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Abstract: In this work, we analyze the cross-entropy function, widely used in classifiers both as
a performance measure and as an optimization objective. We contextualize cross-entropy in the
light of Bayesian decision theory, the formal probabilistic framework for making decisions, and we
thoroughly analyze its motivation, meaning and interpretation from an information-theoretical point
of view. In this sense, this article presents several contributions: First, we explicitly analyze the
contribution to cross-entropy of (i) prior knowledge; and (ii) the value of the features in the form
of a likelihood ratio. Second, we introduce a decomposition of cross-entropy into two components:
discrimination and calibration. This decomposition enables the measurement of different performance
aspects of a classifier in a more precise way; and justifies previously reported strategies to obtain
reliable probabilities by means of the calibration of the output of a discriminating classifier. Third,
we give different information-theoretical interpretations of cross-entropy, which can be useful in
different application scenarios, and which are related to the concept of reference probabilities. Fourth,
we present an analysis tool, the Empirical Cross-Entropy (ECE) plot, a compact representation of
cross-entropy and its aforementioned decomposition. We show the power of ECE plots, as compared
to other classical performance representations, in two diverse experimental examples: a speaker
verification system, and a forensic case where some glass findings are present.
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1. Introduction

Probabilistic approaches for data mining, machine learning and pattern recognition have proven
their effectiveness both theoretically and practically in multiple applications [1]. As a consequence,
one of the classical interests among the machine learning community has been to obtain reliable
probabilities from a classifier [2–5]. More recently, this interest has been related to the active field of
Deep Neural Networks [6]. We will call probabilistic classifiers to those classifiers that are designed to
output probabilities.

The use of probabilistic classifiers presents many advantages against more deterministic outputs
(e.g., class labels or non-probabilistic scores). First, reliable probabilistic classifiers can be easily
compared because their outputs lay in the same domain. Second, it is much more straightforward to
combine classifiers if they can be integrated into a theoretically sound probabilistic domain [7]. Third,
a probabilistic classifier can be incorporated into a more complex model considering multiple sources of
information, by the use of e.g., probabilistic graphical models [8]. Finally, probabilities are interpretable,
and therefore probabilistic classifiers admit interpretation in many different domains where an end-user
that operates the system as a black box wants to effectively use and understand the information it
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gives. Moreover, probabilistic outputs of systems have proven to be useful in many other research and
application areas such as clinical decision support systems [9], cognitive psychology [10,11], biometric
systems [12–14], weather forecasting [15] and forensic science [16,17]. In all those areas, as well as it
happens with classifiers in general, Bayesian decision theory [1] constitutes the formal framework to
make optimal choices of courses of action.

In order to be useful, probabilities have to distinguish between different classes, a property that
has been dubbed as refinement [15,18], sharpness [19] or discrimination [13,16]. However, it is not
enough: probabilities must also present a good calibration [18,20]. According to this, a better-calibrated
classifier would output more reliable probabilities, and this would lead to better decisions [4,13,16].
Calibration has been measured in the past by the use of proper scoring rules [18,21,22], i.e., functions
that assess the performance or goodness of probabilities. One typical example of performance metrics
based on proper scoring rules is the cross-entropy function, mainly due to its information-theoretical
interpretation, its good mathematical behavior and its advantageous properties [13,23].

In this article, we deeply review the cross-entropy function, as a metric of performance and as
a common objective function for probabilistic classifiers. In order to focus the topic, we restrict
ourselves to two-class (or binary) classifiers in a Bayesian decision scenario. Then, this article
contributes in several ways, summarized here:

• We analyze the contribution to cross-entropy of two sources of information: the prior knowledge
about the classes, and the value of the observations expressed as a likelihood ratio. Apart from
its advantages for general classifiers [13], this analysis is of particular interest in many
applications such as forensic science [17,24], where prior probabilities and likelihood ratios
are computed by different agents, with different responsibilities in the decision process. Moreover,
this prior-dependent analysis allows system designers to work on the likelihood ratio computed
by the classifier without having to be focused on particular prior probabilities or decision costs.
This way of designing classifiers has been referred to as application-independent [12,13]. To the
best of our knowledge, there are not many works in the literature offering tools to analyze the
cross-entropy function under this dichotomy.

• We introduce a decomposition of cross-entropy into two additive components: discrimination
loss and calibration loss, showing its information-theoretical properties. A better discrimination
component of cross-entropy will indicate a classifier that separates the classes more effectively;
and a better calibration component will indicate more reliable probabilities [18]. Moreover,
the decomposition enables improving calibration without changing discrimination, by means of
an invertible function, theoretically justifying approaches as in [2,3,5,12,13].

• We propose several interpretations of cross-entropy that offer useful communication tools to
present results of systems performance to non-expert end users, which can be of great utility for
many applications such as forensic science [24].

• We generalize the use of an analysis tool, the Empirical Cross-Entropy (ECE) plot, previously
used in forensic science [16,25] for two-class probabilistic classifiers. We demonstrate its power in
two different experimental examples.

The article is organized as follows. For the sake of clarity, in Section 2, we give some definitions
and examples, and we briefly recall Bayesian decision theory. In Section 3, we review the important
concept of calibration of probabilities. We define and deeply analyze cross-entropy in Section 4.
Section 5 then introduces the Empirical Cross-Entropy (ECE) plot, as a compact representation to
analyze cross-entropy. In Section 6, we will show the usefulness and power of the ECE plot with
respect to other classical performance measures, where two classification approaches are explored:
speaker verification and a forensic case involving glass findings. Finally, a discussion and some
conclusions can be found in Section 7.
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2. Review of Bayesian Decision Theory

2.1. Definitions, Notation and Examples

From now on, we will use capital letters to denote random variables (e.g., X) and small
letters for particular values observed from those variables (e.g., X = x, or simply x). Random
(multivariate) vectors will be denoted in capital bold (e.g., X) and small bold letters will denote
particular vectors observed from them (e.g., X = x, or simply x). Probabilities will be referred to as
P(·), and conditional probabilities as P(·|·). Probability densities will be referred to as p(·), and p(·|·)
if they are conditional. Alternative probabilistic assignments will use the same notation, but replacing
P with P̃, p with p̃, and so forth. Related to this notation, we may simply denote P and P̃ as different
ways of assigning probabilities.

