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Abstract: A new way of orthogonalizing ensembles of vectors by “lifting” them to higher dimensions
is introduced. This method can potentially be utilized for solving quantum decision and computing
problems.
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The celebrated Gram–Schmidt algorithm allows the construction of a system of orthonormal
vectors from an (ordered) system of linearly independent vectors. Let us mention that there exist a wide
variety of proposals to “generalize” the Gram–Schmidt process [1] serving many different purposes.
In contrast to these generalizations, we construct a system of orthogonal vectors from an (ordered)
system of arbitrary vectors, which may be linearly dependent. (Even repeated vectors are allowed.)
This task is accomplished by what will be called “dimensional lifting”.

Some quantum computation tasks require the orthogonalization of previously non-orthogonal
vectors. This might be best understood in terms of mutually exclusive outcomes of generalized beam
splitter experiments, where the entire array of output ports corresponds to an ensemble of mutually
orthogonal subspaces, or, equivalently, mutually orthogonal perpendicular projection operators [2].

Of course, by definition (we may define a unitary transformation in a complex Hilbert space
by the requirement that it preserves the scalar product [3] (§ 73)), any transformation or mapping of
non-orthogonal vectors into mutually orthogonal ones will be non-unitary. However, we may resort to
requiring that some sort of angles or distances (e.g., in the original Hilbert space) remain unchanged.

Suppose, for the sake of demonstration, two non-orthogonal vectors, and suppose further that
somehow one could “orthogonalize” them while at the same time retaining structural elements, such as
the angles between projections of the new, mutually orthogonal vectors onto the subspace spanned by
the original vectors. For instance, the two non-orthogonal vectors could be transformed into vectors of
some higher-dimensional Hilbert space satisfying the following properties with respect to the original
vectors: (i) the new vectors are orthogonal, and (ii) the orthogonal projection along the new, extra
dimension(s) of the two vectors render the original vectors. A straightforward three-dimensional
construction with the desired outcome can be given as follows: suppose the original vectors are
unit vectors denoted by |e1〉 and |e2〉; and 0 < |〈e1|e2〉| < 1. Suppose further a two-dimensional
coordinate frame in which |e1〉 and |e2〉 are planar; thus, we can write in terms of some orthonormal
basis |e1〉 =

(
x1,1, x1,2

)
as well as |e2〉 =

(
x2,1, x2,2

)
. Suppose we “enlarge” the vector space to include

an additional dimension, and suppose a Cartesian basis system in that greater space that includes
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the two vectors of the old basis (and an additional unit vector that is orthogonal with respect to the
original plane spanned by the original basis vectors).

Ad hoc, it is rather intuitive how two (not necessarily unit) vectors can be found that project onto
the original vectors, and which are orthogonal: “create” a three-dimensional vector space with one
extra dimension, assign a non-zero extra coordinate (such as 1) associated with this dimension for the
first vector, and use the extra coordinate of the second vector for compensating any nonzero value of
the scalar product of the two original vectors— in particular, whose coordinates with respect to the
new basis are

|f1〉 =
(

x1,1, x1,2, 1
)

,

|f2〉 =
(

x2,1, x2,2,− (x1,1x2,1 + x1,2x2,2)
)

,
(1)

which are orthogonal by construction.
It is not too difficult to find explicit constructions for the more general case of k vectors

|e1〉, . . . , |ek〉 in Rn (cf. Ref. [2] for a rather inefficient method).
In the following, for the sake of construction, we shall embed Rn into Rn+k, such that we fill all

additional vector coordinates of |e1〉, . . . |ek〉 with zeroes. For the new, mutually orthogonal, vectors
we make the following Ansatz by defining

|f1〉 =
(

e1, 1, 0, . . . , 0
)

,

|f2〉 =
(

e2, x2,1, 1, 0, . . . , 0
)

,

. . .

|fk〉 =
(

ek, xk,1, xk,2, . . . , xk,k−1, 1
)

