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Abstract: The problem of stabilizing the spreading process to a prescribed probability distribution
over a complex network is considered, where the dynamics of the nodes in the network is given
by discrete-time Markov-chain processes. Conditions for the positioning and identification of
actuators and sensors are provided, and sufficient conditions for the exponential stability of the
desired distribution are derived. Simulations results for a network of N = 106 corroborate our
theoretical findings.
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1. Introduction

Modeling, analysis and control of the spreading of information and of infectious diseases have
become a relevant problem of an interdisciplinary nature. Studies on spreading range from propagation
of computer viruses in networks [1–4], epidemics in human populations [5–12], to spreading of rumors
and information [13–16].

One of the early works for epidemic spreading [17] gave birth to the so-called SIRmodel that
divides the population into three different compartments or groups: susceptible, infected and recover
(or removed); and later, as many diseases do not confer any immunity, a simplified version of the
SIR model was created, the so-called SIS (Susceptible-Infected-Susceptible) model, which has become
one of the classical model of disease spreading. Although this model was proposed for modeling
spreading in populations with no structure, nowadays, the SIS model has been extended to model the
spreading process in a population mapped on a complex network.

In the field of computer virus propagation, Kephart and White [18,19] proposed one of the first
models on networks, the so-called homogeneous model. This model is called homogeneous because
every node of the network has the same probability of interaction with other nodes. Using a rate
of infection and a death rate, they were able to calculate the infection threshold. Unfortunately, this
model fails to capture real-world complexity. Data available show that real-world computer networks
are not homogeneous and, instead, follow a power law structure in the number of connections of
the nodes [20–22].

Another important method to study disease propagation is the so-called Degree Mean Field
Approximation model (DMFA), which considers nodes with the same degree as dynamically
equivalent [23]. Using this model, it is possible to calculate the epidemic threshold. Although
this approach is quite interesting, it is not applicable in many realistic cases because nodes with the
same degree do not necessarily behave the same way. Besides, the model does not provide information
about the probability of individual nodes.
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In recent years, Markov chain-based models for a Susceptible-Infected-Susceptible (SIS) dynamics
over complex networks have been used [8–12,24]. Using these models, it is possible to determine the
macroscopic properties of the system, as well as the description of the dynamics of individual nodes.
One interesting result is that the calculated infection threshold depends on the value of the spectral
radius of the adjacency matrix.

In spite of the fact that an increasing number of studies on the analysis of epidemic spreading have
been published in the last decade, the studies dedicated to the control of these process are not very great
in number. Different authors with interesting insights have been working on this subject, but at the
end, we have three main categories for controlling complex networks (see also [25]): spectral control,
optimal control and heuristic feedback control.

In the spectral optimization control methods, one of the goals is to make the eigenvalue λ(A) of
the adjacency matrix A as small as possible. This could be achieved removing nodes from A that could
be feasible by either immunizing or quarantining certain individuals [26]. The removal of links to
reduce λ is also possible isolating cities or, more difficultly, restricting interactions among individuals.

In the optimization control methods for complex networks, the necessary and sufficient condition
for spreading extinction poses an optimal control problem, where the curing rates are allowed to vary
over time, depending on the evolving state of the system.

In [27], the linearization of the non-linear Markovian equation for the SIR model is studied
around the extinction state and showed that the optimal solution is a bang-bang controller with at
most one switch. This kind of control deserves further research, although, up to this date, it presents
several flaws: it assumes that direct control over infection and recovery rates is always possible.
These assumptions considered that these probabilities can be controlled for an entire population in an
instantaneous way, which generally is unfeasible in a human population. This method is considered in
different works [28,29].

In the heuristic feedback control extensions of the SIS and SIRS (Susceptible-Infectious-Recovered-
Susceptible) model are considered. In this case, the model and its control are developed concurrently
in such a way that the stability conditions can be derived. For example, in these models, we can have
states corresponding to individuals that disconnect themselves from the net when they suspect that
they have become infected (Protected state (P)). This means that control structures are already built
in and available in the model itself in a heuristic fashion. As examples in the literature, we have the
works of [30,31], which gives humans the possibility to take actions once they are in an Aware state (A).
One of the flaws of these models is their great specificity.

In this work, we will study the spreading of information (diseases, rumors, gossip) using a Markov
chain-based model for a Susceptible-Infected-Susceptible (SIS) dynamics over complex networks that
has been used by different authors [8–12].

Using this model, we present a solution for the long-standing problem of epidemic spreading
extinction. First of all, we present a model that generalizes the interaction among nodes and reproduces
results after choosing some particular interaction. Afterwards, we determine sufficient conditions
for stabilizing the spreading of information to the extinction state in complex networks of arbitrary
topology. At the same time, these conditions give us a clue about how viruses are propagated, allowing
us to identify the nodes that do not need any control to reach the extinction state and to distinguish
them from the nodes that need to be controlled. Inspired by the ideas of control theory, we associate
the set of nodes that do not need to be controlled (in order to reach the extinction state) with the zero
dynamics of the system [32]. The set of nodes to be monitored and controlled are identified, as well,
and a feedback control is applied to them in order to stabilize the extinction state. Accordingly, we have
proven that the extinction state is an asymptotically-stable fixed point for the zero dynamics.