The classification problem is better illustrated by some examples:

Example 1. Speaker Verification. In this example, the task is to decide whether a speaker is or not a genuine
user of a given access control system. Imagine that a person wants to access a resource from a bank (it could
be a bank account, or simply some personalized publicity). The telephone application of the bank has an
authentication facility that includes voice biometrics. In order to decide what to do with this access attempt,
a classifier must compare the speech of that person with some speech that has been previously stored and processed
in the application, whose identity is known and claimed by the speaker. Several sources of information must be
considered by the classifier:

• Speaker recognition techniques [26] are used to perform a comparison between the speech of
the person who tries to access the system and the speech stored in the system for that particular
identity claimed. If the system yields a higher support that the person has the claimed identity,
it will increase the chances of a successful access, and vice-versa.

• In order to make the decision, the speaker verification system must take also into account the
prior probability, i.e., whether it is probable or not that an impostor attempt will happen for this
particular application.

• Moreover, the bank policy should evaluate the consequences of an error when it occurs.
Perhaps the application gives access to very sensitive information (e.g., operations with bank
accounts), and then avoiding false attempts is critical, or, perhaps, the application yields access to
personalized publicity for that particular client, and false rejections are to be avoided.

Example 2. Forensic case involving glass findings. In this example, imagine the role of a trier of fact
(a judge or a jury) in a legal trial. There is a suspect that is accused of some crime, and it is necessary to evaluate
whether the suspect was involved in a burglary. Findings related to that question include some glass pieces found
in the suspect’s clothes, which could come from the window broken at the scene of the crime during the burglary.
In order to evaluate those findings, the trier of fact considers two possible hypotheses: on the one hand, the glass
found in the suspect’s clothes and the glass in the window of the scene of the crime comes from the same source.
On the other hand, they come from different sources (although it is not always the case, for simplicity, we will
assume that the trier of fact establishes that any other hypothesis is so unlikely that its probability is negligible.
Moreover, these hypotheses are known as source-generic, and they are simpler to understand, although other
more complex hypotheses are much more typical in a forensic case. However, we believe that these two assumed
simplifications will help in understanding the proposed approach). An ideal trier of fact, i.e., one who correctly
uses Bayesian decision theory, should consider the following:

• The report of a forensic examiner, who compares the glass in the burglary window with the glass
in the clothes of the suspect. She or he uses analytical chemistry techniques for this, as well as
forensic statistic models, in order to assign a quantitative value to those findings in the form of
a likelihood ratio, according to recommendations from forensic institutions worldwide [24].
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• In order to make the decision, the trier of fact must also take into account the prior probability
that the glass in the suspect’s clothes could be originated by the window at the scene of the crime,
even before the findings are analyzed by the forensic examiner. Perhaps the suspect was arrested
next to the house at the time of the burglary, and/or witnesses have seen her or him smashing the
window, and/or she or he has been typically arrested in the past for similar crimes, etc., in which
case the prior probability should increase. However, the suspect could present a convincing alibi,
and/or witnesses could testify that they saw other people smashing the window, etc., and in those
cases the prior probability should be low.

• Moreover, justice systems around the globe have legal standards and policies that influence
decisions of triers of fact. In modern, advanced democracies, it is typical that a presumption of
innocence is always respected, meaning that condemning a person must be supported by solid
evidence. In this sense, it is naturally much more critical not to imprison an innocent person, even
though this means that false acquittals may then be more probable. Thus, a trier of fact will only
condemn a suspect if the probability that the suspect committed the crime is very high.

Here, we define the elements of a classification problem, contextualizing them into the described
examples (speaker verification, and forensic case involving glass findings).

• Classification categories will be referred to as θ1 and θ2, and they will be assumed to be
observed from a random variable Θ. It is assumed that both classes are complementary in
probabilistic terms.

– In the speaker verification example, θ1 stands for the person accessing is who she or he claims to
be, and θ2 stands for the person accessing is an impostor.

– In the forensic case example, θ1 stands for the glass of the suspect’s clothes comes from the window
at the crime scene, and θ2 stands for the glass of the suspect’s clothes does not come from the window
at the crime scene.

• The features observed in the classification problem will be assumed to be multivariate, and referred
to as x generated by X.

– In the speaker verification example, x ≡ {xa, xid}, where xa are the speech features extracted
from the utterance spoken by the person attempting to enter the system, and xid are the
features already stored in the system, which are known to come from the claimed identity.

– In the forensic case example, x ≡ {xr, xc}, where xr are the chemical features extracted
from the glass fragments recovered in the suspect’s clothes, and xc are the chemical features
extracted from the window at the scene of the crime, known as control glass.

• The action of deciding θi will be denoted as αi.

– In the speaker verification example, α1 means that the system decides to accept the speaker,
and α2 means deciding to reject the speaker.

– In the forensic case example, α1 means that the trier of fact decides that the suspect glass
came from the window at the scene of the crime, and α2 means deciding that the suspect
glass came from a different source than the window at the crime scene.

• Decision costs will be referred to as C(αi, θj), where αi is the decision made, but θj is the actual
category to which a particular feature vector x belongs. Without loss of generality, costs are
assumed to be non-negative. In addition, it is typically assumed that C(αi, θi) = 0, i.e., right
decisions are costless.

