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Abstract: The φ-divergence association models for two-way contingency tables is a family of models
that includes the association and correlation models as special cases. We present this family of models,
discussing its features and demonstrating the role of φ-divergence in building this family. The most
parsimonious member of this family, the model of φ-scaled uniform local association, is considered
in detail. It is implemented and representative examples are commented on.
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1. Introduction

Contingency tables and their analysis are of special importance for various diverse fields,
like medical sciences, psychology, education, demography and social sciences. In these fields,
categorical variables and their cross-classification play a predominant role, since characteristics of
interest are often categorical, nominal or most frequently ordinal. For example, diagnostic ratings,
strength of opinions or preferences, educational attainments and socioeconomic characteristics are
expressed in ordinal scales. The origins of contingency table analysis (CTA) lie back in 1900 with the
well-known contributions by Pearson and Yule, while, for the history of CTA before 1900, we refer to
the interesting paper by Stigler [1]. The interest lies mainly in identifying and describing structures
of underlying association in terms of appropriate models or measures. Divergence measures have
been employed in the CTA mainly for hypothesis testing (model fit) and estimation, leading to general
families of test statistics and estimators. The family of φ-divergence test statistics contain the classical
likelihood ratio and Pearson test statistics as special cases while the maximum likelihood estimators
(MLEs) belong to the family of the minimum φ-divergence estimators (MφEs). Families of φ-divergence
based test statistics as well as MφEs for various standard models in CTA have a long history. However,
their consideration and discussion is out of our scope. For a detailed overview and related references,
we refer to the comprehensive book of Pardo [2]. For log-linear models, see also [3].

Here, we aim at highlighting a different structural role of φ-divergence in contingency tables
modelling, namely that of linking phenomenological different models, forming thus a family of models
and providing a basis for their comparison, understanding and unified treatment. Through this
approach, new insight is gained for the standard association and correlation models (see [4,5]) while
further alternatives are considered. We restrict our discussion on two-dimensional contingency tables,
but the models and approaches discussed are directly extendable to tables of higher dimension.

The organization of the paper is as follows. Preliminaries on log-linear models, divergence measures,
association and correlation models for two-way tables are provided in Section 2. In the sequel, the general
family of φ-divergence based association models (AMs), which includes the classical association and
correlation models as special cases, is reviewed in Section 3. The most parsimonious φ-divergence
based association model, that of φ-scaled uniform local association, and its role in conditional testing of
independence is considered and discussed in Section 4. For this family of models, the effect of the specific
φ-function used is illustrated by analysing representative examples in Section 5. Some final comments are
provided in Section 6.
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2. Preliminaries

Consider an I × J contingency table n = (nij) with rows and columns classification variables X
and Y, respectively, where nij is the observed frequency in cell (i, j). The total sample size n = ∑i,j nij
is fixed and the random table N is multinomial distributed N ∼ M(n, π), with probability table
π ∈ ∆I J , where ∆I J is the simplex ∆I J = {π = (πij) : πij > 0, ∑i,j πij = 1}. Let m = E(N) = nπ

be the table of expected cell frequencies. Since the mapping (n, π) 7→ m is one-to-one on ∆I J ,
m ∈ {m = (mij) : mij > 0, ∑i,j mij = n} and models (hypotheses) for π can equivalently be expressed
in terms of m. Furthermore, let πr = (π1+, . . . , πI+)

T and πc = (π+1, . . . , π+J)
T be the row and

column marginal probabilities vectors, respectively, and p = (pij) the table of sample proportions with
pij = nij/n.

The classical independence hypothesis for the classification variables X and Y (π = πrπT
c = πI)

corresponds to the log-linear model of independence (I), defined in terms of expected cell frequencies as

log(mij) = λ + λX
i + λY

j , i = 1, . . . , I, j = 1, . . . , J, (1)

where λX
i and λY

j are the i-th row and j-th column main effects, respectively, while λ is the intercept.
If the independence model is rejected, the interaction between X and Y is significant and the only
alternative in the standard log-linear models set-up is the saturated model

log(mij) = λ + λX
i + λY

j + λXY
ij , i = 1, . . . , I, j = 1, . . . , J, (2)

which imposes no structure on π. Identifiability constraints need to be imposed on the main effect and
interaction parameters of these models, like λX

1 = λY
1 = 0 and λXY

1j = λXY
i1 = 0, for all i, j.