We performed numerical simulations using a scale-free complex network constructed as disused
by Barabasi et al. [22] with one million nodes and show a complete agreement of the numerical results
with our theoretical findings.
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The remainder of this paper is organized as follows: Section 2 presents the problem statement
and definitions. In Section 3, we determine sufficient conditions that allow us to identify the set of
nodes that need to be controlled in order to reach the extinction state. In Section 4, we propose a
linear feedback control to stabilize the system. Simulations and results are shown in Section 5. Finally,
in Section 6, the conclusions are presented.

2. Problem Formulation

In this section, (i) the considered class of systems is introduced and the underlying model
discussed, and (ii) the specific control problem addressed in this study is introduced.

2.1. System Class

Consider a network of N nodes described by an undirected graph G(V, E) with
V = {v1, v2, . . . , vN} being the set of nodes and E = {ei,j} the connecting edges, together with the
corresponding adjacency matrix A = {aij} where aij = 1 if (i, j) ∈ E, and zero otherwise. According to
the graph G(V, E), the neighbors’ set Vi of a node vi ∈ V is defined as:

Vi = {vj ∈ V | aij = aji = 1} ⊂ V, (1)

and the number of neighbors (or degree) is given by Ni = |Vi|.
The underlying process for every node is depicted in Figure 1, as a discrete time Markov process.

Figure 1. State transition diagram for a node vi ∈ V.

According to Figure 1, a node vi ∈ V can be in state a with probability pi(t) or in state b with
probability 1− pi(t), where t ∈ N0 denotes the discrete time. The state a represents that the node vi
has or knows the information to spread, and the state b represents the opposite. Any node vj ∈ Vi is
able to spread information by interacting with some neighbor node vi, but if the node vj does not know
the information (i.e., pj = 0), then it does not contribute to spreading the information. Furthermore,
each node has a manipulable variable ui(t) ∈ [0, 1], which is amenable for feedback control.

The probability pi(t) is updated as follows: at each time step, every node vi can transit from b to a
with probability ηi(Pi(t), Ui(t)) under the influence of its neighbors, or transit from state a to b with a
probability µi, where:

0 ≤ µi, ηi(Pi(t), Ui(t)), pi(t), ui(t) ≤ 1, i : vi ∈ V,

and Ui(t), Pi(t) are vectors such that:

Ui(t) =
[
ui(t), uk1(t), uk2(t), . . . , ukNi

(t)
]T
∈ P[Ni + 1],

Pi(t) =
[

pk1(t), pk2(t), . . . , pkNi
(t)
]T
∈ P[Ni], kl : vkl

∈ Vi,
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with:
P[N] = [0, 1]N .

The transition probability ηi(Pi(t), Ui(t)) depends on the state of the neighbors given by Pi(t) and
a set of parameters Ui(t) that are amenable to manipulation and models the interaction that spreads
the information over vi due to its neighbor nodes. Note that despite the interaction between vi and its
neighbor nodes, if Pi = 0, then ηi(Pi, Ui) = 0 for any value of Ui ∈ P[Ni + 1], because in this case, the
neighbor nodes do not know the information, and therefore, they do not contribute to spreading it.

Any change in ηi(Pi(t), Ui(t)) with respect to Pi(t) is assumed bounded and depends on Ui(t)
such that for each pair (i, j) where i : vi ∈ V and j : vj ∈ Vi, there exists a function mij(Ui(t)) :
P[Ni + 1]→ R+ such that: ∣∣∣∣∣∂ηi(Pi(t), Ui(t))

∂pj

∣∣∣∣∣ ≤ mij(Ui(t)),

or in terms of entries of the adjacency matrix:∣∣∣∣∣∂ηi(Pi(t), Ui(t))
∂pj

∣∣∣∣∣ ≤ mij(Ui(t))aij. (2)

The above means that the transition probability η is a continuous function with bounded slope,
which do not change abruptly.

Furthermore, throughout the paper, it is assumed that for all Pi ∈ P[Ni], ηi(Pi, Ui) strictly
monotonically increases with uk, i.e.,

∂ηi(Pi(t), Ui(t))
∂uk

> 0, for k : vk ∈ Vi ∪ {vi}, (3)

Finally, in order to be consistent with (3), it is assumed that:

∂mij(Ui(t))
∂uk

> 0, for i, j, k : vi ∈ V, vj ∈ Vi, vk ∈ Vi ∪ {vi}. (4)

The dynamics for the probability pi(t) of node vi ∈ V to be in state a is given by (compare
with [8,10,12]):

pi(t + 1) = (1− µi)pi(t) + ηi(Pi(t), Ui(t))(1− pi(t)), pi(0) = pi0, (5)

or in vector form:

P(t + 1) = EµP(t) + N(P(t), U(t))(1− P(t)), P(0) = P0 (6)

where P(t) is the system state, and U(t) the control parameters are given by:

P(t) = [p1(t), p2(t), . . . , pN(t)]T ∈ P[N],

U(t) = [u1(t), u2(t), . . . , uN(t)]T ∈ P[N]

with 1 being a vector with unity entries and:

Eµ = diag(1− µi), N(P, U) = diag(ηi(Pi, Ui)),

Additionally, for later use:

MU = {mij(Ui)}, for i : vi :∈ V, and j : vj ∈ Vi. (7)
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2.2. Control Problem