– In the speaker verification example, the costs are defined depending on the risk policy of the
bank, and depending on the application. For instance, if we talk about access to personalized
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publicity, perhaps C(α1, θ2) = 1 and C(α2, θ1) = 10, being then flexible with false acceptances,
but rigorous with false rejections. On the other hand, if the application involves accessing
sensitive bank account data, perhaps the priority is to avoid false acceptances, and therefore
we can set C(α1, θ2) = 50 and C(α2, θ1) = 1, for example.

– In the forensic case example, costs are typically designed to avoid false condemns, even
though it means that false acquittals are more frequent. Thus, a possible selection of decision
costs could be C(α1, θ2) = 100 and C(α2, θ1) = 1. In any case, it would correspond to the trier
of fact to establish the values of the costs.

2.2. Optimal Bayesian Decisions

Bayesian decision theory leads to a well-known decision rule, expressed as:

Decide α1 iff: LR(1)
(2) >

C (α1, θ2)

C (α2, θ1)

P (θ2)

P (θ1)
= τB, otherwise decide α2, (1)

where τB is the so-called Bayes threshold, and the likelihood ratio (LR) is defined as:

LR(1)
(2) =

p (x |θ1 )

p (x |θ2 )
. (2)

Equation (1) gives the general rule to make decisions if the following quantities are known:

• The likelihood ratio LR(1)
(2), expressing the value of the observation of x in support of each of the

two classes θ1 and θ2.
• The prior probabilities for both classes, namely P (θ1) and P (θ2).
• The costs associated to each action αi towards deciding a class θi, given that class θj is actually

true, namely C
(
αi, θj

)
∀i 6= j.

Figure 1 illustrates this decision scheme graphically.

Figure 1. Decision scheme of a probabilistic classifier.

Additional insights can be obtained from the so-called odds form of the Bayes theorem:

P (θ1 | x)
P (θ2 | x)

= LR(1)
(2) ·

P (θ1)

P (θ2)
, (3)

where the odds are defined as the quotient of complementary probabilities:

O (·) = P (·)
1− P (·) (4)
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and the following relation can be easily derived:

P ( θ1| x) =
LR(1)

(2) ·O (θ1)

1 + LR(1)
(2) ·O (θ1)

. (5)

Moreover, we define | log(LR(1)
(2))| as the strength of the support of the features (unless explicitly

stated otherwise, logarithms are assumed to be natural, i.e. base-e).

2.3. Empirical Performance of Probabilistic Classifiers

Empirical performance measurement involves the use of a database where ground-truth labels
are available. For instance:

• In speaker verification, imagine that we have a black-box speaker recognition system that receives
two sets of speech files, where all utterances in each of the two sets belong to a given putative
speaker. The system compares both sets and outputs a likelihood ratio LR(1)

(2), for θ1 (same
speaker), and θ2 (different speakers). With a database of speech utterances, each one with a label
indicating an index of speaker identity, we compare them according to a given protocol to generate
LR values. The ground-truth labels of the experimental set of LR values are same-speaker (Θ = θ1)
or different-speakers (Θ = θ2) labels.

• In forensic interpretation of glass samples, we can work analogously with a black-box glass
interpretation model yielding likelihood ratios, and a database of feature vectors measured from
glass objects, each vector with a label indicating a different index for each glass object. Thus,
LR values generated are accompanied by ground-truth labels like same-source (Θ = θ1) and
different-source (Θ = θ2).

The performance of such experimental set of LR values (with ground-truth labels) can then be
measured as an expected cost:

EP(αi ,θj)
[
C
(
αi, θj

)]
= P (α2, θ1)C (α2, θ1) + P (α1, θ2)C (α1, θ2)

= P (α2|θ1) P (θ1)C (α2, θ1) + P (α1|θ2) P (θ2)C (α1, θ2) ,
(6)

where P
(
αi|θj

)
is the probability of deciding action αi when θj is the actual class of x. If i 6= j,

these probabilities are known as error probabilities. For our speaker recognition example, P (α1|θ2) is
known as false acceptance probability, and P (α2|θ1) as false rejection probability. For the glass case examples,
P (α1|θ2) could be known as false association probability, and P (α2|θ1) as false exclusion probability.
Those error probabilities depend on the decision made with Bayes threshold τB (Equation (1)), for which
prior probabilities and costs must be known.

3. Calibration of Probabilities

Bayesian decision theory is based on the fact that, for the LR(1)
(2), the probabilities p (x|θ1) and

p (x|θ2) are known to have generated x. However, this is rarely the case for real applications, except

for e.g., some simulated scenarios. Therefore, typically an alternative value L̃R(1)
(2) will be computed

instead, as a result of directly computing the ratio in a discriminative way, or by assigning likelihoods
to the data as p̃ (x|θ1) and p̃ (x|θ2). This will inevitably lead to suboptimal decisions in terms of

expected cost because the decision rule in Equation (1) is assuming LR(1)
(2), not L̃R(1)

(2).
To address this problem, the designer of a probabilistic classifier might be tempted to keep the

L̃R(1)
(2) values, and then to change the decision threshold τ from its theoretically optimal value τB.

Thus, changing the decision threshold to τ∗ will lead to different values of P
(
αi|θj

)
∀i 6= j, which can

optimize the expected cost in Equation (6). Of course, it might be the case that τ∗ 6= τB.
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However, our objective as designers of a probabilistic classifier should not be choosing τ∗.
For instance, in some applications, we could be even not aware of the values of the priors and decision
costs, and therefore we could not compute the expected cost in order to get to τ∗. Conversely, our aim

as designers is to compute values of L̃R(1)
(2) that are optimal when threshold τB is set according to the

values of the prior probabilities and the decision costs.

