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Abstract: This paper proposes a class of covariance estimators based on information divergences in
heterogeneous environments. In particular, the problem of covariance estimation is reformulated on
the Riemannian manifold of Hermitian positive-definite (HPD) matrices. The means associated with
information divergences are derived and used as the estimators. Without resorting to the complete
knowledge of the probability distribution of the sample data, the geometry of the Riemannian
manifold of HPD matrices is considered in mean estimators. Moreover, the robustness of mean
estimators is analyzed using the influence function. Simulation results indicate the robustness and
superiority of an adaptive normalized matched filter with our proposed estimators compared with
the existing alternatives.

Keywords: information divergence; Riemannian manifold; covariance estimation; mean estimator;
heterogeneous clutter

1. Introduction

Covariance estimation plays an important role in adaptive signal processing, such as multichannel
signal processing [1,2], space-time adaptive processing (STAP) [3,4], and radar target detection.
Conventional covariance estimation methods, derived from the maximum-likelihood (ML) of the
clutter data, are based on the assumption that the clutter remains stationary and homogeneous during
the adaptation process. However, in real heterogeneous clutter, the number of the sample data where
the clutter is homogeneous is very limited, and the estimation performance is seriously degraded.
Therefore, it is necessary and important to improve the performance of estimated covariance in
heterogeneous clutter.

A commonly used strategy to ameliorate the performance of estimated covariance is to exploit
some a priori information about the clutter environment. For instance, the geographic information
is used for covariance estimation, and the performance of target detection with the estimator is
significant improved [5]. In [6], the authors employ the Bayesian method to perform the target
detection in interference environment, where the unknown covariance matrix is assumed to follow
a suitable probability model. In [7,8], a Bayesian framework is used together with the structural
information about the estimated covariance. In [9], a condition number upper-bound constraint is
imposed on the problem of covariance estimation to achieve a signal-to-noise ratio improvement.
Moreover, a symmetrically structured spectral density is constrained on the covariance estimation,
and these results show the superiority of the estimator [10]. These mentioned methods rely on the
knowledge of statistics characterization of the clutter data. However, the probability distribution of
the whole environment is difficult to obtain, and a mismatched distribution results in a remarkable
degradation of the estimation performance in heterogeneous clutter.
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Many covariance estimation algorithms derived from the geometry of matrix space, not resorting
to the statistical characterization of the sample data, are reported in the literature. For instance,
the Riemannian mean is used for monitoring the wake turbulence [11,12] and target detection in
HF and X-band radar [13]. In [14–16], Riemannian mean and median are employed for covariance
estimation in STAP, and results have shown that the projection algorithm with Riemannian mean can
yield significant performance gains. In [17,18], some geometric barycenter and medians are proposed
for radar training data selection in homogeneous environment. In recent times, we have explored
information divergence means and medians for target detection in non-Gaussian clutter [19–21].
Moreover, in image processing applications, Bhattacharyya mean and median are used for filtering
and clustering of diffusion tensor magnetic resonance image [22,23]. In [24], the Log-Euclidean mean,
together with the reproducing kernel Hilbert mapping, is used for texture recognition. These geometric
approaches have achieved good performances.

In this paper, a class of covariance estimators based on information divergences is proposed
in heterogeneous clutter. In particular, six means related to geometric measures are derived on the
Riemannian manifold of Hermitian positive-definite (HPD) matrices. These means do not rely on
the knowledge of statistics characterization of sample data, and the geometry of the matrix space is
considered. Moreover, the robustness of means is analyzed with injected outliers via the influence
function. Simulation results are given to validate the superiority of proposed estimators.

The rest of this paper is organized as follows. In Section 2, we reformulate the problem of
covariance estimation on the Riemannian manifold. In Section 3, the geometry of Riemannian manifold
of HPD matrices is presented, in particular, six distance measures are given on the Riemannian
manifold, and means associated with these measures are derived. The robustness of means is analyzed
via the influence function in Section 4. Then, we evaluate performances of an adaptive normalized
matched filter with geometric means as well as the normalized sample covariance matrix in Section 5.
Finally, conclusion is provided in Section 6.

Notation

Here is some notation for the descriptions of this article. A matrix A and a vector x are noted as
uppercase bold and lowercase bold, respectively. The conjugate transpose of matrix A is denoted as
AH. tr(A) is the trace of matrix A. |A| is the determinant of matrix A. I denotes the identity matrix.
Finally, E(.) denotes the statistical expectation.

2. Problem Reformulated on the Riemannian Manifold

A heterogeneous environment is considered for covariance estimation. For a set of K secondary
data {r1, . . . , rK}, the normalized sample covariance matrix (NSCM) R̂ based on the ML of probability
distribution of the sample data is estimated as,

R̂ =
1
K

K

∑
k=1

rkrH
k

1
N rH

k rk
=

1
K

K

∑
k=1

Rk,

Rk =
rkrH

k
1
N rH

k rk

(1)

where N is the dimension of the vector rk. rk, k = 1, . . . , K are modeled as a compound-Gaussian
random vector, and can be expressed as,

rk =
√

τkgk, k = 1, . . . , K (2)
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where τk is a nonnegative scalar random variable, and gk is a N-dimensional circularly
symmetric zero-mean vectors with an arbitrary joint statistical distribution and sharing the same
covariance matrix,

