicator for detecting fatigue [35].

Although it is very accurate to judge driving fatigue state based on EEG, the EEG acquisition
equipment is relatively expensive and inconvenient to carry, which causes some difficulties with regard
to future popularization and application in real driving conditions. In this paper, the conductive cloth
fixed on the car steering wheel is used as the ECG electrode. Compared to the conventional ECG
acquisition, the method does not need the patch electrodes, which makes it easy and convenient for
using in actual driving fatigue monitoring.

2. Materials and Methods

2.1. Experiment

2.1.1. Subjects

The experiment was performed in simulated driving conditions. A total of 12 healthy subjects
[10 males and 2 females; aged 28 ± 1.6 (S.D)], who were randomly selected from the volunteers, were
arranged to participate in the experiment. All the subjects, free of medication during the experiment,
were reported to have had no sleep-related disorders or history of neurological diseases and were
asked to refrain from consuming any type of stimulants such as alcohol, tea, or coffee during the
experiment. All subjects continuously drove for four hours (2:00 p.m.–6:00 p.m.). The process of data
acquisition was divided into nine stages (stage 1—2:00 p.m., stage 2—2:30 p.m., stage 3—3:00 p.m.,
stage 4—3:30 p.m., stage 5—4:00 p.m., stage 6—4:30 p.m., stage 7—5:00 p.m., stage 8—5:30 p.m., stage
9—6:00 p.m.). In addition, one hour of sleep (0:30 p.m.–1:30 p.m.) was arranged for all subjects to
avoid the influence of fatigue due to the lack of sleep.

2.1.2. ECG

The ECG acquisition equipment in this paper mainly consists of the data acquisition card
(NI USB-6008) and the signal amplifier (EKG sensor), which was used to collect the ECG signals
of the palm part. The NI USB-6008 provides connection to 12 digital input/output (DIO) channels,
eight analog input (AI) channels, and a 32-bit counter with a Full-Speed USB interface. The EKG
sensor, which can be used to record electrical activity in the heart, can measure cardiac electrical
potential waveforms. In the experiment, the ECG signal collected by the EKG sensor was transmitted
to the computer serial port buffer using the NI USB-6008. Additionally, the ECG signal data were
read from the serial port buffer using the LabVIEW software. Then, the driving fatigue characteristics
were analyzed using the SampEn method in real time. In the process of making the equipment, we
have integrated the ECG acquisition equipment and the electrical acupuncture stimulator (KWD-808I)
together. Figure 1 shows the experimental set-up.

All subjects were informed about the research background and the study protocol. Additionally,
they were free to choose to participate in the experiment or give up. Moreover, all of them gave their
written informed consent to be included in the study. The Ethics Committee at the Northeast Electric
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Power University Hospital endorsed the study protocol, according to The Code of Ethics of the World
Medical Association (Declaration of Helsinki).Entropy 2018, 20, x  
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Figure 1. Experimental setup.

2.1.3. EEG

The Neuroscan, which is the widespread use of EEG acquisition device, is used in the experiments.
Additionally, its electrodes (Ag/AgCl) are attached to the scalp according to the international 10–20
system (30 channels = FP1, FP2, F7, F3, FZ, F4, F8, FT7, FC3, FCZ, FC4, FT8, T3, C3, CZ, C4, T4, TP7,
CP3, CPZ, CP4, TP8, T5, P3, PZ, P4, T6, O1, OZ, and O2). In the experiment, the EEG data recording
for each stage lasts 3 min. Additionally, it should be ensured that all leads are in a normal connection
state during recording data for each stage. Figure 1 shows the experimental set-up.

2.2. Methods

2.2.1. Sample Entropy

SampEn is a modification of approximate entropy (ApEn), which is more reliable for short data
sets compared with ApEn; it is used extensively for the assessment of the complexity of a physiological
time-series signal. Research has shown that SampEn value reflects the stability of a system [36]. This
means a system with large SampEn value approaches a random state with strong adaptability to
external environment. Otherwise, a system with small SampEn value indicates a narrow spectrum
band that tends to change periodically with weak adaptability. Research has shown that the SampEn
value of the cardiac nervous system can reflect the regulation ability of itself [18]. In this paper, we
analyzed the driver’s fatigue characteristics using the SampEn of the HRV. The SampEn is defined
as follows.