The purpose of the control design is to bring the state of the network to the extinction
state. When the extinction state is not stable, the control must be designed in such a way that
destabilizing components are compensated and self-stabilization mechanisms are enhanced. This can
be accomplished in different ways, e.g., by changing the network structure [33–35] or node-specific
parameters [27,36–38]. As for complex networks, not all node parameters are subject to control, and a
systematic adaptation of parameters also implies computational complexity and may imply necessary
communication structures, a set of nodes whose parameters should be adapted in order to achieve
stabilization must be chosen. Once this set of nodes has been defined, it must be clarified what
kind of adaptation mechanism provides the desired stabilization. A central question in this step
is the decision about whether implementing a central computation structure, which decides on all
parameters, or implementing a local, so-called decentralized control structure, which implies that
the decision about how the control parameters are adapted, is computed locally at the node level.
The implementation of this control on the other side requires some sensory information about the
network state. Locating sensors in all nodes again implies high costs and complex communication
structures, in particular if a centralized control structure is implemented that has to collect all the
sensory data. Thus, a set of nodes for which sensor information must be provided in order to implement
the control must be specified. In the sequel, the nodes for which sensor data are available are said to
be monitored. A feedback control that depends on knowledge of the complete network state is called
a state-feedback, while a control scheme that only requires the existing sensor information from the
monitored nodes is called output-feedback control.

On the basis of the above discussion and terminology, the problem considered in this paper
consists of designing a decentralized output-feedback control strategy to ensure the stabilization of
the desired extinction state P∗ = 0 over the complex network G(V, E). In particular, this includes the
determination of:

1. the set of M nodes that have to be monitored, i.e.,

Vm = {vm1, vm2, . . . , vmM}, Y(t) =
[
y1(t), y2(t), . . . , yM(t)

]T
, yi(t) = pmi(t), vmi ∈ V,

where the number M has to be determined and Y(t) is the measurement vector,
2. the set of K nodes to be controlled, i.e.,

Vc = {vc1, vc2, . . . , vcK}, vci ∈ V,

where the number K has to be determined and,
3. the feedback control laws for the nodes vi ∈ Vc

ui(t) = ϕi(Yi(t)) (8)

where Yi(t) ∈ RMi is the part of the measurement vector Y(t) that has to be accessible to node
vi ∈ Vc.

The approach for achieving this objective follows the constructive (passivity-based) control idea
and consists of two steps: (i) assigning the necessary outputs so that the associated zero dynamics, i.e.,
the dynamics constrained to a submanifold:

M0 = {P ∈ P[N] | ∀ vi ∈ Vc : pi = 0} (9)
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is asymptotically stable, and (ii) designing the controllers ui = ϕi(Yi) so that for some 0 ≤ γ < 1,
it holds that:

pi(t) ≤ pi0γt. (10)

The decision about which nodes need to be measured will depend on the control laws ϕi to be
designed and is addressed in the subsequent analysis.

3. Selection of Monitored and Controlled Nodes

In this section, the central question about which nodes should be monitored in order to ensure
a stabilization of the desired state probability distribution P∗ = 0 is addressed by determining a
condition for exponential stability on the associated zero dynamics. Before analyzing this, notice that
the fixed points associated with the dynamics (5) for some constant U∗i ∈ P[Ni + 1] can be determined
substituting the relation pi(t + 1) = pi(t) = p∗i . After some algebra, it follows that:

p∗i =
ηi(P∗i , U∗i )

µi + ηi(P∗i , U∗i )
. (11)

According to the above equation, we point out that the extinction state P∗ = 0 is a fixed point
when ηi(0, U∗i ) = 0; however, it is not clear if the extinction state or any other fixed point given by (11)
is stable. The extinction state means that no information is spreading. In the virus spreading context,
this condition plays an important role in order to explain how a virus is propagated.

The following lemma gives an important basis for the subsequent analysis.

Lemma 1. The set P[N] = [0, 1]N is positively invariant for the dynamics (6).

Proof. Consider the case that for some i : vi ∈ V, it holds that pi(t) = 0 for some t ≥ 0. By (5), it
follows that pi(t + 1) = η(P(t), U(t)) ≥ 0. On the other hand, assume that pi(t) = 1 for some t ≥ 0.
It follows that pi(t + 1) = (1− µi) ≤ 1. Thus, for all i : vi ∈ V, it holds that 0 ≤ pi(t) ≤ 1 for all t ≥ 0,
showing that P[N] is a positively invariant set for the dynamics (6).

For the purpose of analyzing the stability properties, consider a constant U∗ = [u∗1 , u∗2 , . . . , u∗N ]
T in

the dynamics (6) with the fixed point given by (11). The following fundamental result on the stability
of the origin of the dynamics (6) is obtained using a similar reasoning as in the analysis of epidemic
spreading in [8].

Lemma 2. Consider the dynamics (6) on a complex network with graph G(V, E) and adjacency matrix
A = {aij}, and let mij(U∗i ) : P[Ni + 1]→ R+ be a function satisfying (2) and (4). Then, the origin P = 0 of
the dynamical system (6) is globally asymptotically stable if the constants u∗i are such that:

σ(Eµ + MU) < 1, U∗ = [u∗1 , u∗2 , . . . , u∗N ]
T ∈ P[N ], (12)

where Eµ and MU are defined in (7) and σ(·) is the spectral radius of a matrix.