E[gkgH
k ] = Σ, k = 1, . . . , K (3)

It is clear from Equation (1) that the NSCM is the arithmetic mean of K auto-covariance matrices
Rk of rank one. Since the knowledge of probability distribution of the whole environment is difficult
to obtain in heterogeneous clutter, the performance of NSCM is severely degraded. Actually, these K
auto-covariance matrices lie in a non-linear Hermitian matrix space, as the sample data is complex.
It is well known that HPD matrices form a differentiable Riemannian manifold [25], that is the most
studied example of a manifold with non-positive curvature [26]. In order to facilitate the analysis,
the matrix Rk is transformed to the positive- definite matrix Pk using the following three ways:

(1) Pk is obtained by adding an identity matrix I, as Pk = Rk + I;

(2) A Toeplitz HPD matrix Tk is utilized. As in [13], Tk can be expressed as,

Tk =
[
rkrH

k

]
=


c0 c̄1 · · · c̄N−1

c1 c0 · · · c̄N−2
...

. . . . . .
...

cN−1 · · · c1 c0

 , ck = [ri r̄i+k] , 0 ≤ k ≤ N − 1, 0 ≤ i ≤ N − 1 (4)

where ck denotes the correlation coefficient of sample data, and c̄i is the complex conjugate of ci. ck can
be computed as,

ck =
1

N − k

N−1−k

∑
j=1

rj r̄j+k, 0 ≤ k ≤ N − 1 (5)

(3) The HPD matrix Sk is the solution of the optimization problem as follows [17],


min

Sk

∥∥rkrH
k /rH

k rk − Sk
∥∥2

Sk ≥ I
λmax(Sk)
λmin(Sk)

≤ κM

(6)

The optimal solution can be given by [17],

Sk = UkΛkUH
k

Λk = diag ([κMλk, λk, . . . , λk]) (7)

λk = max

(
1,
‖rk‖2κM

κ2
M + N − 1

)

where Uk is a unitary matrix of the eigenvectors of rkrH
k with the first eigenvector corresponding to the

eigenvalue ‖rk‖2. The κM is the condition number.
According to above transformations, we can obtain the HPD matrix. Then, the problem of

covariance estimation can be reformulated on the Riemannian manifold. In general, for a set of m
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scalar numbers x1, . . . , xm, the arithmetic mean is defined as the minimum of sum of squared distances
to the given point x,

x̄ =
1
m

m

∑
i=1

xi = arg min
x>0

m

∑
i=1
|x− xi|2 (8)

From Equation (8), we can understand the arithmetic mean from a geometric viewpoint. Similar
to Equation (8), for K HPD matrices P1, . . . , PK, the mean related to a measure can be defined as,

P̂ = arg min
P

1
K

K

∑
k=1

d2(P, Pk) (9)

where d(., .) denotes the measure. It is worth pointing out that the arithmetic mean Equation (1) is
obtained, when d is the Frobenius norm and Pk is replaced by Rk. The difference between the arithmetic
mean and the geometric mean is shown in Figure 1. As illustrated in Figure 1, the geometric median
is performed on the Riemannian manifold of HPD matrices with a non-Euclidean metric, whereas
the arithmetic mean is considered in the Euclidean space. The difference implies that the different
geometric structures are considered in these two estimators.

1P

2P
iP

+1iP
KP

P̂

2R R̂

Manifold

Euclidean 
space

Geometric mean

Arithmetic mean

1R

iR

1iR

KR

Figure 1. The geometric mean and the arithmetic mean.

3. The Geometry of Riemannian Manifold of HPD Matrices

In this Section, the fundamental mathematic knowledge related to this paper is presented. Firstly,
the Riemannian manifold of HPD matrices is introduced. Then, six distance measures are presented.
Finally, the means related to measures are derived.

3.1. The Riemannian Manifold of HPD Matrices

Let H(n) = {A|A = AH} denotes the space of n× n Hermitian matrix. For a Hermitian matrix
A, if the quadratic form xHAx > 0, ∀x ∈ C(n), then, A is an HPD matrix, where C(n) is the space
of n-dimensional complex vector. All n× n HPD matrices consist of a positive-definite Hermitian
matrix space P(n),

P(n) = {A|A > 0, A ∈ H(n)} (10)
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forms a Riemannian manifold of dimension n(n + 1)/2 with a constant non-positive curvature [26].
For a point A on the Riemannian manifold, the infinitesimal arclength between A and A + dA
is given by [27],

ds := (tr(A−1dA)2)1/2 = ‖A−1/2dAA−1/2‖F (11)

where ds defines a metric on the Riemannian manifold [27]. ‖.‖F is the Frobenius norm of a matrix.
The inner product and corresponding norm on the tangent space at the point A can be defined as [28],

〈P1, P2〉A = tr(A−1P1A−1P2), ‖P1‖A = 〈P1, P2〉1/2
A (12)

For two points P1 and P2 on the Riemannian manifold, the affine invariant (Riemannian) distance
is given by [29],

d2
R(P1, P2) = ‖logm(P−1/2

1 P2P−1/2
1 )‖2

F (13)

where logm is the logarithmic map on the Riemannian manifold of HPD matrices.