,

(2)

with yet to be determined coordinates xi,j. (The symbols ei stand for all the n coordinates of |e1〉.)
The unit coordinates 1 ensure that the new vectors are linearly independent. By construction,

the orthogonal projection of |fi〉 onto Rn renders |ei〉 for all 1 ≤ i ≤ k.
What remains is the recursive determination of the unknown coordinates xi,j. Note that all |fj〉

must satisfy the following relations: for j > 1, orthogonality demands that 〈f1|fj〉 = 0, and therefore
〈e1|ej〉+ 1 · xj,1 = 0, and therefore

xj,1 = −〈e1|ej〉. (3)

In this way, all unknown coordinates x2,1, . . . , xk,1 can be determined.
Similar constructions yield the remaining unknown coordinates in |f2〉, . . . , |fk〉. For j > 2,

〈f2|fj〉 = 0, and therefore 〈e2|ej〉+ x2,1xj,1 + xj,2 = 0, yielding

xj,2 = −〈e2|ej〉 − x2,1xj,1. (4)

In this way, all unknown coordinates x3,2, . . . , xk,2 can be determined.
This procedure is repeated until one arrives at j = k− 1, and therefore at the orthogonality of

|fk−1〉 and |fk〉, encoded by the condition 〈fk−1|fk〉 = 0, and hence

xk,k−1 = − (〈ek−1|ek〉+
+xk−1,1xk,1 + · · ·+ xk−1,k−2xk,k−2) .

(5)

The approach has the advantage that, at each stage of the recursive construction, there is only
a single unknown coordinate per equation. This situation is well known from Gaussian elimination.
The Ansatz also works if one of the original vectors is the zero vector, and if some of the original vectors
are equal.
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The resulting system of orthogonal vectors is not the only solution of the initial problem—to find
an orthogonal vector that projects onto the original ones—which can be explicitly demonstrated by
multiplying all vectors |f1〉, . . . , |fk〉 with the matrix

diag
(
In, cT

)
, (6)

whereby In stands for the n-dimensional unit matrix, c can be a real nonzero constant, and T is
a k-dimensional orthogonal matrix. (For complex Hilbert space, the orthogonal matrix needs to be
substituted by a unitary matrix, and by a complex constant c 6= 0.)

On the other hand, we may reinterpret our procedure as follows: Let |e1〉, . . . , |ek〉 be a system
of vectors in Rn, not necessarily spanning Rn, and not necessarily being linearly independent.
(The ordering of the vectors in this system will be essential throughout.) We embed Rn in Rn+k

as we did above and denote the orthogonal complement of Rn by C ∼= Rk. Therefore, the first n
coordinates of all vectors in C vanish, and Rn+k can be represented by a direct sum Rn+k = Rn ⊕Rk.
Additionally, we choose some (ordered) orthonormal basis of C, say, |g1〉, . . . , |gk〉.

Then, there is a unique system of orthogonal vectors |f1〉, . . . , |fk〉 in Rn+k such that the following
conditions are satisfied:

1. For all 1 ≤ i ≤ k, the orthogonal projection of Rn+k onto Rn sends |fi〉 to |ei〉.
2. The orthogonal projection of Rn+k onto C sends |f1〉, . . . , |fk〉 to some (ordered) basis of the

subspace C. Applying the Gram–Schmidt process to this (ordered) basis gives the orthonormal
basis |g1〉, . . . , |gk〉.

Indeed, in our previous Ansatz, we tacitly assumed the orthonormal basis |g1〉, . . . , |gk〉 of C to
comprise the orthogonal projections of the last k vectors of the standard basis |b1〉, . . . , |bn+k〉 of Rn+k

onto C. Condition 2 enforces the presence of all the 1s and 0s in Formula (2), since the Gram–Schmidt
process, applied to the vectors

|f1〉 − |e1〉, . . . , |fk〉 − |ek〉,

has to result in |bn+1〉, . . . , |bn+k〉. Notice that the usual Gram–Schmidt process gives merely an
orthogonal basis, whose vectors can be normalized in a second step in order to obtain an orthonormal
basis. In our setting, however, such a second step is not allowed. As we saw above, now Condition 1
guarantees that |f1〉, . . . , |fk〉 are uniquely determined.