An important generalized measure for measuring the divergence between two probability
distributions is the φ-divergence. Let π = (πij), q = (qij) ∈ ∆I J be two discrete finite bivariate
probability distributions. Then, the φ–divergence between q and π (or Csiszar’s measure of
information in q about π), is given by

IC
φ (q, π) = ∑

i,j
πijφ(qij/πij), (3)

where φ is a real–valued strictly convex function on [0, ∞) with φ(1) = φ′(1) = 0, 0φ(0/0) = 0,
0φ(y/0) = limx→∞ φ(x)/x (cf. [2]). Setting φ(x) = x log x, (3) is reduced to the Kullback–Leibler
(KL) divergence

IKL(q, π) = ∑
i,j

qij log(qij/πij), (4)

while, for φ(x) = (1− x)2, Pearson’s divergence is derived. If φ(x) = xλ+1−x
λ(λ+1) , (3) becomes the power

divergence measure of Cressie and Read [6]

ICR
λ (q, π) =

1
λ(λ + 1)

K

∑
i=1

qi

[(
qi
πi

)λ

− 1

]
, −∞ < λ < ∞ , λ 6= −1, 0. (5)

For λ→ −1 and λ→ −0, (5) converges to the IKL(π, q) and IKL(q, π), respectively, while λ = 1
corresponds to Pearson’s divergence.

The goodness of fit (GOF) of model (1) is usually tested by the likelihood ratio test statistic
G2 = 2nIKL(p, π̂) or Pearson’s X2 = 2nICR

1 (p, π̂), where π̂ is the MLE of π under (1). Both test
statistics are under (1) asymptotically X 2

(I−1)(J−1) distributed. Alternatively, φ-divergence test statistics
can be used (see [3]).
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2.1. Association Models

In case of ordinal classification variables, the association models (AMs) impose a special structure
on the underlying association and thus provide non-saturated models of dependence. AMs are based
on scores µ = (µ1, . . . , µI) and ν = (ν1, . . . , νJ) assigned to the rows and columns of the ordinal
classification variables, respectively. They are defined by the expression

log(mij) = λ + λX
i + λY

j + ζµiνj , i = 1, . . . , I, j = 1, . . . , J, (6)

where the row and column scores are standardized subject to weights w1 = (w11, . . . , w1I)
T and

w2 = (w21, . . . , w2J)
T , respectively, i.e., it holds

∑
i

w1iµi = ∑
j

w2jνj = 0 and ∑
i

w1iµ
2
i = ∑

j
w2jν

2
j = 1. (7)

Usually, the uniform (w1 = 1I , w2 = 1J , where 1k is a k× 1 vector of 1s) or the marginal weights
(w1 = πr, w2 = πc) are used.

If µ and ν are both known and ordered, then (6) has just one parameter more than independence,
parameter ζ, and is known as the Linear-by-Linear (LL) AM. In case the vector µ is unknown, (6) is
the Row effect (R) AM, while the Column effect (C) AM is defined analogously. Finally, when the
row and the column scores are all unknown parameters to be estimated, (6) is the multiplicative
Row-Column (RC) AM. Scores that are unknown need not necessarily to be ordered. Note that
models LL, R and C are log-linear while the RC is not. The degrees of freedom (d f ) of these
AMs equal d f (LL) = (I − 1)(J − 1)− 1, d f (R) = (I − 1)(J − 2), d f (C) = (I − 2)(J − 1) and
d f (RC) = (I − 2)(J − 2). The special LL model for which the row and column scores are equidistant
for successive categories is known as the Uniform (U) AM.