3.2. The Geometric Measure on the Riemannian Manifold

In addition to the Riemannian distance, a lot of distance or information divergences can be
used as the measurement on the Riemannian manifold. Here, five geometric measures are presented
in the following.

(1) Log-Euclidean distance

The Log-Euclidean distance is also a geodesic distance. It is defined on the tangent space at a point
on the Riemannian manifold, which is isomorphic and diffeomorphic to the tangent space identified
with a Hermitian matrix space. For two points P1 and P2, the Log-Euclidean distance dLE(P1, P2) is
given by [30],

dLE(P1, P2) = ‖logm(P1)− logm(P2)‖F (14)

(2) Hellinger distance

The Hellinger distance is a special case of the α-divergence with α = 0. Given two points P1 and
P2, the Hellinger distance dH(P1, P2) is [31],

dH(P1, P2) =

√√√√√2− 2
|P1|1/4 |P2|1/4∣∣∣ 1
2 (P1 + P2)

∣∣∣1/2 (15)

(3) Kullback-Leibler divergence

It is well known that the Kullback-Leibler (KL) divergence is the most widely used measure on
the Riemannian manifold. The KL divergence is also a special case of the α-divergence with α = ±1.
In addition, the KL divergence is called the Stein loss or the log-determinant divergence. The KL
divergence dKL(P1, P2) between two points P1 and P2 can be given by [32],

dKL(P1, P2) = tr(P−1
2 P1 − I)− log |P−1

2 P1| (16)
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(4) Bhattacharyya distance

The Bhattacharyya distance is a common used measure, and has been used in medical image
segmentation [22]. In particular, the Bhattacharyya distance is a Jensen version of the KL divergence.
For two points P1 and P2, the Bhattacharyya distance dB(P1, P2) can be given by,

dB(P1, P2) = 2

√√√√
log

∣∣∣ P1+P2
2

∣∣∣√
|P1| |P2|

(17)

(5) Symmetrized Kullback-Leibler divergence

The symmetrized Kullback-Leibler (SKL) divergence is a Jeffreys divergence [33]. It behaves as
the square of a distance; however, it is not a distance, as the triangle inequality does not hold. Given
two points P1 and P2, the SKL dSKL(P1, P2) between them is,

dSKL(P1, P2) =
1
2
{dKL(P1, P2) + dKL(P2, P1)} =

1
2

tr(P−1
2 P1 + P−1

1 P2 − 2I) (18)

3.3. The Geometric Mean for A Set of HPD Matrices

In this Section, the means related to the above mentioned six measures are derived using the
fix-point algorithm. This work has been done in our previous article [19]. In the following, six means
are presented in Table 1.

Table 1. Geometric means related to different measures.

Geometric Measure Mean

Riemannian P̄t+1 = P̄
1/2

t exp
{

εt

(
K
∑

k=1
log
(

P̄
−1/2

t PkP̄
−1/2

t

))}
P̄

1/2

t

Log-Euclidean P̄ = exp( 1
K ∑K

i=1 log(Pi))

Hellinger P̄t+1 =

 K
∑

i=1
|P̄t |1/4 |Pi |1/4 | 1

2 (P̄t+Pi)|−1/2
( 1

2 (P̄t+Pi))
−1(

K
∑

i=1
|P̄t |1/4 |Pi |1/4 | 1

2 (P̄t+Pi)|−1/2
)

−1

KL P̄ =

(
1
K

K
∑

i=1
P−1

i

)−1

Bhattacharyya P̄t+1 =

(
1
K

K
∑

i=1

(
P̄t+Pi

2

)−1
)−1

SKL P̄ =

((
1
K

K
∑

i=1
Pi

)(
1
K

K
∑

k=1
P−1

k

)−1)1/2

Where t is the number of iteration, and εt is is the step size of iteration.

4. Robustness Analysis of Geometric Means

This section is devoted to analyzing the robustness of geometric means via the influence function.
Let P̄ be the mean, associated with a measure, of m HPD matrices {P1, . . . , Pm}. P̃ is the mean
by adding a set of n outliers {Q . . . ..., Qn} with a weight ε(ε � 1) to {. . .1, ..., Pm}. Then, we can
define P̃ = P̄ + εH(Q), H(Q) denotes the influence function. In the following, seven propositions
are presented.

Proposition 1. The influence function of arithmetic mean related to the Frobenius norm, of m HPD matrices
{P1, . . . , Pm} and n outliers {Q . . . ..., Qn} is given by,

H(Q) =
1
n

n

∑
i=1

Qi − P̄ (19)
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Proof of Proposition 1. Let F(P) be the objection function,

F(P) = (1− ε)
1
m

m

∑
i=1
‖P− Pi‖2

F + ε
1
n

n

∑
j=1
‖P−Qj‖2

F (20)

The derivative of objection function F(P) is,

∇F(P) = (1− ε)
1
m

m

∑
i=1

2(P− Pi) + ε
1
n

n

∑
j=1

2(P−Qj) (21)

Note that P̃ is the mean of m matrices and n outliers, and P̄ is the mean of m matrices,
then, we have,

P̃ = arg min
P

F(P)

⇒∇F(P̃) = (1− ε)
1
m

m

∑
i=1

2(P̃− Pi) + ε
1
n

n

∑
j=1

2(P̃−Qj) = 0
(22)

and

P̄ = arg min
P

G(P), G(P) =
1
m

m

∑
i=1
‖P− Pi‖2

F

⇒∇F(P̄) =
1
m

m

∑
i=1

2(P̄− Pi) = 0
(23)