Consider a time series given by {xn}N
n=1. Additionally, with a given embedding dimension m,

the series can be denoted as

Xn = {xn, xn+1, . . . , xn+m−1} ∈ Rm, n = N0, N0 + 1, . . . N (1)

The distance function d[X(i), X(j)], which was used to calculate the maximum distance between
X(i) and X(j), is defined as

d[X(i), X(j)] = max‖x(i + k− 1)− x(j + k− 1)‖ (2)
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in which k = 1, 2, . . . , m. The probability of pairs of vectors having the distance ≤ r is expressed as

Cm
i (r) = {d[X(i), X(j)] ≤ r}/(N −m) i ≤ N −m + 1

in which r is the tolerance factor assumed for similarity between samples. Additionally, Cm
i (r) needs

to satisfy i 6= j conditions. So, the SampEn is defined as

SampEn = ln
φm(r)

φm+1(r)
= ln

(N −m)−1N−m
∑

i=1
Cm

i (r)

(N −m− 1)−1N−m
∑

i=1
Cm+1

i (r)
(3)

in which φm(r) = (N −m)−1
N−m

∑
i=1

Cm
i (r).

Based on previous studies, we calculated SampEn with the most widely-used parameter setting,
i.e., m = 2 and r = 20% of the original time series standard deviation [37–39].

2.2.2. Brain Network

Research has shown that a number of cortical and sub-cortical regions are activated in different
brain regions when human beings process complex information [40]. The rapidly changing and widely
distributed neural activation will occur in brain regions during visual information processing [1].
In this paper, the data processing methods involve decomposing EEG signals into different bands
using the wavelet pocket decomposition (WPD), building network using SL with a fixed threshold,
and computing network parameters and other characteristics of EEG using the classical methods. The
methods are explained in detail in the subsequent paragraphs.

• Preprocessing and artifact removal using WPD

In this experiment, the EEG recordings are influenced much more by noises. The noises mainly
contain numerous low frequency and high frequency noises known as artifacts, such as the noises
produced by the human body movement, vehicle simulator body vibration, and biological electrical
signals, etc. These noises should be filtered using the useful frequency band. In this paper, the
36 Hz–44 Hz frequency band, which is associated with the human states of arousal or alertness [41,42],
is extracted from the raw EEG using the WPD method.

• Formation of a brain network

The theory of modern complex networks has been used extensively to imitate human brain
function [30]. Brain connectivity analysis has been proven to be a very effective and informative way
to explore brain function and mental state [43–45]. In the paper, the structural properties of subjects’
brain networks are used to detect the changing of driving states.

Figure 2 shows the steps for analysis of the brain networks. In the analysis, every region of the
brain is taken as a node, and the connections between brain regions are taken as edges. The steps of
the brain connectivity analysis are shown in Figure 2.
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In the first step, the data of a 14-channel EEG, shown in Figure 2a, are collected. Then, the
sub-bands 36 Hz–44 Hz signals are extracted from original EEG signals. In the second step, the
synchronization matrices, displayed in Figure 2b, are computed for the sub-bands (36 Hz–44 Hz).
The correlations between pairs of 14 channels EEG are calculated using SL. The SL, which is used
to describe the synchronization between 2 time series, is sensitive to nonlinear interdependencies.
Additionally, its value lies in the range Pref ≤ T ≤ 1. Here, the Pref is the minimum value (a small
number close to 0) in the case of independent time series, and 1 in the case of maximally synchronous
signals. In this paper, Pref was set at 0.01. The result of computing the SL in this study is a square
N × N matrix of size 14 (14 channels = F7, F3, F4, F8, FT7, FT8, C3, C4, TP7, TP8, P3, P4, O1, and
O2), in which each entry Ni,j contains the value of the SL between the channels i and j. The last step
is to convert the N × N synchronization matrix into a binary graph using a threshold T. An edge
is deemed to exist between i and j if the SL between a pair of channels i and j is greater than the T;
otherwise, no edge exists between i and j. Finally, the networks are formed using the binary matrix
with a fixed threshold value. In this study, the degree of connectivity, the cluster coefficient C and
global efficiency, and the main structural properties parameters of a network are used to analyze the
functional differences of the complex brain networks. These are explained here.

• Degree of connectivity (Ki)

The connectivity degree of a node indicates the importance of that node in a network, which can
be represented as the number of edges connected to that node.