In case the RC model is not of adequate fit, multiplicative row-column AMs of higher order can
be considered. Such a model of M-th order is defined as

log mij = λ + λX
i + λY

j +
M

∑
m=1

ζmµimνjm , i = 1, . . . , I , j = 1, . . . , J , (8)

with 1 ≤ M ≤ M∗ = min(I, J) − 1, and denoted by RC(M). Model RC(M∗) is an equivalent
expression of the saturated model (2). The sum ∑M

m=1 ζmµimνjm in (8) corresponds to the generalized

singular value decomposition of the matrix of interaction parameters of model (2), Λ =
(

λXY
ij

)
I×J

,

and M is the rank of Λ. The ζms are the associated eigenvalues, satisfying thus ζ1 ≥ . . . ≥ ζM > 0.
Vectors µm = (µ1m, . . . , µIm) and νm = (ν1m, . . . , νJm) are the corresponding row and column
eigenvectors, m = 1, . . . , M, which are orthonormalized with respect to the weights w1 and w2, i.e.,
the following constraints are satisfied:

∑
i

w1iµim = ∑
j

w2jνjm = 0, m = 1, . . . , M , (9)

∑
i

w1iµimµi` = ∑
j

w2jνjmνj` = δm`, m, ` = 1, . . . , M,

where δm` is Kronecker’s delta. It can easily be verified that d f (RC(M)) = (I −M− 1)(J −M− 1).
AMs have been mainly developed by Goodman (see [4,5] and references therein) and are thus often
referred to as Goodman’s AMs. For a detailed presentation of the association models, their inference,
properties, interpretation, the role of the weights used and associated literature, we refer to the book of
Kateri [7] (Chapter 6).
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For ease in understanding but also for interpretation purposes, it is convenient to think in terms
of the local associations of the table and define thus AMs through the local odds ratios (LORs)

θij =
πijπi+1,j+1

πi+1,jπi,j+1
, i = 1, . . . , I − 1, j = 1, . . . , J − 1. (10)

Recall that the (I − 1)× (J − 1) table of LORs θ = (θij), jointly with the marginal probabilities
vectors πr and πc, specify uniquely the corresponding I× J probability table π. Thus, given πr and πc,
a model on π can equivalently be expressed in terms of θ. Hence, model (8) is alternatively defined as

log θij =
M

∑
m=1

ζm(µim − µi+1,m)(νjm − νj+1,m) , (11)

for i = 1, . . . , I − 1 , j = 1, . . . , J − 1. In this set-up, the diffrences of successive row and column scores
are constant for the U model, equal to

µi − µi+1 = ∆1 and νj − νj+1 = ∆2, i = 1, . . . , I − 1, j = 1, . . . , J − 1 , (12)

since scores for successive categories are equidistant. Hence, the U model is equivalently defined as

log θij = ζ(µi − µi+1)(νj − νj+1) = ζ∆1∆2 = log θ = θ(0) (13)

and is the model under which all local odds ratios are equal across the table, justifying its ‘uniform
association’ characterization.

2.2. Correlation Models

A popular, mainly descriptive method for exploring the pattern of association in contingency
tables is correspondence analysis (CA). The detailed discussion of CA is beyond our scope. For this,
we refer to the book of Greenacre [8]. Correspondence analysis is a reparameterized version of the
canonical correlation model of order M

pij = pi+p+j

(
1 +

M

∑
m=1

ρmximyjm

)
, i = 1 . . . , I, j = 1, . . . , J , (14)

with 1 ≤ M ≤ M∗. The row and column scores (xm = (x1m, . . . , xIm) and ym = (y1m, . . . , yJm),
m = 1, . . . , M) satisfy constraints (9) subject to the marginal weights. Usually, it is assumed M = 2 and
the row and column scores (coordinates) are graphically displayed as points in two-dimensional plots.
The similarities between (8), expressed in terms of π in its multiplicative form, and (14) are obvious.
Thus, motivated by the inferential approaches for AMs, MLEs have been considered for model (14),
leading to the row-column correlation model of order M, while, for M = 1, special correlation models
of U, R or C type have also been discussed by Goodman [4,5].