Substitute P̃ = P̄ + εH(Q) into Equation (22), and we have

2(1− ε)
1
m

m

∑
i=1

(P̄ + εH(Q)− Pi) + 2ε
1
n

n

∑
j=1

(P̄ + εH(Q)−Qj) = 0

⇒(1− ε)
1
m

m

∑
i=1

(P̄− Pi) + (1− ε)εH(Q) + ε
1
n

n

∑
j=1

(P̄ + εH(Q)−Qj) = 0

⇒εH(Q)− ε2H(Q) + ε
1
n

n

∑
j=1

(P̄−Qj) + ε2H(Q) = 0

⇒H(Q) =
1
n

n

∑
j=1

(Qj − P̄)

(24)

Proposition 2. The influence function of Riemannian mean related to the Riemannian distance, of m HPD
matrices {P1, . . . , Pm} and n outliers {Q . . . ..., Qn} is given by,

H(Q) = − 1
n

n

∑
j=1

log(Q−1
j P̄)P̄ (25)

Proof of Proposition 2. Let F(P) be the objection function,

F(P) = (1− ε)
1
m

m

∑
i=1
‖ log(P−1

i P)‖2
F + ε

1
n

n

∑
j=1
‖ log(Q−1

j P)‖2
F (26)
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As P̃ is the mean of m matrices and n outliers, and P̄ is the mean of m matrices, then, we have,

P̃ = arg min
P

F(P)

⇒∇F(P̃) = 2(1− ε)
1
m

m

∑
i=1

log(P−1
i P̃)P̃−1 + 2ε

1
n

n

∑
j=1

log(Q−1
j P̃)P̃−1 = 0 (27)

⇒(1− ε)
1
m

m

∑
i=1

log(P−1
i P̃) + ε

1
n

n

∑
j=1

log(Q−1
j P̃) = 0

and

P̄ = arg min
P

G(P), G(P) =
1
m

m

∑
i=1
‖ log(P−1

i P)‖2
F

⇒∇G(P̄) =
1
m

m

∑
i=1

2 log(P−1
i P̄))P̄−1 = 0⇒ 1

m

m

∑
i=1

log(P−1
i P̄)) = 0

(28)

Using the Taylor expansion on P̃ = P̄ + εH(Q), and we have

log(P−1
i P̃) = log(P−1

i P̄) + εH(Q)P−1
i (P−1

i P̄)
−1

= log(P−1
i P̄) + εH(Q)P̄−1

log(Q−1
j P̃) = log(Q−1

j P̄) + εH(Q)Q−1
j (Q−1

j P̄)
−1

= log(Q−1
j P̄) + εH(Q)P̄−1

(29)

Substitute Equations (28) and (29) into Equation (27), and we have

(1− ε)
1
m

m

∑
i=1

(log(P−1
i P̄) + εH(Q)P̄−1) + ε

1
n

n

∑
j=1

(log(Q−1
j P̄) + εH(Q)P̄−1) = 0

⇒(1− ε)
1
m

m

∑
i=1

log(P−1
i P̄) + (1− ε)εH(Q)P̄−1 + ε

1
n

n

∑
j=1

log(Q−1
j P̄) + ε2H(Q)P̄−1 = 0 (30)

⇒(1− ε)εH(Q)P̄−1 + ε
1
n

n

∑
j=1

log(Q−1
j P̄) + ε2H(Q)P̄−1 = 0

Ignore the terms contain ε2 for the constant ε� 1, and we can obtain,

εH(Q)P̄−1 + ε
1
n

n

∑
j=1

log(Q−1
j P̄) = 0

⇒H(Q) = − 1
n

n

∑
j=1

log(Q−1
j P̄)P̄

(31)

Proposition 3. The influence function of Log-Euclidean mean related to the Log-Euclidean distance, of m HPD
matrices {P1, . . . , Pm} and n outliers {Q . . . ..., Qn} is given by,

H(Q) =
1
n

n

∑
j=1

(log(Qj)− log(P̄))P̄ (32)

Proof of Proposition 3. Let F(P) be the objection function,

F(P) = (1− ε)
1
m

m

∑
i=1
‖ log(P)− log(Pi)‖2

F + ε
1
n

n

∑
j=1
‖ log(P)− log(Qj)‖2

F (33)
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Note that P̃ is the mean of m matrices and n outliers, and P̄ is the mean of m matrices,
then, we have,

P̃ = arg min
P

F(P)

⇒(1− ε)
1
m

m

∑
i=1

2(log(P̃)− log(Pi)P̃−1 + ε
1
n

n

∑
j=1

2(log(P̃)− log(Qj)P̃−1 = 0 (34)

⇒(1− ε)
1
m

m

∑
i=1

(log(P̃)− log(Pi) + ε
1
n

n

∑
j=1

(log(P̃)− log(Qj) = 0

and

P̄ = arg min
P

G(P), G(P) =
1
m

m

∑
i=1
‖ log(P̄)− log(Pi)‖2

F

⇒∇G(P) =
1
m

m

∑
i=1

2(log(P̄)− log(Pi))P̄−1 = 0 (35)