1. Clustering Coefficient

The cluster coefficient C is a measure of the local structure of network, which can be expressed
as the ratio of the number of existing edges and the number of maximum possible edges between
neighbors of a node [46,47]. Its formula can be defined as:

Ci =
ei

ki(ki − 1)/2
(4)

in which ei is the number of existing edges between neighbors of the node i. Additionally, ki is the
degree of connectivity of that node. ki(ki − 1)/2 is the number of maximum possible edges between
neighbors of the node i [32]. Mean cluster coefficient C of the graph is represented as [30].

C =
1

Ne

Ne

∑
i=1

Ci (5)

in which Ne is the total number of nodes or electrodes.

2. Global efficiency

The global efficiency is a global structural characteristic of a network, which indicates that the
higher level the integration of a network, the faster the information transfer. The path length between
two nodes i and j, Li,j, is the minimum number of edges that are needed to connect. The characteristic
path length, which connects a particular node i with the rest of the network, is the mean of Li,j over the
entire network. Moreover, the path length is inverse ratio with the nodal efficiency is mathematically
defined as [32,48]:

Enodal(i) =
1

N − 1 ∑
j∈G

1
Li,j

(6)

in which Li,j is the minimum path length (the smallest number of intervening edges) between nodes
i and j. Additionally, N is the number of nodes within the graph. The average value of the nodal
efficiencies of each node can be used to estimate the global efficiency G. So, the global efficiency of
nodes can be defined by:

G = Eglobal =
1

N(N − 1) ∑
i 6=j∈G

1
Li,j

(7)
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From the Equation (7), one can see that networks, which have a highly integrated organization
and are characterized by short minimum path length between any pair of regional nodes, have high
global efficiency [49,50]. Combined with the Equation (5), this leads to the fact that the smaller Li, j, the
faster information transmission speed of a node with others.

2.2.3. The Relative Power Spectrum

Four frequency sub-bands (δ (0–4 Hz), θ (4–8 Hz), α (8–13 Hz), and β (13–35 Hz)) are widely
applied to analyze the state of driving fatigue. Their power spectrum ratios have different combinations,
such as θ/β, θ/α + β, θ + α/β, θ + α/α + β, β/α, which can show different characteristics of
driving fatigue over time [32,51,52]. Significant changes, compared with the algorithms θ/β, α/β and
(θ + α)/(α + β), were found for the algorithm (θ + α)/β at the monotonous driving sessions [32,51].
In addition, the brain fatigue characteristics can be easily detected from the frontal (F3, F4), central
(C3, C4), and posterior (P3, P4) brain regions using EEG signals [35]. Therefore, the leads associated
with the brain regions can be used as the preferred ones for the analysis of driving fatigue in this study.
From what has been discussed above, the relative power spectrum ratio (θ + α/β) is used to analyze
driver fatigue using the EEG signals collected from the channels F3, F4, P3, and P4. In view of the data
variation characteristics of brain networks, the ratio (θ + α)/β is denoted as β/(θ + α) for convenient
comparison with the parameter SampEn value.

2.2.4. Statistical Analysis Algorithm

In order to compare the differences of detection results, the statistical analysis methods (ANOVA
and Tukey test) were used in this study. In the comparative analysis section, ANOVA were used to
compare the proposed method (Sample entropy) with compared methods (brain network, relative
power spectrum, and subjective questionnaire) and follow a multiple comparisons test that we gave
using Tukey test to identify significant differences between the driving fatigue state with other
driving states.

3. Results

3.1. HRV Characteristics

Research shows that the HRV is associated with physical fatigue [17–19]. In this paper, we used
the SampEn of the HRV characteristics (R-Peaks series and RR intervals series) to analyze the changes
of driving fatigue. Figure 3 shows the ECG signal that was acquired from the palm of one of the
subject hands.
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The analysis of HRV characteristics was carried out for 12 subjects in 9 stages (stages 1–9).
Additionally, the SampEn values were calculated separately for RR intervals series and R-Peaks series.
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Throughout the experimental phase, the tendency changes of SampEn values in 9 experimental stages
are shown in Figure 4.
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Figure 4. Tendency changes of SampEn values in 9 experimental stages. (a) RR SampEn; (b) R-Peak SampEn.