3. φ-Divergence Based Association Models

AMs and correlation models were developed competitively and opposed to each other (cf. [5]),
until Gilula et al. [9] linked them in an inspiring manner under an information theoretical approach.
They proved that, under certain (common) conditions, both of them are the closest model to
independence. Their difference lies on the divergence used for measuring their closeness to
independence. AMs are the closest in terms of the KL divergence and correlation models in terms of the
Pearson’s divergence. This result motivated subsequent research and led to the definition of general
classes of dependence models by substituting the KL and Pearson divergences through generalized
families of divergences.
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Under the conditions of [9], namely for given marginal distributions (πr and πc), given scores (µ
and ν) and given their correlation ρ = corr(µ, ν), Kateri and Papaioannou [10] derived that the joint
distribution π that is closest to independence in terms of the φ–divergence is of the form

πij = πi+π+jF−1 (αi + β j + ζµiνj
)

, i = 1, . . . , I, j = 1, . . . , J , (15)

where F−1 is the inverse function of F(x) = φ′(x). The scores µ and ν satisfy the constraints (7) with
marginal weights. Under these constraints, it can easily be verified that ρ = corr(µ, ν) = ∑i,j µiνjπij.
Additionally, the identifiability constraints

∑
i

πi+αi = ∑
j

π+jβ j = 0 (16)

are imposed on parameters α = (α1, . . . , αI)) and β = (β1, . . . , β J)). The parameter ζ is
measuring association. It can be verified that (15), due to (7) with marginal weights and (16), leads to

ζ(π, µ, ν) = ∑
i,j

πi+π+jµiνjF

(
πij

πi+π+j

)
(17)

and that ζ = 0 if and only if the independence model holds (π = πI). Furthermore, under model (15),
the correlation ρ between the row and column scores is increasing in ζ and the φ-divergence measure
IC
φ (π, πI), for given φ-function, is increasing in |ζ|.

Model (15), with known row and column scores, is the φ–divergence based extension of
the LL model and is denoted by LLφ. If the scores are additionally equidistant for successive
categories, (15) becomes the φ–divergence based U model, Uφ, while the classes of models Rφ, Cφ

and RCφ are defined analogously. The standard LL, R, C or RC models correspond to φ(x) = x log x.
The analogue correlation models, defined by (14) for M = 1, are derived for φ(x) = (1− x)2, setting
µ = x1, ν = y1 and ζ = ρ1. For the standard association and correlation models, (17) simplifies to

ζ(π, µ, ν) = ∑
i,j

πi+π+jµiνj log(πij) (18)

and
ζ(π, µ, ν) = ∑

i,j
µiνjπij = corr(µ, ν) = ρ , (19)

respectively.
For the power divergence (for φ(x) = xλ+1−x

λ(λ+1) , λ 6= −1, 0), model (15) becomes

πij = πi+π+j

[
1

λ + 1
+ λ(α1 + β j + ζµiνj)

]1/λ

, i = 1, . . . , I, j = 1, . . . , J , (20)

considered by Rom and Sarkar [11]. Expression (20) defines parametric classes of AMs, controlled by
the parameter λ, which are denoted by LLλ, Uλ, Rλ, Cλ or RCλ, according to the assumption made for
the row and column scores.

The RC(M) model, 1 ≤ M ≤ M∗, is analogously generalized to RCφ(M), the class of φ–divergence
AMs of order M, given by

πij = πi+π+jF−1

(
αi + β j +

M

∑
m=1

ζmµimνjm

)
, i = 1, . . . , I, j = 1, . . . , J , (21)
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where the scores µm and νm satisfy restrictions (9) with marginal weights. The standard RC(M)
model (8) is derived for φ(x) = x log x, while, for φ(x) = (1− x)2, model (21) becomes the correlation
model (14) with µm = xm, νm = ym and ζm = ρm, m = 1, . . . , M.