⇒∇G(P) =
1
m

m

∑
i=1

(log(P̄)− log(Pi)) = 0

Using the Taylor expansion on P̃ = P̄ + εH(Q), and we have

log(P̃) = log(P̄) + εH(Q)P̄−1 (36)

Substitute Equations (35) and (36) into Equation (34), and ignore the terms contain ε2,

(1− ε)
1
m

m

∑
i=1

(log(P̄) + εH(Q)P̄−1 − log(Pi) + ε
1
n

n

∑
j=1

(log(P̄) + εH(Q)P̄−1 − log(Qj) = 0

⇒(1− ε)
1
m

m

∑
i=1

(log(P̄)− log(Pi) + (1− ε)εH(Q)P̄−1 + ε
1
n

n

∑
j=1

(log(P̄)− log(Qj) + ε2H(Q)P̄−1 = 0

⇒εH(Q)P̄−1 + ε
1
n

n

∑
j=1

(log(P̄)− log(Qj) = 0

⇒H(Q) =
1
n

n

∑
j=1

(log(Qj − log(P̄))P̄

(37)

Proposition 4. The influence function of Hellinger mean related to the Hellinger distance, of m HPD matrices
{P1, . . . , Pm} and n outliers {Q . . . ..., Qn} is given by,

H(Q) ={ 1
n

n

∑
j=1
|Qj|1/4 |

P̄ + Qj

2
|
−1/2

((
P̄ + Qj

2
)

−1

− P̄−1)}

×{ 1
m

n

∑
i=1
|Pi|1/4 | P̄ + Pi

2
|
−1/2

(P̄−1 − 1
2
(

P̄ + Pi
2

)
−1

)

2

}
−1 (38)
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Proof of Proposition 4. Let F(P) be the objection function,

F(P) = (1− ε)
1
m

m

∑
i=1

(1− |P|1/4 |Pi|1/4 |P + Pi
2
|
−1/2

) + ε
1
n

n

∑
j=1

(1− |P|1/4 |Qj|1/4 |
P + Qj

2
|
−1/2

) (39)

Note that P̃ is the mean of m matrices and n outliers, and P̄ is the mean of m matrices,
then, we have,

P̃ = arg min
P

F(P),∇F
(
P̃
)
= 0

⇒ − (1− ε)
1
m

m

∑
i=1

(
1
4

∣∣P̃∣∣1/4 |Pi|1/4
∣∣∣∣ P̃ + Pi

2

∣∣∣∣−1/2

P̃−1 − 1
4

∣∣P̃∣∣1/4 |Pi|1/4
∣∣∣∣ P̃ + Pi

2

∣∣∣∣−1/2 ( P̃ + Pi
2

)−1)

−ε
1
n

n

∑
j=1

1
4

∣∣P̃∣∣1/4 ∣∣Qj
∣∣1/4

∣∣∣∣∣ P̃ + Qj

2

∣∣∣∣∣
−1/2

P̃−1 − 1
4

∣∣P̃∣∣1/4 ∣∣Qj
∣∣1/4

∣∣∣∣∣ P̃ + Qj

2

∣∣∣∣∣
−1/2 (

P̃ + Qj

2

)−1
 = 0

⇒ (1− ε)
1
m

m

∑
i=1

(
|Pi|1/4

∣∣∣∣ P̃ + Pi
2

∣∣∣∣−1/2

P̃−1 − |Pi|1/4
∣∣∣∣ P̃ + Pi

2

∣∣∣∣−1/2 ( P̃ + Pi
2

)−1)

+ε
1
n

n

∑
j=1

∣∣Qj
∣∣1/4

∣∣∣∣∣ P̃ + Qj

2

∣∣∣∣∣
−1/2

P̃−1 −
∣∣Qj
∣∣1/4

∣∣∣∣∣ P̃ + Qj

2

∣∣∣∣∣
−1/2 (

P̃ + Qj

2

)−1
 = 0

(40)

and

P̄ = arg min
P

G(P), G(P) =
1
m

m

∑
i=1

(
1− |P|1/4 |Pi|1/4

∣∣∣∣P + Pi
2

∣∣∣∣−1/2
)

⇒∇G(P̄) =
1
m

m

∑
i=1

(
1
4
|P̄|1/4 |Pi|1/4

∣∣∣∣ P̄ + Pi
2

∣∣∣∣−1/2

P̄−1 − 1
4
|P̄|1/4 |Pi|1/4

∣∣∣∣ P̄ + Pi
2

∣∣∣∣−1/2 ( P̄ + Pi
2

)−1
)

= 0

⇒ 1
m

m

∑
i=1

(
|Pi|1/4

∣∣∣∣ P̄ + Pi
2

∣∣∣∣−1/2

P̄−1 − |Pi|1/4
∣∣∣∣ P̄ + Pi

2

∣∣∣∣−1/2 ( P̄ + Pi
2

)−1
)

= 0

(41)

Using the Taylor expansion on P̃ = P̄ + εH(Q), and we have

∣∣∣∣ P̃ + Pi
2

∣∣∣∣−1/2

=

∣∣∣∣ P̄ + Pi
2

∣∣∣∣−1/2

− 1
4

εH (Q)