Figure 2 illustrates the effects of a non-proper computation of L̃R(1)
(2) by a classifier. Two different

speaker recognition systems that compute likelihood ratios for the features x are shown, and in both
cases the value of the expected cost is represented for a range of thresholds log (τ). For illustration,

it is assumed that the costs of wrong decisions are both 1. Figure 2a shows a system computing ˜LRa
(1)
(2)

values. Bayesian thresholds (τB), for each of several values of the prior probabilities, are represented

as vertical lines. It is clearly observed that, for ˜LRa
(1)
(2), selecting the Bayesian threshold τB leads to

a suboptimal value of the expected cost for all prior probabilities. However, Figure 2b shows a system

where ˜LRb
(1)
(2) values have been computed, and it is shown that τB is near the optimum for all the

represented values of P (θ1). This is because the calibration of the likelihood ratios computed by ˜LRb
(1)
(2)

is much better than for ˜LRa
(1)
(2). This property of calibration is of great importance in probabilistic

classifiers, and it is described below.

(a) (b)

Figure 2. Value of the expected cost (Equation (6)) of two different sets of LR values from a speaker

recognition system presenting (a) worse calibration ( ˜LRa
(1)
(2) values), and (b) better calibration

( ˜LRb
(1)
(2) values). Costs of erroneous decisions are set to 1 for simplicity. The x-axis shows possible

values of a decision threshold log τ, and the logarithms of Bayes thresholds τB (Equation (1)) are shown
as vertical lines.

Calibration and Discrimination of Posterior Probabilities

The concept of calibration of probabilities is not new in the statistics literature. In [18], it was
introduced in order to evaluate so-called forecasts, which are indeed posterior probabilities of a given
hypothesis (tomorrow, it will rain) elicited by a weather forecaster. This problem is equivalent to
probabilistic binary classification as proposed here, where the analogous of the forecast is P (θ1|x).

In [18,27], the accuracy of such a forecaster is assessed by means of strictly proper scoring rules.
One example is the logarithmic scoring rule:

θ1 true : − log2 (P ( θ1| x)) ,
θ2 true : − log2 (P ( θ2| x)) .

(7)
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Thus, strictly proper scoring rules may be seen as loss functions that assign a penalty to a given
value of the posterior probability depending on the true value of the ground-truth label (see [22] for
more examples of strictly proper scoring rules). The logarithmic scoring rule is illustrated in Figure 3.

Figure 3. Logarithmic scoring rule. The x-axis represents the posterior probability of θ1. The rule can
also be applied to prior probabilities P (θ1).

Strictly proper scoring rules have the following interesting properties:

• In our speaker verification example, a posterior probability P̃ ( θ1| x) is obtained. We can define the
mean value of the proper scoring rule with respect to a reference probability distribution P ( θ1| x),
according to [18]. This reference probability can be viewed as a desired value P of the posterior
probability distribution, to which the actual posterior probability distribution P̃ is compared.
For the logarithmic scoring rule:

− P ( θ1| x) · log2
(

P̃ ( θ1| x)
)
− (1− P ( θ1| x)) · log2

(
1− P̃ ( θ1| x)

)
. (8)

By definition, the mean value of a strictly proper scoring rule is minimized if and only if
P ( θ1| x) = P̃ ( θ1| x) (for instance, this is easy to prove for the logarithmic rule by simply deriving
Equation (8) with respect to P̃ ( θ1| x)). In other words, if a classifier aims at minimizing a strictly
proper scoring rule, it should yield a likelihood ratio value as close as possible to LR(1)

(2), which will
lead to the desired probability P ( θ1| x).

• In [18], the overall measure of goodness of an empirical set of posterior probabilities is defined as
the empirical average of a strictly proper scoring rule. An example is the logarithmic score (LS):

LS = − 1
N1

∑
x:θ1 true

log2 P̃ ( θ1| x)

− 1
N2

∑
x:θ2 true

log2 P̃ ( θ2| x),
(9)

where N1 and N2 are the number of comparisons where θ1 or θ2 are respectively true. Thus, LS is
an overall loss. Moreover, it is also demonstrated in [18] that such a measure of accuracy can be
divided into two components:

1. A calibration loss component, which measures how similar the posterior probabilities are
to the frequency of occurrence of θ1. Low calibration loss means that, for a given range of
values of P̃( θ1| x) closely around a value k, the frequency of cases where Θ = θ1 tends to be k.
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2. A refinement loss, also known as sharpness loss or discrimination loss, component. It measures
how sharp or how spread the posterior probabilities are. Roughly speaking, lower refinement
loss means that, if the calibration loss is low, P̃( θ1| x) will tend to be closer either to 0 or to 1,
on average.

Refinement loss can be seen as discrimination performance, as measured by typical performance
representations such as Receiver Operation Characteristic (ROC) curves, or values such as Area Under
ROC Curve (AUC). For instance, if we consider our speaker verification example, for a fixed value of
the prior probabilities, the refinement, sharpness or discrimination of a set of likelihood ratios will be

better if the L̃R(1)
(2) values of the system overlap less when θ1 and θ2 are respectively true, and so the

ROC and AUC measures will be better. An illustrating example is given in Figure 4.

(a) (b)

Figure 4. (a) histograms of log (LR) values for three simulated examples; and (b) their corresponding
ROC curves, with AUC values.

A good calibration loss means that posterior probabilities actually represent the real empirical
proportion of occurrence of each hypothesis. A popular technique to measure calibration involves
the use of so-called empirical calibration plots [20], also known as reliability plots [3], where the
frequency of occurrence of a given hypothesis θ1 is represented against a binning of the posterior
probabilities given by the system. Empirical calibration plots of simulated examples in Figure 4 are
depicted in Figure 5.

(a) (b) (c)

Figure 5. Reliability plots of the simulated sets of log (LR) values shown in Figure 4. (a) log (LR) set 1;
(b) log (LR) set 2; (c) log (LR) set 3.
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The meaning of a good calibration loss is related to the way in which the information is presented
to the decision maker, leading her or him to good decisions. This means that, if posterior probabilities
are better calibrated, using the τB threshold to the likelihood ratio will yield closer-to-minimum
expected cost [4,13].