Models (15) and (21) can alternatively be expressed as

θ
(φ)
ij = ζ(µi − µi+1)(νj − νj+1), i = 1, . . . , I − 1, j = 1, . . . , J − 1 , (22)

and

θ
(φ)
ij =

M

∑
m=1

ζm(µim − µi+1,m)(νjm − νj+1,m), i = 1, . . . , I − 1, j = 1, . . . , J − 1 , (23)

respectively, where θ
(φ)
ij is a scaled measure of local dependence, defined for i = 1, . . . , I − 1,

j = 1, . . . , J − 1 as

θ
(φ)
ij (π) = F

(
πij

πi+π+j

)
+ F

(
πi+1,j+1

πi+1,+π+,j+1

)
− F

(
πi+1,j

πi+1,+π+j

)
− F

(
πi,j+1

πi+π+,j+1

)
. (24)

For φ(x) = x log x, (24) becomes the well-known log local odds ratio log(θij), modelled in (13)

and from now on denoted as θ
(0)
ij = log(θij). For the power divergence, we get

θ
(λ)
ij (π) =

1
λ

( πij

πi+π+j

)λ

+

(
πi+1,j+1

πi+1,+π+,j+1

)λ

−
(

πi+1,j

πi+1,+π+j

)λ

−
(

πi,j+1

πi+π+,j+1

)λ
 . (25)

Remark 1. Kateri and Papaioannou [10] studied properties of the class of φ-divergence based AMs. Additionally,
they developed a test based on a φ-divergence statistic for testing the GOF of φ-divergence AMs and studied
its efficiency. The choice of the φ-function in the test statistic is independent of the φ-function used for the
model definition. Thus, it serves as a φ-divergence based GOF test for the traditional well-known association or
correlation models.

In order to understand the role and nature of the scaled measures of local association (24), one
can examine a simple 2× 2 contingency table. In this case, (10) becomes the well-known odds ratio
θ (= θ11). Its φ-divergence scaled generalization, (24) for I = J = 2, has been explored by Espendiller
and Kateri [12]. For these φ-scaled association measures for 2× 2 tables, asymptotic tests of significance
and confidence intervals (CIs) are constructed based on the fact that they are asymptotically normal
distributed. An interesting feature of the family of φ-scaled association measures for 2× 2 tables is that
when the odds ratio θ cannot be finitely estimated (due to sampling zeros), some members of this family
provide finite estimates, while, for a subset of them, their variance is also finite. Extensive evaluation
studies verified earlier statements in the literature about the low coverage of the log odds ratio CIs
when the association is very high (log θ > 4). In such cases, focusing on the power divergence scaled
odds ratios θ(λ), θ(1/3) for λ = 1/3 is to be preferred, since the corresponding CI is of better coverage
when approaching the borders of the parameter space and is in general less conservative than the
classical log odds ratio CI [12]. Here, the role of the scale effect on measuring the local dependence
will be further clarified in the examples discussed in Section 5.

Remark 2. The idea of viewing a model as a departure from a parsimonious reference model, with the property
of being the closest to this reference model under certain conditions in terms of the KL divergence, can be adopted
for other types of models as well, such as the quasi symmetry (QS) model and the logistic regression, lightening
thus a different interpretational aspect of these models. Substitution of the KL divergence by the φ-divergence,
leads further, in an analogous manner to AMs, to the derivation of generalized φ-divergence based classes of QS
models [13], ordinal QS [14] and logistic regression models [15]. For example, in case of the QS, the role of the
scaled measures (24) take the analogously defined scaled deviations from the model of complete symmetry.
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4. Uniform Local Association

We shall focus on the case of uniform local association and the corresponding φ divergence scaled
model Uφ, defined by (15) or (22) with row and column scores satisfying (12). Model Uφ is equivalently
expressed as

θ
(φ)
ij = ζ∆1∆2 = θ(φ) , i = 1, . . . , I − 1, j = 1, . . . , J − 1 (26)

and forms a family of models. Compare to (13) for the U model defined in terms of the usual log
odds ratio. The associated probability table under model Uφ is uniquely specified by the one-to-one
map (πr, πc, θ(φ)) 7→ πUφ , not given in a closed-form expression.