∣∣∣∣ P̄ + Pi
2

∣∣∣∣−1/2 ( P̄ + Pi
2

)−1

P̃−1 = P̄−1 − εH (Q) P̄−2 (42)(
P̃ + Pi

2

)−1

=

(
P̄ + Pi

2

)−1

− 1
2

εH (Q)

(
P̄ + Pi

2

)−2
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Substitute Equations (41) and (42) into Equation (40), and ignore the terms contain ε2,

(1− ε)
1
m

m

∑
i=1

(|Pi|1/4(|1
2
(P̄ + Pi)|−1/2 − 1

4
εH(Q)|1

2
(P̄ + Pi)|−1/2(

1
2
(P̄ + Pi))

−1)

×(P̄−1 − εH(Q)P̄−2 − (
1
2
(P̄ + Pi))

−1 +
1
2

εH(Q)(
1
2
(P̄ + Pi))

−2))

+ε
1
n

n

∑
j=1

(|Qj|1/4(|1
2
(P̄ + Qj)|−1/2 − 1

4
εH(Q)|1

2
(P̄ + Qj)|−1/2(

1
2
(P̄ + Qj))

−1)

×(P̄−1 − εH(Q)P̄−2 − (
1
2
(P̄ + Qj))

−1 +
1
2

εH(Q)(
1
2
(P̄ + Qj))

−2)) = 0

⇒εH (Q)
1
m

m

∑
i=1
|Pi|1/4

∣∣∣∣ P̄ + Pi
2

∣∣∣∣−1/2
(

P̄−1 − 1
2

(
P̄ + Pi

2

)−1
)2

=ε
1
n

n

∑
j=1

∣∣Qj
∣∣1/4

∣∣∣∣∣ P̄ + Qj

2

∣∣∣∣∣
−1/2

( P̄ + Qj

2

)−1

− P̄−1


⇒ H(Q) ={ 1

n

n

∑
j=1
|Qj|1/4 |

P̄ + Qj

2
|
−1/2

((
P̄ + Qj

2
)

−1

− P̄−1)}

×{ 1
m

n

∑
i=1
|Pi|1/4 | P̄ + Pi

2
|
−1/2

(P̄−1 − 1
2
(

P̄ + Pi
2

)
−1

)

2

}
−1

(43)

Proposition 5. The influence function of KL mean related to the KL divergence, of m HPD matrices
{P1, . . . , Pm} and n outliers {Q . . . ..., Qn} is given by,

H(Q) = P̄− 1
n

n

∑
j=1

Q−1
j P̄2 (44)

Proof of Proposition 5. Let F(P) be the objection function,

F(P) = (1− ε)
1
m

m

∑
i=1

tr(P−1
i P− log(P−1

i P)− I) + ε
1
n

n

∑
j=1

tr(Q−1
j P− log(Q−1

j P)− I) (45)

As P̃ is the mean of m matrices and n outliers, and P̄ is the mean of m matrices, then, we have,

P̃ = arg min
P

F(P),∇F(P̃) = 0

⇒(1− ε)
1
m

m

∑
i=1

(P−1
i − P̃−1) + ε

1
n

n

∑
j=1

(Q−1
j − P̃−1) = 0

(46)

and

P̄ = arg min
P

G(P), G(P) =
1
m

m

∑
i=1

tr(P−1
i P− log(P−1

i P)− I)

⇒∇G(P̄) = 0⇒ 1
m

m

∑
i=1

(P−1
i − P̄−1) = 0

(47)

Using the Taylor expansion on P̃ = P̄ + εH(Q), and we have,

P̃−1 = P̄−1 − εH(Q)P̄−2 (48)
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Substitute Equations (47) and (48) into Equation (46), and ignore the terms contain ε2,

(1− ε)
1
m

m

∑
i=1

(P−1
i − P̄−1 + εH(Q)P̄−2) + ε

1
n

n

∑
j=1

(Q−1
j − P̄−1 + εH(Q)P̄−2) = 0

⇒(1− ε)εH(Q)P̄−2 + ε
1
n

n

∑
j=1

(Q−1
j − P̄−1) = 0

⇒H(Q)P̄−2 =
1
n

n

∑
j=1

(P̄−1 −Q−1
j )

⇒H(Q) = P̄− 1
n

n

∑
j=1

Q−1
j P̄2

(49)

Proposition 6. The influence function of Bhattacharyya mean related to the Bhattacharyya divergence, of m
HPD matrices {P1, . . . , Pm} and n outliers {Q . . . ..., Qn} is given by,

H (Q) =

 1
n

n

∑
j=1

P̄−1 −
(

P̄ + Qj

2

)−1


{
1
m

m

∑
i=1

(
P̄−2 − 1

2

(
P̄ + Pi

2

)−2
)}−1

(50)

Proof of Proposition 6. Let F(P) be the objection function,

F(P) = (1− ε) 1
m

m
∑

i=1
4
(

log
∣∣∣ P+Pi

2

∣∣∣− 1
2 log |P| |Pi|

)
+ ε 1

n

n
∑

j=1
4
(

log
∣∣∣ P+Qj

2

∣∣∣− 1
2 log |P|

∣∣Qj
∣∣) (51)

Note that P̃ is the mean of m matrices and n outliers, and P̄ is the mean of m matrices,
then, we have,