4. Cross-Entropy: An Information-Theoretical Performance Measure

Information theory [28,29] states that the information obtained in an inferential process is
determined by the reduction of the entropy, which measures the uncertainty about a given unknown
variable in the light of the available knowledge. In our classification problem, the entropy represents the
uncertainty that the decision maker has about the actual value of the hypothesis variable Θ ∈ {θ1, θ2}.

In a given classification problem, even though the features are not observed yet, the uncertainty
about Θ is given by the prior probabilities P (θ1) = 1 − P (θ2). With this available knowledge,
the entropy of the hypothesis, namely prior entropy or entropy of the prior, is determined by the
following expression [29]:

HP (Θ) = − ∑
i∈{1,2}

P (θi) log2 P (θi) . (10)

Once the features x are observed in a given single classification comparison, this may or may not
reduce the uncertainty about Θ. However, it can be proven [29] that the expected value of the entropy
of the posterior probability over all possible values of the features x cannot be greater than the prior
entropy. This expected value is a conditional entropy, which will be denoted as a posterior entropy,
computed as [29]:

HP (Θ|X) = − ∑
i∈{1,2}

∫
x

p (θi, x) log2 P ( θi| x) dx (11)

= − ∑
i∈{1,2}

P (θi)
∫
x

p (x| θi) log2 P ( θi| x) dx, (12)

where the features x are integrated over their whole domain. As mentioned, HP (Θ|X) ≤ HP (Θ) [29].
However, the computation of Equation (12) is usually non-practical, as it requires knowing the likelihoods
p (x| θi), which are not known in general.

This can be solved by comparing the posterior probabilities computed by the classifier with
a reference probability distribution. The letter P̃ (p̃ for pdfs) will denote probabilities obtained
using the classifier, and the letter P (p for pdfs) will denote those reference probabilities. Moreover,

the expression L̃R(1)
(2) will denote the likelihood ratio computed by the classifier, a function of x. Thus,

L̃R(1)
(2) is the quotient between p̃ (x| θ1) and p̃ (x| θ2). The incorporation of the reference probabilities

eliminates the dependence between P̃ ( θi| x) and p (x |θi ) in Equation (12), leading to the expression of
the cross-entropy:

H P‖P̃ (Θ|X) = − ∑
i∈{1,2}

P (θi)
∫
x

p (x |θi ) log2 P̃ ( θi| x) dx. (13)

It can be easily proven that the cross-entropy (Equation (13)) is decomposed into:

H P‖P̃ (Θ|X) = HP (Θ|X) + D P‖P̃ (Θ|X) , (14)

where D P‖P̃ (Θ|X) is the well-known Kullback–Leibler (KL) divergence between the system’s posterior
distribution and the reference distribution [29] for all possible values of the evidence, defined as:

D P‖P̃ (Θ|X) = ∑
i∈{1,2}

P (θi)
∫
x

p (x |θi ) log2
P ( θi| x)
P̃ ( θi| x)

dx. (15)
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Thus, the cross-entropy measures the complementary effect of two different magnitudes:

• HP (Θ|X), the posterior entropy of the reference probability, which measures the uncertainty
about the hypotheses if the reference probability distribution is used.

• D P‖P̃ (Θ|X), the divergence of the classifier posterior P̃ from the reference posterior P. This is an
additional information loss because it was expected that the system computed P, not P̃.

4.1. Proposed Measure of Accuracy: Empirical Cross-Entropy (ECE)

An empirical approximation of cross-entropy (Equation (13)) is proposed here. With an empirical
set of LR values and a fixed prior probability P (θ1), we can approximate Equation (13) as follows:

H P‖P̃ (Θ|X) ' ECE = − P(θ1)
N1

∑
x:θ1 true

log2 P̃ ( θ1| x)

− P(θ2)
N2

∑
x:θ2 true

log2 P̃ ( θ2| x),
(16)

where ECE stands for Empirical Cross-Entropy. Then, by Equation (5):

ECE = P(θ1)
N1

∑
x:θ1 true

log2

1 + 1

L̃R(1)
(2) ·

P(θ1)
P(θ2)


+ P(θ2)

N2
∑

x:θ2 true
log2

(
1 + L̃R(1)

(2) ·
P(θ1)
P(θ2)

)
,

(17)

where L̃R(1)
(2) is dependent of x, but we simplified the notation.

Figure 6 illustrates the information loss measured by cross-entropy in terms of its decomposition
(Equation (14)). There, ellipses represent uncertainty, which can be viewed also as an information
loss. On the left, the prior entropy HP (Θ) is represented as a green ellipse, whereas, on the right,
the cross-entropy H P‖P̃ (Θ|X) is represented, decomposed as D P‖P̃ (Θ|X) (blue area) plus HP (Θ|X)
(green area). The diagram illustrates that the observation of X does not increase the uncertainty
about Θ, i.e., HP (Θ) ≥ HP (Θ|X). In other words, we will always gain information about Θ by
the observation of X, but this will only happen if reference probabilities are computed. Otherwise,
the KL divergence term will contribute with an additional information loss to the cross-entropy. Thus,
the cross-entropy could be arbitrarily larger than the prior entropy because D P‖P̃ (Θ|X) is positive
and unbounded. This could lead to a potentially dramatic loss of information if a LR model computes

L̃R(1)
(2) values that substantially diverge from the reference LR(1)

(2).
As the prior probability is considered a parameter, then HP (Θ) = HP̃ (Θ). In other words,

the differences between P (θ1|x) and P̃ (θ1|x) are assumed to be only because of a different LR,
not because of a different prior probability, since we want to evaluate the classifier, and the prior
probability is external to it. Therefore, from Equation (17), it is straightforward that the ECE is
independent of the reference likelihoods p. This has the following interpretation: for a fixed value of
ECE, changing the reference P implies that:

• HP (Θ|X) increases (decreases) and
• D P‖P̃ (Θ|X) decreases (increases)

in order to keep ECE constant. This is depicted in Figure 6: the ellipse representing cross-entropy on
the right always has the same size. However, the inner small ellipse representing posterior entropy of
P may increase or decrease depending on the choice of the reference probability P.
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Figure 6. Scheme showing the decomposition of cross-entropy in Equation (14). Ellipses represent
uncertainty, which can be viewed as an information loss. The ellipse on the left (green) is the prior
entropy HP (Θ). The ellipse on the right is the cross-entropy H P‖P̃ (Θ|X) decomposed into its additive
components: the posterior entropy HP (Θ|X) (green) plus the KL divergence D P‖P̃ (Θ|X) (blue).

4.2. Choosing a Reference Probability Distribution for Intuitive Interpretation

The selection of the reference probability P is constrained because Equation (14) must hold. Sensible
choices of P should consider that, for some applications, simplicity and clarity is important, especially
if one wants to communicate the results of the performance test to an end-user (like e.g., a trier of fact).
In that sense, in this article, we give two proposals of reference P, detailed below.

4.2.1. Oracle Reference Po

The oracle reference distribution is motivated as follows: the aim of every classification problem is
finding the true value of the hypothesis Θ. This would be achieved if the decision maker assigns the
following posterior probabilities Po:

Po ( θ1| x) = 1 , θ1 is true,
Po ( θ1| x) = 0 , θ2 is true.

(18)

If this oracle distribution is selected as a reference, then HPo (Θ|X) = 0, and therefore the ECE
becomes solely the KL-divergence D Po‖P̃ (Θ|X). Thus, the higher the ECE value is, the higher the
amount of information lost by the classifier in order to know the true value of the hypotheses. If the
classifier does not yield oracle probabilities, then there will be an information loss. This could be also
interpreted as the information needed to get to certain predictions.

4.2.2. PAV-Calibrated Reference Pcal

The reference probability Pcal will present the same discrimination loss as P̃ (i.e., the same ROC
curve and AUC value), but it will be as perfectly calibrated as possible.

Fortunately, there is an algorithm that allows perfect calibration of probabilities, namely the Pool
Adjacent Violators algorithm (PAV or PAVA) [30,31]. In fact, Ref. [32] provides a proof that PAV is
the monotonic function that achieves the best possible value of a proper scoring rule in an empirical
set of posterior probabilities. This also applies to ECE, as a weighted average of a proper scoring
rule. The choice of Pcal as a reference posterior distribution allows the interpretation of ECE with its
two components:

• The discrimination component, namely ECEmin ' HPcal (Θ|X), that represents the information
loss due to a lack of discriminating power of the classifier.
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• The calibration component, namely ECEcal ' D Pcal‖P̃ (Θ|X), that represents the information loss
due to a lack of calibration of the classifier.

5. The ECE Plot

In this paper, we propose representing ECE as a function of P (θ1) in a so-called ECE plot. For each
prior probability in a range centered around P (θ1) = P (θ2) = 0.5, posterior probabilities P̃ ( θ1| x) are

obtained using the L̃R(1)
(2) values computed by the classifier. The value of ECE (Equation (17)) is then

represented as a function of the log-odds, namely log O (θ1). For the sake of interpretation, the x-axis
of the ECE plots represents base-10 logarithms.

Figure 7 shows an example of ECE plots for the simulated sets of LR values used previously in
Figures 4 and 5. The solid, red curve is the ECE (average information loss) of the LR values computed
by the classifier. The higher this ECE curve, the higher the amount of information needed in order to
know the true hypothesis, and therefore the worse the system.

(a) (b) (c)

Figure 7. ECE plots of the simulated sets of log (LR) shown in Figures 4 and 5. (a) log (LR) set 1;
(b) log (LR) set 2; (c) log (LR) set 3.

Two other curves are represented in each ECE plot. On the one hand, the dashed, blue curve
represents the best-calibrated system; for each value of the prior probability, Pcal is obtained using the
Pool Adjacent Violators (PAV) algorithm. The best-calibrated system can be seen as an optimum of
performance in the sense of calibration.

On the other hand, the dotted curve represents the performance of a classifier always delivering
LR = 1, referred to as a neutral system, for which the posterior probability is equal to the prior
probability (Equation (3)), and its cross-entropy is simply the prior entropy (Equation (10)). Then, if the
ECE value (red, solid curve) of the classifier is greater than the entropy of the neutral system, it will be
better not to use the classifier.

As a summarizing measure, ECE at the prior log-odds of 0 can be used. This measure has been
already proposed as log-likelihood-ratio cost (Cllr) in [12,13], where its interpretation in terms of expected
cost can be found (as a matter of fact, Cllr is the expected cost of decisions, where the expectation is
not only made on the action αi and the true decision θj, but also over all possible values of the costs
C
(
αi, θj

)
. Thus, it is shown that optimizing the ECE value also optimizes the expected cost averaged

over all values of decision costs, justifying the relationship between calibration and cost optimization
as discussed in Section 3). Therefore, Cllr can be also decomposed as ECE does, and Cllr = Cmin

llr + Ccal
llr ,

where Cmin
llr and Ccal

llr are, respectively, ECEmin and ECEcal at the value of prior log-odds equal 0.
In fact, the decomposition into discrimination and calibration by PAV was firstly proposed for Cllr [13],
and generalized to ECE afterwards [25].