The MLEs of the marginal probabilities are the corresponding marginal sample proportions
π̂r = pr = (p1+, . . . , pI+)

T , π̂c = pc = (p+1, . . . , p+J)
T , while the MLE of θ(φ), θ̂(φ), is not available in

explicit form. For a given φ-function, model Uφ belongs to the family of homogeneous linear predictor
(HLP) models [16]. It is straightforward to verify that it satisfies the two conditions of Definition 3
in [16]. In practice, it can be fitted using Lang’s mph R-package. The standard U model, denoted in the
sequel as U0, has the equivalent HLP model expression

L(mv) = C log(mv) = Xβ = 1(I−1)(J−1)θ
(0) , (27)

where X and β are the model’s design matrix and parameter vector (scalar for U0), respectively.
Furthermore, θ(0) = log(θ), mv is the I J × 1 vector of expected cell frequencies, corresponding to the
I × J table m expanded by rows, and C is an (I − 1)(J − 1)× I J design matrix so that the vector of all
log(LOR)s is derived, i.e., C log(mv) = (θ

(0)
11 , . . . , θ

(0)
I−1,J−1)

T . For more details on inference for model
U0 through HLP models, we refer to [7] (Sections 5.6 and 6.6.4). In Section 6.6.4 of [7], the approach
is implemented in R for the example of Table 1 (see Section 5), while an R-function for constructing
the design matrix C for two-way tables of any size is provided in the web appendix of the book.
This approach is easily adjusted for model Uφ, by replacing log(mv) in (27) by F(mvs), where mvs is
the I J × 1 vector with entries

mij
mi+m+j/n =

πij
πi+π+j

, expanded by rows.
Under Uφ, all 2× 2 subtables, formed by any successive rows and any successive columns, share

the same φ-scaled local association θ(φ). It is of practical interest to have estimators of this common
local association, alternative to the MLEs, that are provided in explicit forms. One such estimator,
based on the sample version of (17), is given by

θ̃(φ) = ζ(p, µ, ν)∆1∆2 = ∆1∆2 ∑
i,j

pi+p+jµiνjF

(
pij

pi+p+j

)
. (28)

Another option is

θ
(φ)

=
1

(I − 1)(J − 1)

I−1

∑
i=1

J−1

∑
j=1

θ
(φ)
ij (p) , (29)

which is the mean of the sample φ-scaled local association measures (24). For the power-divergence
based models Uλ, estimators (28) and (29) are denoted by θ̃(λ) and θ̃(λ), respectively. For the U
correlation model, derived for λ = 1 and denoted thus by U1, estimator (28) takes the form

θ̃(1) = ∆1∆2 ∑
i,j

µiνj pij = ∆1∆2r, (30)

where r is the sample correlation between the row and column scores (compare to (19)).
Under the Uφ model, θ(φ) is the single association parameter, measuring the strength of the

local association that is uniform across the table. Furthermore, θ(φ) = 0(⇔ ζ = 0) if and only if the
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independence (I) model holds. Since model I is nested in Uφ, the following test of independence,
conditional on Uφ, can be considered

G2(I|Uφ) = G2(I)− G2(Uφ) , (31)

which is asymptotically X 2
1 distributed. This test is well-known for the standard U0 model (see [17]

and Section 6.3 in [7]).

Remark 3. For model U0, Tomizawa [18] proposed a measure of divergence from uniform association, based on
the KL-divergence, taking values in the interval [0, 1) and being equal to 0 if and only if U0 holds. He constructed
also asymptotic confidence interval for this measure, provided U0 does not hold. Conde and Salicrú [19] extended
his work by considering such a measure based on the φ-divergence and developed asymptotic inference for it, and
also for the case that U0 holds. Their approach and measures should not be confused with the approach followed
here. They aim at detecting departures from U0 (in favor of a non-uniform association structure) while here we
focus on measuring the strength of uniform association, provided that U0 (or Uφ) holds.