P̃ = arg min
P

F(P),∇F(P̃) = 0

⇒ (1− ε)
1
m

m

∑
i=1

4

((
P̃ + Pi

2

)−1

− P̃−1

)
+ ε

1
n

n

∑
j=1

4

( P̃ + Qj

2

)−1

− P̃−1

 = 0
(52)

and

P̄ = arg min
P

G(P), G(P) =
1
m

m

∑
i=1

4(log |P + Pi
2
| − 1

2
log |P||Pi|)

⇒ 1
m

m

∑
i=1

4((
P̄ + Pi

2
)
−1

− P̄−1) = 0

(53)

Using the Taylor expansion on P̃ = P̄ + εH(Q), and we have,

(
P̃ + Pi

2

)−1

=

(
P̄ + Pi

2

)−1

− 1
2

εH (Q)

(
P̄ + Pi

2

)−2

(
P̃ + Qj

2

)−1

=

(
P̄ + Qj

2

)−1

− 1
2

εH (Q)

(
P̄ + Qj

2

)−2

(54)

P̃−1 = P̄−1 − εH (Q) P̄−2
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Substitute Equations (53) and (54) into Equation (52), and ignore the terms contain ε2,

(1− ε)
1
m

m

∑
i=1

((
P̄ + Pi

2

)−1

− 1
2

Hz (Q)

(
P̄ + Pi

2

)−2

− P̄−1 + Hz (Q) P̄−2

)

+ε
1
n

n

∑
j=1

( P̄ + Qj

2

)−1

− 1
2

Hz (Q)

(
P̄ + Qj

2

)−2

− P̄−1 + Hz (Q) P̄−2

 = 0

⇒ 1
m

m

∑
i=1

(
εH (Q) P̄−2 − 1

2
εH (Q)

(
P̄ + Pi

2

)−2
)
+ ε

1
n

n

∑
j=1

( P̄ + Qj

2

)−1

− P̄−1

 = 0

⇒H (Q)
1
m

m

∑
i=1

(
P̄−2 − 1

2

(
P̄ + Pi

2

)−2
)

=
1
n

n

∑
j=1

P̄−1 −
(

P̄ + Qj

2

)−1


⇒H (Q) =

 1
n

n

∑
j=1

P̄−1 −
(

P̄ + Qj

2

)−1


{
1
m

m

∑
i=1

(
P̄−2 − 1

2

(
P̄ + Pi

2

)−2
)}−1

(55)

Proposition 7. The influence function of SKL mean related to the SKL divergence, of m HPD matrices
{P1, . . . , Pm} and n outliers {Q . . . ..., Qn} is given by,

H (Q) =

(
2
m

m

∑
i=1

Pi

)−1(
1
n

n

∑
j=1

(
P̄Qj −Q−1

j P̄3
))

(56)

Proof of Proposition 7. Let F(P) be the objection function,

F(P) = (1− ε)
1
m

m

∑
i=1

tr
(

P−1
i P + P−1Pi − 2I

)
+ ε

1
n

n

∑
j=1

tr
(

Q−1
j P + P−1Qj − 2I

)
(57)

Note that P̃ is the mean of m matrices and n outliers, and P̄ is the mean of m matrices,
then, we have,

P̃ = arg min
P

F(P),∇F(P̃) = 0

⇒ (1− ε)
1
m

m

∑
i=1

(
P−1

i − P̃−2Pi

)
+ ε

1
n

n

∑
j=1

(
Q−1

j − P̃−2Qj

)
= 0

(58)

and

P̄ = arg min
P

G(P), G(P) =
1
m

m

∑
i=1

tr
(

P−1
i P + P−1Pi − 2I

)
⇒ 1

m

m

∑
i=1

(
P−1

i − P̄−2Pi

)
= 0

(59)

Using the Taylor expansion on P̃ = P̄ + εH(Q), and we have,

P̃−2 = P̄−2 − 2εH (Q) P̄−3 (60)
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Substitute Equations (59) and (60) into Equation (58), and ignore the terms contain ε2,

(1− ε)
1
m

m

∑
i=1

(
P−1

i −
(

P̄−2 − 2εH (Q) P̄−3
)

Pi

)
+ ε

1
n

n

∑
j=1

(
Q−1

j −
(

P̄−2 − 2εH (Q) P̄−3
)

Qj

)
= 0

⇒ 1
m

m

∑
i=1

(
2εH (Q) P̄−3Pi

)
+ ε

1
n

n

∑
j=1

(
Q−1

j − P̄−2Qj

)
= 0

⇒H (Q) =

(
2
m

m

∑
i=1

Pi

)−1(
1
n

n

∑
j=1

(
P̄Qj −Q−1

j P̄3
))

(61)

5. Numerical Simulations

In order to gain a better understanding of the superiority of proposed estimators, simulation
results of the performance of an ANMF with the proposed estimator in heterogeneous clutter are
presented. As there is not an analytical expression for the detection threshold, the standard Monte
Carlo technique [34] is utilized. A similar approach was recently used to solve several problems
from different areas, such as physics [35], decision theory [36], engineering [37], computational
geometry [38], finance [39], etc. The rule of adaptive normalized matched filter (ANMF) is given
as [40],

sHΣ̂−1r
(sHΣ̂−1s)(rHΣ̂−1r)