Figure 4 shows that the SampEn values of RR intervals series and R-Peaks series present general
downward trend in the process of the whole experiment. The two types of SampEn values have a slight
decline from stage 1 to 5. This means the subjects began to get a little tired. However, a significant
decline, which occurs at the experimental stage 5 to 7, means the subjects’ degree of driving fatigue
increases gradually.

3.2. Brain Network

3.2.1. Choice Threshold T

To compare the cluster coefficient C of brain networks at different stages, the networks have been
formed at all the thresholds for each stage. In general, the choice of threshold should depend on the
research question and falls in the regime of educated guesses [53]. In present work, we explored a
whole range of values of T, 0.01 < T < 0.11, with increments of 0.005, and repeated the full calculation
for each value of T. Figure 5 shows the comparation of the cluster coefficient C at different stages.
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Figure 5 shows the differences of the mean cluster coefficient C for different groups with the
changes of the threshold T. The changes of C in all stages present a downward trend. This is because
more and more edges will be lost with the increasing values of the threshold. Over the whole range of
threshold values (0.01–0.11), the significant difference of C can be found for different groups in the
case that T is chosen in the range 0.06 < T < 0.11. With the same method, the significant difference of G
can be found for different groups in the case that T is chosen in the range 0.08 < T < 0.11. The mean
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value of T can be calculated when T lies in the range 0.08 < T < 0.11. In present study, the mean value
of T (T = 0.095) is chosen as the fixed threshold. With the fixed threshold, the network parameters C
and G for all the subjects at different stages have been computed.

3.2.2. Cluster Coefficient C and Global Efficiency G

The cluster coefficient C and global efficiency G of the brain network are calculated, respectively,
using the Equations (3) and (5), and their variation tendency at 9 driving stages is shown in Figure 6.
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Figure 6 shows that the increase in cluster coefficient C and global efficiency G can be significantly
observed at successive driving stages in 36 Hz–44 Hz sub-band. Research shows that the upward
changes of the two parameters (C and G) of the brain networks indicated a lack of alertness [39,41].
So, the cluster coefficient C and global efficiency G, shown in Figure 6, demonstrate an increased
synchronisation between EEG signals from different brain regions in the sub-band 36 Hz–44 Hz with
the driving fatigue increasing at successive stages. Thus, we can conclude that the changes in the
above parameters can effectively reflect higher fatigue levels at successive stages in the experiment.

3.3. The Relative Power Spectrum

The power spectrum is a commonly used parameter in the analysis of driving fatigue. Figure 7
shows the brain topography, which indicates nerve activities for one of the subjects. For brain
topography, low activity is indicated by the blue-shaded areas, whereas high activity is indicated by
the red-shaded areas. Figure 7 shows that the brain activity decreased steadily in the brain regions
(C3, C4, P3, and P4) in driving stages 1 to 9.
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fresh, 5—Moderately tired, let down, 6—Extremely tired, very difficult to concentrate, 
7—Completely exhausted, unable to function effectively) to judge driving fatigue level. At each 
stage of the experiment, participants were asked about their subjective fatigue and give a score. The 
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Figure 8 shows that the ratio β/(θ + α) of the relative power spectrum for the four channels
(C3, C4, P3, and P3) presents a downward trend at successive stages (p < 0.05), and that means the
degrees of brain activity suppressed by inhibition are growing and the fatigue degrees of drivers are
deepening gradually at increasing stages of the experiment.
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3.4. Subjective Questionnaire

Research has shown subjective questionnaire (SQ) is a common way to detect human
fatigue [54,55]. In this paper, we used the 7-point Samne Perelli Fatigue Scale (1—Fully alert, wide
awake, 2—Very lively, responsive, but not at peak, 3—Okay, somewhat fresh, 4—A little tired, less than
fresh, 5—Moderately tired, let down, 6—Extremely tired, very difficult to concentrate, 7—Completely
exhausted, unable to function effectively) to judge driving fatigue level. At each stage of the experiment,
participants were asked about their subjective fatigue and give a score. The scores of subjective
questionnaire are shown in Figure 9.
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Figure 9 shows that the scores of subjective questionnaire for 9 stages of driving present an
upward trend at successive stages, and that means that the subjective fatigue degrees of subjects are
deepening gradually at increasing stages of the experiment.