Freely available MatlabTM software (release 2015b, The Mathworks inc., US.) to draw ECE plots
can be found in http://arantxa.ii.uam.es/~dramos/software.html.

http://arantxa.ii.uam.es/~dramos/software.html
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6. Experimental Examples

6.1. Speaker Verification

Here, we test the performance of our speaker verification example in terms of ECE. We use
a state-of-the-art speaker recognition system following the approach in [33]. Roughly speaking, the speaker
recognition system processes the speech utterances to form feature vectors in a 600-dimensional space,
the so-called i-vectors. Then, a likelihood ratio is computed by Probabilistic Linear Discriminant Analysis
(PLDA), as in [34].

Supposedly, the PLDA approach should yield likelihood ratios that present good calibration, but
it is not typically the case. This can be due to the high dimensionality of the problem compared to the
amount of data to compare, the extreme data sparsity, and the simplicity of the model compared to the
complexity of the feature space. Therefore, a further calibration transformation is typically applied
to the PLDA likelihood ratio, yielding a so-called calibrated likelihood ratio. A popular calibration
technique involves a logistic regression model [3,35], also known as Platt scaling [2].

Regarding the data used for this setup, we used the framework provided by the American
National Institute of Standard and Technology (NIST) for standard benchmark tests, known as Speaker
Recognition Evaluations (SRE). In our case, the empirical set used to compute likelihood ratios to test
the system is the SRE 2010 condition 5 (telephone, conversational speech in English) [36]. In addition,
data from previous SRE and other speech databases were used to train the PLDA model and the
i-vector extractor. The equivalent condition 5 of the SRE 2008 dataset has been used to train the logistic
regression model for calibration purposes [37]. We restricted the test and calibration datasets to contain
only female speech. The numbers of comparisons for class is N1 = 3704 and N2 = 233,077, yielding an
empirical prior proportion of N1

N1+N2
' 0.016.

Figure 8 shows the performance of the likelihood ratios computed by the PLDA stage, before

and after logistic regression calibration. We show histograms of the values of L̃R(1)
(2); reliability plots

of P̃ (θ1|x) computed from L̃R(1)
(2) at the empirical prior P (θ1) = 0.016; ROC curves with AUC values;

and the proposed ECE plots for a wide range of prior probabilities.
Histograms in Figure 8 show equal discrimination performance because the degree of overlap

between different empirical distributions is the same in both cases. This agrees with the fact that logistic
regression is an invertible transformation (a sigmoid for probabilities, meaning a linear transformation
for log-odds and log(LR) values), and, as a consequence, the ordering of the LR values is not altered,
and therefore the discrimination performance is not changed either. However, the range of the log(LR)
values is very different before and after logistic regression. This is due to the fact that the logistic
regression transformation scales and shifts the histograms aiming to an improvement in the calibration
of the LR values. However, the histograms after the application of logistic regression are not completely
symmetric over log(LR) = 0, and therefore we can expect some calibration loss. Although histograms
are useful to spot tendencies in the LR values, they do not measure performance in an explicit way,
and this is their main drawback as a performance representation. In reliability plots in Figure 8b,
it is clear that the application of logistic regression dramatically improves calibration. As expected,
the same ROC curves shown in Figure 8c indicate the same discrimination.

The previous performance measures present some problems. First, a clear decomposition between
discrimination and calibration is not explicitly seen in a single figure. Although reliability plots and
ROC curves separately measure both components, they are not comparable measures of discrimination
and calibration loss. Finally, reliability plots only show calibration at the empirical prior.
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(a)

(b) (c)

(d)

Figure 8. Performance of a speaker recognition system using PLDA, before and after logistic regression

calibration. (a) histograms of log
(

L̃R(1)
(2)

)
values; (b) reliability plots; (c) ROC curves; and (d) ECE plots.

ECE plots (Figure 8d) fix these drawbacks of previous performance representations.
The performance of the set of LR values is computed for a wide range of prior log-odds (in the x-axis),
giving a prediction of system performance for a different variety of possible applications defined
by their prior probabilities. Moreover, the ECE curve is compared to the neutral curve (marked as
LR = 1 always), showing the range of prior log10-odds where the classifier is useless. In our example,
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Figure 8d shows that, for the PLDA model, the classifier will be better than doing nothing for all the
range of log-odds from ca. −0.75 onwards, corresponding to P (θ1) ≥ 0.15. However, it will be useless
below this value, and end-users can be recommended not to use it in those applications. ECE plots
also show that, after the application of a logistic regression stage, the classifier becomes much better
because the red, solid ECE curve dramatically reduces for all the range of prior log10-odds analyzed.
This means that the classifier will be informative for a wide range of applications. The latter is an
important property, since it shows that the classifier will be useful in practically any application.

ECE plots also show the decomposition between the discrimination and calibration losses in
a comparable way. The same ECEmin curves (blue, dashed) are equal in both sets of LR values,
indicating the same discrimination loss. However, the calibration loss is much higher before than after
logistic regression calibration. Nevertheless, logistic regression still presents some calibration loss,
explained by the dataset shift between the NIST SRE 2010 testing data, and the NIST SRE 2008 data
used to train the logistic regression stage. This further motivates better ways of training the logistic
regression calibration stage.

Finally, we give an example of interpretation of ECE: if we use the classifier yielding LR values by
PLDA + logistic regression, and the prior probability is P (θ1) = 0.6 for the given application (meaning
prior log10-odds of ca. 0.8), the ECE of the classifier in that case is ca. 0.13. We can argue the following:

• We need 0.13 bits to know the true value of the ground-truth label of a comparison (i.e., we use Po

as the reference).
• The best possible calibrated classifier needs 0.07 bits to know the true value of the ground-truth

label of a comparison. However, as our classifier is not so well calibrated, it will need 0.05 bits
more (i.e., we use Pcal as reference).

In both cases, the values in bits can be also interpreted as minimum number of bits needed to
describe the hypothesis variable Θ, according to information theory for data compression [29]. This
has the additional insight that the higher the ECE, the more costly it is to represent the truth about the
correct hypothesis, and the more information is needed to arrive at it.