Besides uniqueness, this construction has the additional advantage that the dot product in Rn+k

“decays” into the sum of dot products in Rn and in Rk: any basis vector fi ∈ Rn+k can be uniquely
written as fi = ei + hi, where ei and hi represent the projection of fi along hi onto the original subspace
Rn, and the projection of fi along ei onto C, respectively. Since ei is orthogonal to hi, for i 6= j,
fi · fj = ei · ej + hi · hj = 0, and thus

ei · ej = −hi · hj. (7)

Let us, for the sake of a physical example, study configurations associated with decision problems
that can be efficiently (that is, with some speedup with respect to purely classical means [2]) encoded
quantum mechanically. The inverse problem is the projection of orthogonal systems of vectors onto
lower dimensions. This method renders a system of non-orthogonal rays, also called eutactic stars [4–8],
which can be effectively levied to mutually exclusive outcomes in a generalized beam splitter
configurations [9,10] reflecting the higher dimensional Hilbert space.

One instance of such a quantum computation involving the reduction to ensembles of orthogonal
vectors (and their associated span or projection operators) is the Deutsch–Jozsa algorithm, as reviewed
in Ref. [2]. Another, somewhat contrived, problem can be constructed in three dimensions from
a eutactic star

1√
3

{(
1, 1
)

,
(

1
2

[√
3i− 1

]
, 1

2

[
−
√

3i− 1
])

,(
1
2

[
−
√

3i− 1
]

, 1
2

[√
3i− 1

])}
,

(8)



Entropy 2018, 20, 284 4 of 5

which is the projection onto the plane formed by the first two coordinates of a three-dimensional
orthormal basis

B3 =
1√
3

{(
1, 1, 1

)
,(

1
2

[√
3i− 1

]
, 1

2

[
−
√

3i− 1
]

, 1
)

,(
1
2

[
−
√

3i− 1
]

, 1
2

[√
3i− 1

]
, 1
)}

,

(9)

which, together with the Cartesian standard basis, forms a pair of unbiased bases [11].
Still another decision configuration is the eutactic star

1
2

{(
1, 1, 1

)
,
(

1, 1,−1
)

,(
1,−1, 1

)
,
(

1,−1,−1
)}

,
(10)

which is the projection onto the subspace formed by the first three coordinates of a four-dimensional
orthormal basis

B4 =
1
2

{(
1, 1, 1, 1

)
,
(

1, 1,−1,−1
)

,(
1,−1, 1,−1

)
,
(

1,−1,−1, 1
)}

.
(11)

More concretely, suppose some, admittedly construed, function f , and some quantum encoding
|x f (y)〉, where x and y stand for (sequences of) auxiliary and input bits, respectively, would yield one
of the basis systems B3 or B4. By reducing the auxiliary bits x, one might end up with the eutactic
stars introduced above. Alas, so far, no candidate of this kind has been proposed.

In summary, a new method of orthogonalizing ensembles of vectors has been introduced. Thereby,
the original vectors are “lifted” to or “completed” in higher dimensions. This method could be utilized
for solving quantum decision and computing problems if the original problem does not allow an
orthogonal encoding, and if extra bits can be introduced that render the equivalent of the extra
dimensions in which the original state vectors can be lifted and orthogonalized.

Compared with methods that were introduced [12–14] previously to optimally differentiate
between two non-orthogonal states, the scheme suggested here is similar in the sense that, in order
to obtain a better resolution, the effective dimensionality of the problem is increased. However,
our scheme is not limited to the differentiation between two states, as it uses arbitrary dimensionality.
More importantly, whereas our scheme is capable of separating different states precisely, but in general
is non-unitary—indeed, the original vectors are not mutually orthogonal, but the lifted vectors are,
thereby changing the angles among vectors, resulting in transformations that cannot be unitary—the
former methods are unitary and probabilistic.
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