Tomizawa [18] as well as Conde and Salicrú [19] based the estimation of their measures on the
following closed-form estimator of θ(0) under U0

θ
(0)
∗ = log

∑I−1
i=1 ∑J−1

j=1 θ
(0)
ij (p)

(I − 1)(J − 1)

 . (32)

Remark 4. For square contingency tables with commensurable classification variables, analogous to the measure
of departure from U0 (see Remark 3), Tomizawa et al. [20] introduced a measure of departure from complete
symmetry relying on the power divergence and Tomizawa [21] a measure of departure from marginal homogeneity.
Kateri and Papaioannou [22] extended these measures to corresponding φ-divergence based measures and
proposed further φ-divergence based measures of departure from the QS and triangular symmetry models.
The work of Menéndez et al. [23,24] is also related.

5. Illustrations

We revisit a classical data set of Grizzle [25], provided in Table 2, which is adequately modelled
by the U0 model (see [18,19]). Our second data set in Table 1 corresponds to a study in [26] and
provides strong evidence in favor of U0 (see [7]). The maximum likelihood estimates of the expected
cell frequencies under U0 are also given in parentheses in Tables 1 and 2.

Table 1. Students’ survey about cannabis use at the University of Ioannina, Greece (1995).
The maximum likelihood estimates of the expected cell frequencies under the U0 model are given
in parentheses.

Alcohol Consumption
I Tried Cannabis...

Never Once or Twice More Often Total

at most once/month 204 (204.4) 6 (5.7) 1 (0.9) 211
twice/month 211 (211.4) 13 (13.1) 5 (4.5) 229
twice/week 357 (352.8) 44 (48.8) 38 (37.4) 439
more often 92 (95.3) 34 (29.4) 49 (50.3) 175

Total 864 97 93 1054
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Table 2. Cross-classification of duodenal ulcer patients according to operation and dumping severity.
The maximum likelihood estimates of the expected cell frequencies under the U0 model are given
in parentheses.

Operation
Dumping Severity

None Slight Moderate Total

A 61 (62.5) 28 (26.2) 7 (7.3) 96
B 68 (62.9) 23 (30.9) 13 (10.2) 104
C 58 (61.0) 40 (35.3) 12 (13.7) 110
D 53 (53.7) 38 (36.6) 16 (16.7) 107

Total 240 129 48 417

The G2 test statistics for the Uλ models fitted on these data, for λ → 0 and λ = 1/3, 2/3, 1 are
provided in Table 3, along with corresponding θ̂(λ), θ̃(λ) and θ

(λ)
values, i.e., the estimates of the

θ(λ)s discussed in Section 4. For U0, the θ
(0)
∗ estimates (32) for Tables 1 and 2 are equal to 0.2890 and

0.7972, respectively.
We observe that all considered Uλ models are of very similar (acceptable) fit for the first example

while they differ enormously for the second one. For the data of Table 1, the fit of U0 is impressive,
that of U1/3 acceptable while U2/3 and U1 are of very bad fit. A reverse situation appears for another
data set, given in Table 4. In this case model, U1 can be accepted while U0 can not (see Table 5).
The maximum likelihood estimates of the expected cell frequencies under U1 are provided in Table 4
in parentheses.

Table 3. Goodness of fit of the Uλ models for the data of Tables 1 and 2 along with estimates of the
common λ-scaled local association θ(λ) under Uλ.

Example in Table 1

λ G2 (p-value) θ̂(λ) / θ̃(λ)/ θ
(λ)

0 1.47 (0.917) 0.8026/0.7817/0.7814
1/3 7.19 (0.207) 0.6857/0.6451/0.6432
2/3 25.21 (0.000) 0.4720/0.5853/0.5974

1 40.76 (0.000) 0.3667/0.5732/0.6096

Example in Table 2

λ G2 (p-value) θ̂(λ) / θ̃(λ) / θ
(λ)

0 4.59 (0.468) 0.1626/0.1665/0.1612
1/3 4.57 (0.471) 0.1619/0.1638/0.1573
2/3 4.55 (0.473) 0.1612/0.1616/0.1541

1 4.52 (0.477) 0.1606/0.1599/0.1515

Table 4. Hypothetical 4 × 3 data table with maximum likelihood estimates of the expected cell
frequencies under U1 (in parentheses).