Proof. Using the mean value theorem [39] over ηi(Pi(t), U∗i ) in order to proof the Lemma, one obtains:

ηi(Pi(t), U∗i )− ηi(0, U∗i ) = ∇P ηi(αPi(t), U∗i ) · P(t) for some α ∈ [0, 1],

where ∇P denotes the gradient with respect to the vector P.
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Recalling that when Pi = 0, the neighbor nodes of vi do not contribute to spreading the information
and, therefore, ηi(0, U∗i ) = 0, it follows from the mean value theorem that:

ηi(Pi(t), U∗i ) = ηi(Pi(t), U∗i )− ηi(0, U∗i ) = ∇P ηi(αPi(t), U∗i ) · Pi(t)

= ∑
j∈Vi

∂ηi(αpi(t), U∗i )
∂pj

pj(t), α ∈ [0, 1]. (13)

Substituting the above equation into (5), one obtains:

pi(t + 1) = (1− µi)pi(t) + ∑
j∈Vi

∂ηi(αpi(t), U∗i )
∂pj

pj(t)(1− pi(t)), α ∈ [0, 1]. (14)

Taking the absolute values on both sides of (14) yields:

|pi(t + 1)| =
∣∣∣(1− µi)pi(t) + ∑

j∈Vi

∂ηi(αpi(t), U∗i )
∂pj

pj(t)(1− pi(t))
∣∣∣

≤ |1− µi||pi(t)|+ ∑
j∈Vi

∣∣∣∣∂ηi(αpi(t), U∗i )
∂pj

∣∣∣∣|pj(t)||1− pi(t)|

≤ (1− µi)pi(t) + ∑
j∈Vi

∣∣∣∣∂ηi(αpi(t), U∗i )
∂pj

∣∣∣∣pj(t).

By (2), the slope of ηi is bounded, so it holds that:

pi(t + 1) ≤ (1− µi)pi(t) + ∑N
j=1 mij(U∗i )aij pj(t).

Consider the auxiliary states xi(t) ≥ 0, i = 1, . . . , N, so that pi(t) ≤ xi(t) and:

xi(t + 1) = (1− µi)xi(t) +
N

∑
j=1

mij(U∗i )aijxj(t). (15)

These dynamics can be written in vector form as:

X(t + 1) = [Eµ + MU ]X(t), (16)

with X(t) = [x1(t), x2(t), . . . , xN(t)]T and Eµ and MU defined in (7). It follows that lim X(t) = 0 if
and only if σ(Eµ + MU) < 1, i.e., all eigenvalues of Eµ + MU are within the unit circle around the
origin in the complex plane. As for all i = 1, . . . , N, it holds that pi(t) ≤ xi(t), and it follows that
limt→∞ P(t) = 0 for all initial values P0 ∈ P[N].

The asymptotic stability condition (12) is of a very general nature, given that it involves the
complete network. One can refine it to gain insight into the conditions that every node vi ∈ V has to
satisfy in order to ensure that the complete state P ∈ P[N] converges to P∗ = 0.

Lemma 3. For a constant U∗i ∈ P[Ni + 1] and for every vi ∈ V, the state vector P(t) ∈ P[N] globally
asymptotically converges to the desired state P∗ = 0 if:

∀ vi ∈ V :
N

∑
j=1

mij(U∗i )aij < µi. (17)
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Proof. The proposition is proven according to Gerschgorin’s theorem [40], which provides an
upper-bound estimate for the spectral radius of a given matrix. For the matrix Eµ + MU , the theorem
yields the following inequality:

∣∣∣λ− (1− µi)
∣∣∣ ≤ N

∑
j=1

mij(U∗i )aij

where λ represents an eigenvalue of matrix Eµ + MU . The above inequality is bounded as follows:

|λ| −
∣∣∣1− µi

∣∣∣ ≤ ∣∣∣λ− (1− µi)
∣∣∣ ≤ N

∑
j=1

mij(U∗i )aij

|λ| ≤
∣∣∣λ− (1− µi)

∣∣∣+ ∣∣∣1− µi

∣∣∣ ≤ N

∑
j=1

mij(U∗i )aij +
∣∣∣1− µi

∣∣∣
Now, the solution of (16) converges asymptotically to zero if |λ| < 1. Therefore, we bound the

above inequality as follows:

|λ| ≤
N

∑
j=0

mij(U∗i )aij +
∣∣∣1− µi

∣∣∣ < 1

Given that for all i : vi ∈ V, it holds that µi ≤ 1, a sufficient condition to ensure asymptotic
convergence in (15), and therefore in (5), is given by:

N

∑
j=1

mij(U∗i )aij < µi.

This completes the proof.

Note that if this condition does not hold, it gives a hint about how to choose the nodes to be
monitored. Under this hypothesis, it seems appropriate to consider the set of controlled nodes vi ∈ Vc

as those nodes that do no satisfy the condition (17) and the monitored nodes as those neighbor nodes
vj ∈ Vi of the controlled node vi ∈ Vc including the controlled node vi. As we will show later, it is
sufficient to take Vm = Vc.

Provided a controller exists, which steers the controlled nodes vi exponentially to p∗i = 0,
the dynamics converges exactly to the submanifoldM0 defined in (9), called the zero dynamics [32,41].
By the control action, this manifold is a positively invariant subspace of P[N]. Furthermore, note
that with the monitored nodes pi = 0, they no longer influence the spreading process, so that the
zero dynamics correspond to a spreading process over a reduced network, from which the monitored
nodes have been withdrawn. As the nodes included in this reduced network by construction satisfy
Condition (17), the desired state vector P∗ = 0 is the unique attractor fixed point in M0. This is
summarized in the following corollaries.