H1
≷
H0

γ (62)

where Σ̂ is the clutter covariance estimation. r is the sample data in the cell under test. γ denotes the
threshold, which is derived by Monte Carlo method in order to maintain the false alarm constant. s is
the target steering vector, and is given by,

s =
1√
N
[1, exp (j2π fd) , . . . , exp (j2π (N − 1) fd)]

T (63)

where fd is the normalized Doppler frequency. According to Equation (2), the terms rk, k = 1, . . . , K are
compound-Gaussian random vectors, and sharing the same covariance matrix Σ,

Σ = Σ0 + I (64)

where I is accounting for the thermal noise. Σ0 is related to the clutter, modeled as,

Σ0 (i,k) = σ2
c ρ|i–k|ej2π fdc(i–k), i,k = 1, . . . N (65)

where ρ is the one-lag correlation coefficient. σc is the clutter-to-noise power ratio. fdc is the clutter
normalized Doppler frequency.

In addition, τ and τk are positive and real independent and identical distributed random variables,
and are assumed to follow the inverse gamma distribution,

f (x)=
βα

Γ (α)
x–α–1 exp

(
–

β

x

)
,x ≥ 0 (66)

where α and β denote the shape and scale parameters, respectively. Γ (·) is the gamma function. In the
simulation, we set ρ = 0.9, fdc = 0.1, and σ2

c = 25 dB. The parameters α = 3, and β = 1.
In the following, we analyze the performance of an ANMF with the proposed estimators, in terms

of detection probability (Pd), also in comparison with the optimum detector, which assumes the
perfect knowledge of the disturbance covariance matrix, NMF. In particular, the positive-definite



Entropy 2018, 20, 219 15 of 20

matrix obtained using (1), (2), and (3) is noted as the SPDF, THPD, and SPD matrix, respectively.
Simulation results are shown in Figure 2 with N = 8, Pf a = 10−4, it is clear that the proposed
estimators have different performances, and all the proposed estimators have better performances
than the NSCM estimator when K = 10 and K = 16. In particular, our proposed estimators have
different performance when different positive-definite matrix is utilized. For the SPDF positive-definite
matrix, the Bhat estimator, the Hel estimator, and the KL estimator have comparable performances,
and outperform others. The SKL estimator has the worst performance, while the KL estimator has the
best performance. However, this relationship is different on the condition of the THPD positive-definite
matrix. Particularly, performances of the KL estimator and the SKL estimator are poor. Performances
of the other proposed estimators are close to the optimum. For the SPD positive-definite matrix,
relationships of proposed estimators are similar to the case of SPDF positive-definite matrix. The KL
estimator has the best performance, while the performance of SKL estimator is the worst. In addition,
the performance of Hel estimator is poor. These results imply that performances of proposed estimators
are related to the used positive-definite matrix.
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Figure 2. Pd versus SCR plots of ANMFs with proposed estimators, the NSCM estimator, and NMF.
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In order to show the influence function of robustness of proposed estimators, 17 positive-definite
matrices with an injected outlier are considered. The value of influence function is computed as
Propositions 1–7, and 100 times simulations are repeated. A total of 100 simulation results and the
average of values of influence function are shown in Figure 3. From Figure 3 we can know that
our proposed estimators are more robust than the NSCM estimator. In particular, the robustness
of SKL estimator is poor, while the KL estimator has the best robustness when the SPDF or THPD
positive-definite matrix is utilized. For the SPD positive-definite matrix, all proposed estimators have
comparable robustness. It can be concluded that the robustness of proposed estimators is related to the
used positive-definite matrix. It is worth pointing out that the three HPD matrices, namely the SPDF,
THPD, and SPD matrix, have different structures. Both the SPDF and the SPD matrices have a largest
eigenvalue and N − 1 equal eigenvalues. Their differences lie in the multiple between the maximum
eigenvalue and the minimum eigenvalue. In particular, this multiple of the SPD matrix is the constant
number κM, while the SPDF matrix has a varied multiple. For the THPD matrix, all eigenvalues
are different. Riemannian manifolds composed of different positive-definite matrices have different
geometric structures. Thus, the estimators associated with different metrics on Riemannian manifold
may have different behaviors.

Figure 4 plots the Pd of the ANMF with our proposed estimators, the NSCM estimator, and the
NMF detector in a contaminated clutter. An outlier is injected in one reference cell, the number of
reference cell K is set to 10 and 16, respectively. The dimension of the sample data is 8. It can be noted
from Figure 4 that performances of our proposed estimators have not been significantly reduced, while
there is a degradation in the performance of the NSCM estimator. Relationships of performances are
similar to curves of Figure 2. These results prove the advantage of our proposed estimators sufficiently.
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Figure 3. The error value of proposed estimators and their corresponding mean vlaue.
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Figure 4. Pd versus SCR plots of ANMFs with proposed estimators, the NSCM estimator, and NMF in
a contaminated environment.
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6. Conclusions

In this paper, a class of covariance estimators based on information divergences is proposed in
heterogeneous clutter. Particularly, the problem of disturbance covariance estimation is reformulated
as obtaining the geometric mean on the Riemannian manifold. Six mean estimators related to
information measures are derived. Moreover, the robustness of proposed estimators are analyzed via
the influence function, and the analytic expression of influence function is deduced. At the analysis
stage, the performance advantage and robustness of our proposed estimators are verified by means of
simulation results in heterogeneous environment.
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