6.2. Forensic Case Involving Glass Findings

In this section, two different models to compute likelihood ratios for glass findings are compared by
ECE plots. First, a classical approach based on a multivariate model is used, with normal assumptions
for the within-source variation of the features and a kernel density function used for the between-source
variation, and it will be denoted as the Multivariate Kernel (MVK) model [38]. On the other hand,
a model replacing the kernel density distribution with a Gaussian mixture is used, namely a Multivariate
Gaussian Mixture Model (MVGMM) model [39].

A public database of glass features is used as in [38] (the dataset can be downloaded from http:
//onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-9876/homepage/glass-data.txt (last accessed
on January 2018)). It contains features computed as log-ratios involving three combinations of chemical
elements measured on glass fragments (log(Ca/K), log(Ca/Si) and log(Ca/Fe)), using some analytical
chemistry technique. The dataset contains the measurements of five fragments for each of the 62
different glass objects in the database. The numbers of comparisons for each of the classes are
N1 = 3762 and N2 = 7564, which yields an empirical prior of N1

N1+N2
= 1

3 .
Figure 9 shows the performance of the likelihood ratios computed by MVK and MVGMM. We will

reason analogously as in the previous example in Section 6.1. The histograms in Figure 9a show that the

log
(

L̃R(1)
(2)

)
values computed by both forensic glass evaluation models are similar. They show a quite

asymmetric behavior, although the histograms for the MVGMM case are slightly more symmetric,
which in some sense indicates a slightly better calibration performance. This is also made evident in
the reliability plots in Figure 9b, where it is also seen that the calibration is quite defective in both cases.
ROC curves in Figure 9c show almost the same discrimination performance.

http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-9876/homepage/glass-data.txt
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-9876/homepage/glass-data.txt
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ECE plots are shown in Figure 9d. Here, it is clear that the MVK and MVGMM models have the
same discrimination loss, since the ECEmin curves (blue, dashed) are equal. Moreover, it is seen that
the calibration loss is also comparable in both approaches, since the ECEcal (difference between red
solid and blue dashed curves) is also comparable, although slightly better in the MVGMM approach.

(a)

(b) (c)

(d)

Figure 9. Performance of MVK and MVGMM glass evaluation models. (a) histograms of log
(

L̃R(1)
(2)

)
values; (b) reliability plots; (c) ROC curves; and (d) ECE plots.
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Here, we highlight an important fact. It can be seen that both the MVK and the MVGMM
classifiers have a performance worse than the neutral curve for some range of prior log10-odds, namely
lower than −2.5 for MVK and lower than −2.6 for MVGMM. These correspond to prior probabilities
respectively of P (θ1) ≤ 0.032 and P (θ1) ≤ 0.025. This means that, if the trier of fact assigns a prior
probability lower than those values, it is better that she or he does not make use of the report on glass
analysis given by the forensic examiner because it will be misleading. This is relevant in forensic
science because the forensic examiner will seldom know the prior probability assigned by the trier of
fact. However, she or he can, at least, warn the trier of fact about the range of prior probabilities where
the forensic report should not be considered. This property of ECE plots is definitely not given by any
of the other performance representations described in this article.

Information-theoretical interpretations can be also made as in the speaker verification example,
taking Po or Pcal as references. However, in this case, this is even more important because, in a forensic
case, end-users are typically not proficient in mathematics and statistics, and care should be taken in
order to explain the performance results if requested on trial (in any case, the authors discourage the
use of complex performance representations on trial given the difficulties of human beings in general
and triers of fact in particular to understand forensic statistics. A recent study about this can be found
in [40]).

7. Discussion

In our opinion, this article presents sound contributions for the general fields of pattern
recognition, data mining and machine learning. One of these contributions is showing the, typically
independent, sources of information affecting cross-entropy: prior knowledge and value of the
features (computed as a likelihood ratio). These are not typically taken into account by previous
approaches using cross-entropy in classifiers, such as in [3,5,6], where it is most common that the
empirical prior probability is used solely. Other related measures such as Confusion Entropy (CEN) or
Matthews Correlation Coefficient (MCC) [41,42] work with decision errors rather than probabilities,
which implies the selection of a threshold τ, and therefore they do not consider performance at different
prior probabilities either (moreover, in [42] it is not recommended to use CEN in two-class problems,
while ECE is perfectly suited to the task). However, the importance of this prior-dependent analysis is
highly relevant, since we should aim at classifiers computing LR values that can work properly for
very different prior probabilities and costs, as it has been shown critical in the described examples.

Another contribution of this article is the decomposition of cross-entropy into its discrimination
and calibration components. Not only can this significantly help system designers to focus on the
right problem, but it also theoretically justifies the use of invertible transformations of likelihood
ratios as in [3,5,13]. In forensics, this is currently a trend in many disciplines such as chemistry [43],
biometrics [14], or voice comparison [44,45], as well as in some more general classification problems
such as speaker verification [13]. One of the motivations of this article is precisely to foster the use of
these calibration approaches for any classifier with the help of ECE plots.

The interpretations provided in terms of information theory, thanks to the use of reference
probability distributions for the cross-entropy, are also an important contribution. As no true
probability can be invoked whatsoever as the reference probability to be compared in the cross-entropy
formulation, those reference probabilities should be carefully established in order to yield a useful
interpretation, as it happens with oracle and calibrated references.

We strongly believe that all these contributions of the present article will help scholars and system
designers in the pattern recognition, data mining and machine learning areas. We tried to provide
a better understanding of the importance and usefulness of cross-entropy, in order to take advantage
of its power as a performance measure in a deeper way by the use of ECE plots, and to increase its use
for improving modern artificial intelligence and facing new data mining challenges.
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