Corrollary 1. If the nodes that do not satisfy the condition (17) are controlled, then the zero-dynamics has
P∗ = 0 as the unique asymptotically stable fixed-point.

Note that the establishment of the asymptotic stability of P∗ ∈ M0 for the zero dynamics is a
key step in the constructive control approach [41], but does not yet ensure the asymptotic stability of
P∗ ∈ P[N]. This will be addressed later.

The condition (17), for a given node vi ∈ V, establishes a relation between the amount of the
interaction neighbors-to-node, with the properties of the node (given by µi). A high interaction
neighbors-to-node, regardless of the number of neighbors, can produce the spreading of information
over the network. Thus, these nodes should be controlled.
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On the other hand, it is possible to establish an alternative bounding dynamics for (5) in the same
sense of Lemma 3, which yields the stability condition stated next.

Lemma 4. For a constant U∗i ∈ P[Ni + 1], the state vector P(t) ∈ P[N] globally asymptotically converges to
the desired state P∗ = 0 if:

∀ vi ∈ V :
N

∑
j=1

mji(U∗j )aji < µi. (18)

Proof. Consider the average probability of (5) and (13) as follows:

1
N

N

∑
i=1

pi(t + 1) =
1
N

N

∑
i=1

[
(1− µi)pi(t) + ηi(P(t), U∗i )(1− pi(t))

]

=
1
N

N

∑
i=1

[
(1− µi)pi(t) + ∑

j∈Vi

∂ηi(αpi(t), U∗i )
∂pj

pj(t)(1− pi(t))
]

, α ∈ [0, 1]. (19)

Taking the absolute value on the above equation and recalling (2) as in the proof of Lemma 2,
it follows that:∣∣∣∣∣ 1

N

N

∑
i=1

pi(t + 1)

∣∣∣∣∣ = 1
N

N

∑
i=1

pi(t + 1) =
1
N

N

∑
i=1

∣∣∣∣∣(1− µi)pi(t) + ∑
j∈Vi

∂ηi(αpi(t), U∗i )
∂pj

pj(t)(1− pi(t))

∣∣∣∣∣,
≤

N

∑
i=1

[
(1− µi)pi(t) +

N

∑
j=1

mij(U∗i )pj(t)aij

]
.

The last term in the above inequality includes the entries of the matrix Eµ + MU and the state
vector P(t) as follows:

[E + MU ]P(t) =


(1− µ1)p1(t) + ∑N

j=1 m1j(U∗1 )pj(t)a1j

(1− µ2)p2(t) + ∑N
j=1 m2j(U∗2 )pj(t)a2j

. . .
(1− µN)pN(t) + ∑N

j=1 mNj(U∗N)pj(t)aNj



=


(1− µ1)p1(t) + m12(U∗1 )p2(t)a12 + . . . + m1N(U∗1 )pN(t)a1N
m21(U∗2 )p1(t)a21 + (1− µ2)p2(t) + . . . + m2N(U∗2 )pN(t)a2N

. . .
mN1(U∗N)p1(t)aN1 + mN2(U∗N)p2(t)aN2 + . . . + (1− µN)pN(t)

 .

Note that the summation in (19) is performed over each entry of the vector [Eµ + MU ]P(t), where
i represents the i-th row entry. Therefore, it is possible to rearrange the above vector as follows:

[Eµ + MU ]P(t) =


(1− µ1)p1(t)

m21(U∗2 )p1(t)a21

. . .
mN1(U∗N)p1(t)aN1

+


m12(U∗1 )p2(t)a12

(1− µ2)p2(t)
. . .

mN2(U∗N)p2(t)aN2

+ . . . +


m1N(U∗1 )pN(t)a1N
m2N(U∗2 )pN(t)a2N

. . .
(1− µN)pN(t)


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Summing over each entry of the column vector, and later over each column, we have:

N

∑
i=1

[
(1− µi)pi(t) +

N

∑
j=1

mij(U∗i )pj(t)aij

]
= (1− µ1)p1(t) +

N

∑
j=1

mj1(U∗j )p1(t)aj1

+ (1− µ2)p2(t) +
N

∑
j=1

mj2(U∗j )p2(t)aj2

+ . . .

+ (1− µN)pN(t) +
N

∑
j=1

mjN(U∗j )pN(t)ajN

=
N

∑
i=1

[
(1− µi)pi(t) +

N

∑
j=1

mji(U∗j )pi(t)aji

]

=
N

∑
i=1

[
(1− µi) +

N

∑
j=1

mji(U∗j )aji

]
pi(t).

Summarizing:

N

∑
i=1

pi(t + 1) ≤
N

∑
i=1

[
(1− µi)pi(t) +

N

∑
j=1

mij(U∗i )pj(t)aij

]
=

N

∑
i=1

[
(1− µi) +

N

∑
j=1

mji(U∗j )aji

]
pi(t).

Associating the corresponding terms for every node vi, we obtain:

pi(t + 1) ≤
[
(1− µi) +

N

∑
j=1

mji(U∗j )aji

]
pi(t).