160 (159.5) 8 (7.8) 1 (1.4)
198 (199.4) 16 (14.7) 14 (13.9)
310 (321.8) 40 (32.9) 50 (45.4)
161 (149.1) 12 (20.4) 30 (33.8)
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Table 5. Goodness of fit of the Uλ models and maximum likelihood estimates of the common λ-scaled
local association θ(λ) under Uλ for the data of Table 4.

λ G2 (p-Value) θ̂(λ)

0 15.99 (0.007) 0.3082
1/3 13.52 (0.019) 0.3266
2/3 10.64 (0.059) 0.3391

1 7.95 (0.159) 0.3215

Observe (in Table 3) that the closed form estimates for the λ-scaled local associations are close to
the corresponding maximum likelihood estimates in case the assumed model is of adequate fit while
they diverge for models of bad fit.

6. Conclusions

We revealed the role of φ-divergence in modelling association in two-way contingency tables and
illustrated it for the special case of uniform association in ordinal contingency tables. Targeting at
pointing out the potential of this modelling approach and the generated families of models, we avoided
presenting technical details, properties and inferential results for these models, which can be found in
the initial sources cited.

Crucial quantities are the θ
(φ)
ij s, the φ-scaled measures of local association. The generalized family

of φ-divergence based AMs enriches the modelling options in CTA, since the pattern of underlying
association structure in a table may be simplified and thus described by a more parsimonious model
when considering a different scale. A crucial issue, as also pointed out by one of the reviewers, is how
to decide on the scale. So far, such a decision is based on trials of various alternative options. A formal
approach selecting the scale is missing. In case of a parametric family, like the one based on the power
divergence, the problem can be tackled by considering λ as an unknown parameter and estimating
it from the data. Such an approach has been followed in the logistic regression set-up by Kateri and
Agresti [15].

It is important to realize that, due to the scale difference, θ
(φ)
ij s are not directly comparable for

different φ-function (or λ-values in case of the power divergence). Thus, comparisons across different
φs (or λs) are possible only in terms of the corresponding expected cell frequencies or a common
measure of local association evaluated on them. AMs can also be considered for other types of
generalized odds ratios, like, for example, the global odds ratios. The extension of such models
through the φ-divergence and their study is the subject of a work in progress. Inference for closed
form estimators of the common θ(φ) of the Uφ model and comparisons among them is the content of a
paper under preparation.

The conditional test of independence (31) can be based not only on Uφ but on LLφ models as well.
Another 1 d f test of independence for ordinal classification variables is the linear trend test of Mantel
(see [27]). It considers the testing problem H0 : ρ = 0 vs. H1 : ρ 6= 0, where ρ is the correlation
between ordered scores assigned to the categories of the classification variables of the table. It is thus
applicable only when the underlying association exhibits a linear trend for the assigned scores. The test
of Mantel uses the test statistic M2 = (n− 1)r2, which is under H0 asymptotically X 2

1 distributed.
The way this test is linked to the above-mentioned conditional tests, in view also of (19), is interesting
to be investigated further.

Throughout this paper, we assumed a multinomial sampling scheme. For the models considered
here, the other two classical sampling schemes for contingency tables (independent Poisson and
product multinomial) are inferentially equivalent. Furthermore, for ease of presentation, we restricted
here to two-way tables. The proposed models extend straightforwardly to multi-way tables. For two-
or higher-dimensional tables, the subset of models that are linear in their parameters (i.e., RC-
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and RC(M)-type terms are excluded) belong to the family of homogeneous linear predictor (HLP)
models [16] and can thus be fitted using the R-package mph.
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Abbreviations

The following abbreviations are used in this manuscript:

CTA contingency table analysis
MLE maximum likelihood estimator
MφEs minimum φ-divergence estimators
KL Kullback–Leibler
GOF goodness of fit
I independence model
AMs association models
LL model linear by linear association model
R model row effect association model
C model column effect association model
RC model multiplicative row-column effect association model
U model uniform association model
d f degrees of freedom
LOR local odds ratio
CA correspondence analysis
CI confidence interval
QS quasi symmetry
HLP homogeneous linear predictor
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