3.5. Comparative Analysis

3.5.1. Correlation Analysis

The comparative analysis involves the relationship between the pairs of parameters (RR SampEn,
R peaks SampEn, C, G, F3β/θ+α, P4β/θ+α, C3β/θ+α, C4β/θ+α, SQ). In order to investigate correlations
between changes in drivers fatigue with brain activities, we calculated Pearson’s correlation coefficient
between pairs of the parameters. The correlation coefficients between RR SampEn, R peaks SampEn, C,
G, F3β/θ+α, P4β/θ+α, C3β/θ+α, C4β/θ+α, and SQ were calculated. The results are shown in Table 1.

Table 1. Correlation coefficient.

SampEn (RR) SampEn (R Peaks) C G P3β/θ+α P4β/θ+α C3β/θ+α C4β/θ+α SQ

SampEn (RR) 1 0.8578 −0.6637 −0.7133 0.8035 0.8167 0.7651 0.7411 −0.9531
SampEn (R peaks) 0.8578 1 −0.6781 −0.7103 0.7792 0.7619 0.7366 0.7098 −0.8909

C −0.6637 −0.6781 1 0.9576 −0.8356 −0.7960 −0.6513 −0.6845 0.7764
G −0.7133 −0.7103 0.9576 1 −0.8501 −0.8278 −0.6812 −0.6988 0.7452

P3β/θ+α 0.8035 0.7792 0.8356 −0.8501 1 0.9822 0.8834 0.8602 −0.8055
P4β/θ+α 0.8167 0.7619 0.7960 −0.8278 0.9822 1 0.8577 0.8425 −0.8134
C3β/θ+α 0.7651 0.7366 −0.6513 −0.6812 0.8834 0.8577 1 0.8919 −0.7531
C4β/θ+α 0.7411 0.7098 −0.6845 −0.6988 0.8602 0.8425 0.8919 1 −0.7319

SQ −0.9531 −0.8909 0.7764 0.7452 −0.8055 −0.8134 −0.7531 −0.7319 1

The Table 1 shows that the absolute values of correlation coefficients between pairs of variables
(RR SampEn, R peaks SampEn, C, G, F3β/θ+α, P4β/θ+α, C3β/θ+α, C4β/θ+α, SQ) are greater than
0.50. It means that these variables have a strong correlation. Especially, the correlation coefficients
between the HRV parameter (RR SampEn and R peaks SampEn) and EEG parameters, which are
greater than 0.65, mean there is a stronger correlation between them. Thus, we can conclude that the
HRV characteristics (RR SampEn and R peaks SampEn), as well as the relative power spectrum ratio
β/(θ + α) of the channels (C3, C4, P3, P4), subjective questionnaire, and the brain network parameters,
can detect driver fatigue at various stages of the experiment.
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3.5.2. HRV Characteristics and Subjective Questionnaire

The 7-point Samne Perelli Fatigue Scale (1—Fully alert, wide awake, 2—Very lively, responsive,
but not at peak, 3—Okay, somewhat fresh, 4—A little tired, less than fresh, 5—Moderately tired, let
down, 6—Extremely tired, very difficult to concentrate, 7—Completely exhausted, and unable to
function effectively) divides subjective fatigue into different fatigue grades. Among these fatigue
grades, “Moderately tired, let down” state can make a person’s reaction become slow, even causing
misoperation, which is incompatible with continued driving. So, accurately detecting this fatigue state
is of great significance for improving safe driving. In our study, the SampEn of the HRV characteristics
(R-Peaks series and RR intervals series) were used to analyze the changes in driving fatigue. The
comparison of significant differences between the different subjective fatigue states was analyzed
using the statistical analysis methods (ANOVA and Tukey test). The results are shown in Table 2.

Table 2. The compardison of significant differences between “Moderately tired, let down” state with
other different subjective fatigue states using the sample entropy.