Consider the auxiliary states wi(t) ≥ 0, i = 0, 1, . . . , N, so that pi(t) ≤ wi(t) and:

wi(t + 1) =

[
(1− µi) +

N

∑
j=1

mji(U∗j )aji

]
wi(t). (20)

A condition to ensure asymptotic convergence to zero in (20) is given by:∣∣∣∣∣1− µi +
N

∑
j=1

mji(U∗j )aji

∣∣∣∣∣ < 1.

Thus:
N

∑
j=1

mji(U∗j )aji < µi.

Hence, given that pi(t) ≤ wi(t), the above inequality is a sufficient condition to ensure asymptotic
convergence in the dynamics (5).

The preceding result gives another criterion about how to choose nodes to be monitored. In this
case, the set of controlled nodes Vc contains those nodes vi that do not satisfy (18), but it is not clear
which nodes have to be monitored. However, the vectors U∗j (vj ∈ Vi) in (18) have something in
common: all have the same entry u∗i . Thus, in this case, it seems appropriate considering that Vm = Vc.
Finally, the dynamics (20) establishes an alternative upper bound for (5).

In the same sense of the condition of Lemma 3, if the controlled nodes are chosen as those
that do not satisfy the condition (18), then by construction, the zero-dynamics has the origin as the
asymptotically-stable fixed point, and this is summarized in the following corollary.
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Corrollary 2. If the nodes that do not satisfy the condition (18) are controlled, then the zero-dynamics is
asymptotically stable.

Note that the condition (18) has a similar interpretation as the condition (17). In this case,
a high interaction node-to-neighbors, regardless of the number of neighbors, can produce information
spreading over the network. Therefore, those nodes that do not satisfy the above condition
should be controlled.

4. Feedback Control Design

In this section, the question is addressed about how to design the feedback control (8) for the
nodes vi ∈ Vc so that limt→∞ |pi(t) − p∗i | = 0. Up to this point, the dependency of the transition
probability ηi on the control input Ui(t) has been neglected, given that Ui(t) was considered as a set of
constant parameters. For the nodes to be controlled, it is now supposed that the dependency of ηi on
Ui(t) is of a certain structure, which allows one to explicitly determine a control law that steers the
nodes vi ∈ Vc to their desired values p∗i = 0. Before addressing the control design step, the following
helpful result is established.

Lemma 5. Let Ui,1 = [ui,1, uk1,1, uk2,1, . . . , ukNi ,1]
T , Ui,2 = [ui,2, uk1,2, uk2,2, . . . , ukNi ,2]

T ∈ P[Ni + 1] with
uk,1 ≤ uk,2, k = i, 1, . . . ,Ni and vi ∈ V, then mij(Ui,1) ≤ mij(Ui,2) for all j such that vj ∈ Vi.

Proof. By virtue of the mean value theorem, it holds that:

mij(Ui,2)−mij(Ui,1) =
N

∑
k=1

∂mij(Ūi)

∂uk
(uk,2 − uk,1)aik,

where Ūi = Ui,1 + δ(Ui,2 − Ui,1), δ ∈ (0, 1). Recalling the condition (4), having uk,2 ≥ uk,1, it
follows that:

mij(Ui,2)−mij(Ui,1) ≥ 0.

This completes the proof.

On the basis of the above developments, the set Vc of nodes to be controlled is determined either
according to Corollary 1 or Corollary 2, i.e., those nodes that do not satisfy either (17) or (18). For both
cases, a sufficient condition for the asymptotic stability of the closed-loop system is provided next.

Theorem 1. Consider the dynamics (5) where the set Vc of nodes to be controlled is determined according either
according to Corollary 1 or 2, i.e., Vc is the set of those nodes that do not satisfy either (17) or (18), respectively.
Let Vm = Vc, i.e., all controlled nodes are monitored, and let for all i : vi ∈ Vc the value ūi be such that the
condition (17) or (18), respectively, holds true. If the controls ui(t) satisfy:

0 ≤ ui(t) < ūi,

then limt→∞ pi(t) = 0.

Proof. Let Ūi ∈ P[Ni + 1] be such that for all nodes vi ∈ Vc whose control input appears in Ui, its value
is replaced by ūi. Given ui(t) ≤ ūi, it follows from Lemma 5 that mij(Ui(t)) ≤ mij(Ūi), and thus:

N

∑
j=1

mij(Ui(t))aij ≤
N

∑
j=1

mij(Ūi)aij < µi,

N

∑
j=1

mji(Uj(t))aji ≤
N

∑
j=1

mji(Ūj)aji < µi.
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The above inequalities satisfy Lemmas 3 and 4, respectively, so limt→∞ pi(t) = 0.

From Theorem 1, in order to stabilize the system (5) to the extinction state, it is necessary to design
a feedback control ui(t), vi ∈ Vc, that takes values below the upper-bound ūi. This can be ensured, e.g.,
by the linear feedback control:

ui(t) = αūi(1− pi(t)), α ∈ (0, 1).

5. Feedback Control Example

To corroborate our results, we design a feedback control in the model proposed by Gomez [11]
in order to stabilize the system to the extinction state. This is a discrete-time Markov contact-based
epidemic spreading model that establishes the probability of infection of each node. However, we do
not consider reinfection in the same time step, and in contrast with Gomez’s model, each node has
different values for the recovery probability (µ), infection rate (β) and contact probability (r).

The probability of infection of each node i at time t + 1 is given by:

pi(t + 1) = (1− µi)pi(t) + (1− pi(t))(1− ζi(t)), (21)

ζi(t) = ∏N
j=1(1− βirj pj(t)aij).

where ζi(t) is the probability for node i to be not infected by any neighbor and aij are the entries of
the corresponding adjacency matrix. The network is described by the set of nodes V, and the set of
neighbors of node i is given by Vi, i : vi ∈ V. There are N = |V| nodes in the network, and each node i
has a degree Ni = |Vi|. According to our framework, ηi(Pi(t), Ui(t)) is given by:

ηi(Pi(t), Ui(t)) = 1− ζi(t) = 1−
N

∏
j=1

(1− βirj pj(t)aij). (22)

Suppose that the parameters that are amenable to manipulation are βi and/or ri, i.e., we assume
that it is possible to improve the health of the nodes or avoid a node performing several contact
attempts with its neighbors. Accordingly, the entries of the vector Ui(t) are given by the infection rate
(β) and the contact probability (r), i.e.,

Ui(t) = [βi, rk1, rk2, . . . , rkNi
], ∀i ∈ V, and kl : vkl ∈ Vi. (23)

The fixed points p∗i associated with the dynamics (21) are:

p∗i =
1−∏N

j=1(1− β∗i r∗j p∗j aij)

µi + 1−∏N
j=1(1− β∗i r∗j p∗j aij)

,

for some constant values β∗i and r∗i . Note that p∗i = 0 is a fixed point that represents the extinction
state, but its stability is unknown. However, Lemmas (3) and (4) give us sufficient conditions to ensure
asymptotic stability in the extinction state of the system (21).

According to our definition for ηi, it is necessary to determine if ηi satisfy conditions (2) and (4), i.e.,
we have to prove that ηi strictly monotonically increases with uk and to find a mij strictly monotonically
increases with uk.

Condition (2) can be established taking the derivative with respect to pk (k = 1, 2, . . . , N)

as follows:

∂ηi(Pi(t), Ui(t))
∂pk

= ∂
∂pk

[
1−∏N

j=1(1− βirj pj(t)aij)

]
= βirkaik ∏N

j=1,j 6=k(1− βirj pj(t)aij)

≤ βirkaik = mik(Ui(t))aik, ∀i ∈ V, k : vk ∈ Vi. (24)
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The above equation shows that mik(Ui(t)) monotonically increases with uk, and its arguments are
reduced to mik(Ui(t)) = mik(βi, rk).

The second condition is proven taking the derivative with respect to βk (k = 1, 2, . . . , N):

∂ηi(Pi(t), Ui(t))
∂βk

= ∂
∂βk

[
1−∏N

j=1(1− βirj pj(t)aij)

]

=

{
0 if i 6= k
∑N

l=1 rl pl(t)ail ∏N
j=1,j 6=l(1− βirj pj(t)aij) if i = k.

≥ 0.

and then with respect to rk (k = 1, 2, . . . , N):

∂ηi(Pi(t), Ui(t))
∂rk

= ∂
∂rk

[
1−∏N

j=1(1− βirj pj(t)aij)

]

=

{
0 if i 6= k
∑N

l=1 βl pl(t)ail ∏N
j=1,j 6=l(1− βirj pj(t)aij) if i = k.

≥ 0.

In both cases, ηi monotonically increases with β or r.
Using Lemmas (3) and (4), we can conclude that the system (21) globally asymptotically converges

to the desired state P∗ = 0, if all nodes vi ∈ V satisfy any of the following conditions:

N

∑
j=1

βirjaij < µi, (25)

or:
N

∑
j=1

β jriaji < µi. (26)

Note that the above conditions give us a hint about how to design a feedback control to stabilize
the extinction state and to assign the output of the system:

Y(t) = [yi(t)]T = [pi(t)]T , where vi does not satisfy (25), (27)

or:
Y(t) = [yi(t)]T = [pi(t)]T , where vi does not satisfy (26). (28)

5.1. Simulations

We perform several simulations of the dynamical system (21) for different initial conditions,
with the following considerations:

1. We incorporate preferential attachment in a network with N = 106 nodes, according to [22].
To incorporate the growing character of the network, we started with a small number mo = 9 of
vertices (linked randomly), and at every time step, we add a new vertex with m = 3 edges until
we reach N = 106 nodes. In spite of the fact that we are using a scale-free network, we emphasize
that our results are independent of the network’s topology.

2. The constant values for the recovery probability (µ∗i ), infection rate (β∗i ) and contact probability
(r∗i ) were distributed uniformly over the nodes with values into the interval [0.2, 0.7].
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3. In order to verify our results, we calculated the average probability as follows:

ρ(t) =
1
N

N

∑
i=1

pi(t). (29)

The system simulated is given by:

pi(t + 1) = (1− µi)pi(t) + ηi(Pi(t), Ui(t))(1− pi(t)), (30)

ηi(Pi(t), Ui(t)) = 1−∏N
j=1(1− βirj pj(t)aij),

where:
|V| = N = 106, Ni = |Vi|, µ∗i , β∗i , r∗i ∈ [0.2, 0.7],

Pi(t) = [pk1(t), pk2(t), . . . , pkNi
(t)]T , Ui(t) = [βi(t), rk1(t), rk2(t), . . . , rkNi

(t)]T , kl : vkl ∈ Vi,

0 ≤ pi(t), βi(t), ri(t), µi(t) ≤ 1, ∀ vi ∈ V,

Y(t) = [pi(t)]T , vi ∈ Vca or Vcb,

where Vca is the set of those nodes i that do not satisfy (25) and Vcb is the set of those nodes i that do
not satisfy (26).