Subjects Probability
Value Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9

Subject 1
PRR Sampan

(Fatigue Scale)
2.6686 × 10−4

(1)
0.0018

(2)
0.0023

(3)
0.0396

(4)
0.0396

(4)
1

(5)
1

(5)
0.0137

(6)
0.0043

(7)
PR-Peak SampEn
(Fatigue Scale)

2.9266 × 10−4

(1)
0.0033

(2)
0.0059

(3)
0.0443

(4)
0.0443

(4)
1

(5)
1

(5)
0.0261

(6)
0.0078

(7)

Subject 2
PRR SampEn

(Fatigue Scale)
2.3667 × 10−4

(1)
2.3667 × 10−4

(1)
0.0019

(2)
0.0019

(2)
0.0165

(4)
1

(5)
1

(5)
0.0217

(6)
0.0217

(6)
PR-Peak SampEn
(Fatigue Scale)

2.8263 × 10−4

(1)
2.8263 × 10−4

(1)
0.0023

(2)
0.0023

(2)
0.0122

(4)
1

(5)
1

(5)
0.0115

(6)
0.0115

(6)

Subject 3
PRR SampEn

(Fatigue Scale)
6.2561 × 10−5

(1)
6.2561 × 10−5

(1)
0.0013

(2)
0.0185

(3)
0.0449

(4)
0.0449

(4)
1

(5)
0.0377

(6)
0.0377

(6)
PR-Peak SampEn
(Fatigue Scale)

8.8713 × 10−5

(1)
8.8713 × 10−5

(1)
0.0077

(2)
0.0238

(3)
0.0316

(4)
0.0316

(4)
1

(5)
0.0192

(6)
0.0192

(6)

Subject 4
PRR SampEn

(Fatigue Scale)
2.5912 × 10−5

(1)
0.0011

(2)
0.0115

(3)
0.0115

(3)
0.0399

(4)
0.0399

(4)
1

(5)
0.0296

(6)
0.0296

(6)
PR-Peak SampEn
(Fatigue Scale)

3.1764 × 10−5

(1)
0.0026

(2)
0.0188

(3)
0.0188

(3)
0.0471

(4)
0.0471

(4)
1

(5)
0.0366

(6)
0.0366

(6)

Subject 5
PRR SampEn

(Fatigue Scale)
4.5612 × 10−4

(1)
0.0025

(2)
0.0246

(3)
0.0483

(4)
1

(5)
1

(5)
0.0419

(6)
0.0419

(6)
0.0419

(6)
PR-Peak SampEn
(Fatigue Scale)

3.9371 × 10−4

(1)
0.0012

(2)
0.0211

(3)
0.0392

(4)
1

(5)
1

(5)
0.0388

(6)
0.0388

(6)
0.0388

(6)

Subject 6
PRR SampEn

(Fatigue Scale)
6.2613 × 10−5

(1)
0.0017

(2)
0.0017

(2)
0.0093

(3) 0.0274 0.0274 1
(5)

1
(5)

0.0436
(6)

PR-Peak SampEn
(Fatigue Scale)

3.5732 × 10−5

(1)
0.0012

(2)
0.0012

(2)
0.0037

(3) 0.0127 0.0127 1
(5)

1
(5)

0.0335
(6)

Subject 7
PRR SampEn

(Fatigue Scale)
0.0044

(1)
0.0199

(3)
0.0478

(4)
1

(5)
0.0226

(6)
0.0226

(6)
0.0226

(6)
0.0031

(7)
0.0031

(7)
PR-Peak SampEn
(Fatigue Scale)

0.0013
(1)

0.0175
(3)

0.0417
(4)

1
(5)

0.0352
(6)

0.0352
(6)

0.0352
(6)

0.0018
(7)

0.0018
(7)

Subject 8
PRR SampEn

(Fatigue Scale)
0.0016

(1)
0.0215

(2)
0.0386

(4)
0.0386

(4)
1

(5)
1

(5)
0.0483

(6)
0.0483

(6)
0.0162

(7)
PR-Peak SampEn
(Fatigue Scale) 0.0011 0.0224

(2)
0.0414

(4)
0.0414

(4)
1

(5)
1

(5)
0.0446

(6)
0.0446

(6)
0.0126

(7)

Subject 9
PRR SampEn

(Fatigue Scale)
0.0025

(1)
0.0178

(3)
0.0178

(3)
0.0415

(4)
0.0415

(4)
1

(5)
0.0361

(6)
0.0361

(6)
0.0021

(7)
PR-Peak SampEn
(Fatigue Scale)

0.0031
(1)

0.0199
(3)

0.0199
(3)

0.0471
(4)

0.0471
(4)

1
(5)

0.0427
(6)

0.0427
(6)

0.0036
(7)