5.1.1. Behavior of the System in the Absence of Control

Figure 2 shows the simulations results for the system (30) in the absence of control. The result
shows that the system (30) presents an endemic state independent of the initial conditions, and it
shows that about 30% of the nodes are probably infected.
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 0.6
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 1

 0  5  10  15  20  25  30

ρ
(
t
)

time t

pi(0)=0.05
pi(0)=0.25
pi(0)=0.50
pi(0)=0.75
pi(0)=0.95

Figure 2. ρ(t) for several initial conditions without control.

Our results give us 495,091 nodes do not satisfy Condition (25) and 477,061 nodes that do no
satisfy (26); therefore, we identify these nodes as the nodes to be controlled and monitored in order to
steer the system to the extinction state.

5.1.2. Behavior of the Nodes Associated with the Zero Dynamics

In order to corroborate that the associated zero dynamics is asymptotically stable, we set Y(t) = 0,
i.e., for those nodes that do not satisfy (25), we consider βi = 0, and for those nodes that do not
satisfy (26), we consider ri = 0; the action of considering βi = 0 or ri = 0 is equivalent to unlinking
the node i.

Under this conditions, the dynamical evolution of the system (30) is shown in Figure 3a,b.
Note that, in both cases, the extinction state is reached after 15 time steps approximately.
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Figure 3. Simulation of the zero dynamics, i.e., without those nodes that do not satisfy (25) or (26).
(a) Simulation of (30) with βi = 0 where i : vi ∈ Vca; (b) simulation of (30) with ri = 0 where i : vi ∈ Vcb.

5.1.3. Behavior of the System with a Linear Feedback Control

We perform two separate simulations that will show the dynamical evolution of the system when
a control is implemented. In the first one, we propose a linear control that will act only on those nodes
that do not satisfy Condition (25). In the second one, a linear control will act only on those nodes that
do not satisfy Condition (26). According to Theorem 1, we must establish an upper bound, in either
case, namely β̄i and r̄i, respectively. These upper bounds can be determined using Equation (25) or (26).
For Condition (25), we have:

N

∑
j=1

β̄ir∗j aij = µ∗i ,

β̄i =
µ∗i

∑N
j=1 r∗j aij

. (31)

and for Condition (26):

N

∑
j=1

β∗j r̄iaji = µ∗i ,

r̄i =
µ∗i

∑N
j=1 β∗j aji

. (32)

Note that (31) relates the infection probability βi of the node i with its recovery probability µi and
the contact capacity of its neighbor nodes, given by ∑N

j=1 r∗j aij. On the other hand, Equation (32) relates
the contact probability ri of the node i, with its recovery probability µi and the infection capacity of its
neighbor nodes, given by ∑N

j=1 β∗j aji. This means that a node with a high rate of contact can be infected
with a great probability; besides, a node with weak neighbor nodes (those with a high probability of
infection) can be a focus of infection, as is intuitively clear.

Thus, the controls proposed should be such that:

βi(t) < β̄i and ri(t) < r̄i. (33)

It follows that for the nodes that do not satisfy (25), the control proposed could be given by:

βi(t) = γβ̄i(1− pi(t)), (34)
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and for those nodes that do not satisfy (26):

ri(t) = γr̄i(1− pi(t)), 0 < γ < 1. (35)

Note that both controls above depend on the state of the node i given by pi(t) and the properties of
its neighbor nodes given by β̄i and r̄i. The value γ must be in the interval (0, 1) in order to satisfy (33).

Figure 4a,b shows the results of the simulation of the system (30) with the applied controls (34)
and (35), respectively, with γ = 0.9. In both cases, it is shown that the extinction state is a closed-loop
attractor, although not as fast as in the case of Figure 3a,b, corresponding to the evolution of the
zero dynamics.
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Figure 4. Linear feedback control. (a) Simulation with linear feedback control given by (34) where
i : vi ∈ Vca; (b) simulation with linear feedback control given by (35) where i : vi ∈ Vcb.

6. Conclusions and Outlook

A Markov chain-based model for a Susceptible-Infected-Susceptible (SIS) dynamics over complex
networks has been analyzed, and a control mechanism has been proposed in order to stabilize the
extinction state. Given that the system presents a high non-linear behavior, our analytical approach
is based on determining a bilinear dynamics (15) and (20) that upper bounds the non-linear system.
Following this approach, it is possible to determine two sufficient conditions (17) and (18) that ensure
that the extinction state will be asymptotically stable. As a result of these conditions, we have
determined which nodes are suitable for monitoring and controlling, in order to achieve the extinction
of the propagation of the information. A linear feedback control scheme was tested for the stabilization
of the extinction state in numerical simulation studies with N = 106 nodes, showing the performance
of the approach.

Future studies will consider generalizations of this approach to higher-dimensional node
dynamics, multilayer networks [42,43], complex networks of agents [44,45] and analyzing the
possibility of applying these kinds of control strategies for financial market models and decision
dynamics [46–48].
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