Subject 10
PRR SampEn

(Fatigue Scale)
3.4407 × 10−4

(1)
0.0037

(2)
0.0131

(3)
0.0435

(4)
0.0435

(4)
1

(5)
0.0481

(6)
0.0481

(6)
0.0065

(7)
PR-Peak SampEn
(Fatigue Scale)

4.1711 × 10−4

(1)
0.0017

(2)
0.0061

(3)
0.0355

(4)
0.0355

(4)
1

(5)
0.0412

(6)
0.0412

(6)
0.0033

(7)

Subject 11
PRR SampEn

(Fatigue Scale)
5.6702 × 10−4

(1)
5.6702 × 10−4

(1)
0.0027

(2)
0.0087

(3)
0.0279

(4)
0.0279

(4)
1

(5)
1

(5)
0.0396

(6)
PR-Peak SampEn
(Fatigue Scale)

9.0146 × 10−4

(1)
9.0146 × 10−4

(1)
0.0046

(2)
0.0112

(3)
0.0318

(4)
0.0318

(4)
1

(5)
1

(5)
0.0413

(6)

Subject 12
PRR SampEn

(Fatigue Scale)
0.0016

(1)
0.0078

(2)
0.0078

(2)
0.0466

(3)
1

(5)
1

(5)
1

(5)
0.0413

(6)
0.0413

(6)
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Table 2. Cont.

Subjects Probability
Value Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9

PR-Peak SampEn
(Fatigue Scale)

7.1642 × 10−4

(1)
0.0054

(2)
0.0054

(2)
0.0419

(3)
1

(5)
1

(5)
1

(5)
0.0359

(6)
0.0359

(6)

The 7-point Samne Perelli Fatigue Scale: (1) Fully alert, wide awake; (2) Very lively, responsive, but not at peak;
(3) Okay, somewhat fresh; (4) A little tired, less than fresh; (5) Moderately tired, let down; (6) Extremely tired, very
difficult to concentrate; (7) Completely exhausted, unable to function effectively.

Table 2 shows that there are significant differences between “Moderately tired, let down” state
and other different subjective fatigue states (p < 0.05). This means that the subjective fatigue state
“Moderately tired, let down” can be distinguished using the HRV characteristics (R-Peaks series and
RR intervals series). The sample entropy values of main subjective fatigue stages (Fully alert, wide
awake; A little tired, less than fresh; Moderately tired, let down; Extremely tired, very difficult to
concentrate) are shown in Table 3.

Table 3. The SampEn values (mean ± S.D.) of main subjective fatigue stages.

Fully Alert, Wide
Awake

A Little Tired,
Less Than Fresh

Moderately Tired,
Let Down

Extremely Tired, Very
Difficult to Concentrate

RR SampEn 1.3081 ± 0.0965 1.1575 ± 0.0615 0.8053 ± 0.0833 0.5419 ± 0.1059
R-Peak SampEn 1.1967 ± 0.0792 1.0813 ± 0.0922 0.7258 ± 0.0943 0.3255 ± 0.1127

Table 3 shows the SampEn values of the HRV characteristics in main subjective fatigue stages.
Additionally, the SampEn values of the two subjective fatigue states (A little tired, less than fresh
and Moderately tired, let down) are obviously different. So, we can conclude that a driver is in a
state of driving fatigue when the SampEn values of his HRV characteristics satisfy the condition
(RR SampEn < 0.8053 and R-Peak SampEn < 0.7258).

3.5.3. Methods Comparison

In our study, several typical traditional detection methods, which can effectively detect driving
fatigue, were introduced to verify the effectiveness of the method (the SampEn) for driving fatigue
analysis. Additionally, the statistical analysis methods (ANOVA and Tukey test) were used to analyze
the differences of fatigue states for different methods. Then, the identification effect of these methods
was calculated. The results are shown in Table 4.

Table 4. The comparison of significant differences between “Moderately tired, let down” state with
other different subjective fatigue states for different methods.

Methods Fully Alert,
Wide Awake

A Little Tired,
Less Than Fresh

Moderately Tired,
Let Down

Extremely Tired, Very
Difficult to Concentrate

Moderately
tired, let down

SampEn (RR) 0.0071 0.0437 1 0.0245
SampEn (R peaks) 0.0104 0.0453 1 0.0336

C 0.0043 0.0153 1 0.0246
G 0.0182 0.0287 1 0.0215

P3β/θ+α 0.0082 0.0359 1 0.0288
P4β/θ+α 0.0057 0.0361 1 0.0291
C3β/θ+α 0.0106 0.0375 1 0.0372
C4β/θ+α 0.0113 0.0419 1 0.0355

Table 4 shows that there are significant differences (p < 0.05) between “Moderately tired, let down”
state with other different subjective fatigue states when we analyze driving fatigue using each method.
Comparison between the three methods and the identification effect of the method based on brain
network are most significant. Although the recognition effect of the SampEn method is not the best, it
can also detect significant differences between driving fatigue state and other fatigue grade states.
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4. Discussion

Driver fatigue is more likely to bring serious safety trouble to traffic. Much research has been
carried out on driving fatigue [6–15]. Research has shown that the method based on EEG, which is
sensitive to neural activity [26,27], is considered to be the most reliable indicator for driving fatigue
state judgment [28,29]. In our study, the validity of the HRV method was proved by using these EEG
parameters as references.

In our experiment, the subjects need to have more than one year driving experience. Additionally,
the twelve subjects were randomly selected from the volunteers. Additionally, the EEG data of subjects
were analyzed. The results showed that the EEG characteristic parameters showed regular changes
(Figures 6 and 8), which were consistent with previous studies [32,51,56,57]. Therefore, we can try
to use these results as the basis of judging the correlation between HRV characteristics and driving
fatigue. The final result (Tables 1, 2 and 4,) showed that one can effectively distinguish between driving
fatigue state and other fatigue grade states using the HRV characteristics.

In addition, the ratio of fatal accidents involving male and female drivers, according to a survey
conducted by the Jiangsu Public Security Department, was about 9 to 1 in 2014 [58]. Additionally,
research has indicated that driving fatigue is responsible for 20–30% of total road fatalities [3]. So, in
our experiment, the subjects included 10 males and 2 females.

4.1. Previous Studies

Research has shown that the EEG, which is sensitive to neural activity, is the most reliable indicator
for driving fatigue state judgment [8,9,27–29]. Additionally, the subjective questionnaire is an effective
method for detecting human fatigue [54,55]. Although it is very accurate to judge driving fatigue
state based on EEG, the EEG acquisition devices are relatively expensive and inconvenient to carry,
which brings some difficulties to the future popularization and application of real driving conditions.
Additionally, the subjective questionnaire method may not be effectively performed by drivers in
actual driving.

4.2. Novel Findings of This Study

Our results showed that the SampEn method could identify driving fatigue as effectively as
the conventional methods (brain Network, relative power spectrum, and Subjective questionnaire).
Additionally, this ECG acquisition equipment, which has a lower price than the traditional EEG
equipment, is convenient and practical for use in actual driving. In addition, in our experiment,
the ECG data were collected and analyzed online, which was of great significance for future
practical application.

4.3. Limitations and Future Research Lines

In our experiment, subjective questionnaire was used to detect human fatigue. The experiment
was divided into nine time periods. Each time period lasted for 30 min. Additionally, the subjective
questionnaire was filled out at the end of each time period. It is possible that the subjective fatigue
state changed during the time period, which might have caused some small errors in the statistical
results. In future research works, portable equipment that can accurately and rapidly detect driving
fatigue state and alleviate fatigue will be developed.

5. Conclusions

The major finding of the above study is that the ECG signals collected from the palm part can
effectively detect drivers’ fatigue. In the experiment, the results from the network analysis suggest an
increase in the degree of connectivity at increased levels of driving fatigue. Further, the decreasing
trend in the relative power spectrum ratio β/(θ + α) suggests the increasing effects of driving fatigue
at successive driving stages. Finally, the correlation study between pairs of variables (RR SampEn, R
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peaks SampEn, C, G, F3β/θ+α, P4β/θ+α, C3β/θ+α, C4β/θ+α SQ) allows one to draw the conclusion that
these variables have a strong correlation, especially with regard to the correlation coefficients between
the HRV parameter (RR SampEn and R peaks SampEn) and the EEG parameters. Therefore, it can be
concluded that the ECG signals collected from the palm part can effectively monitor driving fatigue,
which is helpful for improving safe driving for long time driving. In addition, this method needs not
patch electrodes, is convenient, and is practical for use in actual driving situations in the future.
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