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Abstract: We studied the non-equilibrium current, transport coefficients and thermoelectric
performance of a nano-junction, composed by a quantum dot connected to a normal superconductor
and a topological superconductor leads, respectively. We considered a one-dimensional topological
superconductor, which hosts two Majorana fermion states at its edges. Our results show that the
electric and thermal currents across the junction are highly mediated by multiple Andreev reflections
between the quantum dot and the leads, thus leading to a strong nonlinear dependence of the current
on the applied bias voltage. Remarkably, we find that our system reaches a sharp maximum of its
thermoelectric efficiency at a finite bias, when an external magnetic field is imposed upon the junction.
We propose that this feature can be used for accurate temperature sensing at the nanoscale.
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1. Introduction

Topology provides a fertile conceptual framework to many fields of modern physics, ranging from
cosmology to condensed matter, but it is in the later where it has found its most powerful applications.
Up to date, several topological phenomena have been discovered and studied in the context of solid
state physics: The quantum spin Hall effect, topological insulators and Weyl semimetals, to name
a few, and hence this constitutes a very active field of research.

An important class of topological materials which are currently gathering a lot of attention
are topological superconductors (TS), mainly due to their potential application in topological
quantum computers [1–3]. They were first proposed theoretically, in 2D [4] and 1D [5] models,
where a spinless p-wave superconductor supports non-Abelian anyons or Majorana zero modes (MZM)
in the vortex core in the 2D case [6], or at the edges in the one dimensional scenario. In principle,
the presence of a Majorana bound state at the surface of a TS can be detected experimentally by the
zero-bias anomaly [6–10]. In 2010 TS were experimentally fabricated [11,12] using a one dimensional
semiconducting nano-wire with strong spin-orbit coupling, in proximity to an s-wave superconductor.
Experimental evidence for the emergence of Majorana fermions in these systems has been reported [13].
Due to their nonlocal topological properties, Majorana fermions are protected against perturbations
and different sources of local noise, thus representing a physical principle to implement fault-tolerant
quantum computation.

While the electrical properties of topological materials have been intensively studied [6–9,11,12,14,15],
thermoelectric performance of these topological based devices has not yet received the same level of
attention from the condensed matter community, besides some interesting examples [15–18]. The heat
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production due to Joule heating in nano and micro-devices is one of the biggest problems in current
microelectronics, and there is a growing interest on new materials capable of mitigating energy
dissipation. In this context, proper thermal energy management and active cooling are nowadays
highly required for the advance of new technologies [19–22]. In this work, we study a nano-device
based on a topological superconductor, which can be used as a nano-thermocouple controlled by a weak
magnetic field at small applied voltages. Our theoretical analysis suggests that this configuration can
provide the basis for a highly sensitive temperature sensor, which can be used to detect Joule heating
in micro-devices with nanometer scale resolution.

Along this article, we shall describe the transport properties and thermoelectric performance
of a hybrid nano-junction formed by a quantum dot connected to an s-wave superconductor and
a topological superconductor leads, respectively, as described in [14]. The Hamiltonian describing
this model is presented in Section 2. The s-wave superconducting lead is submitted to a finite bias
voltage, such that the BCS superconducting order parameter acquires a time-dependent Josephson
phase, and therefore the junction is out of equilibrium. In Section 3 we apply the Keldysh formalism
(described in Appendix A) to study the electrical current through our system. The current-voltage
characteristics and the thermoelectric performance are presented in Section 4, for different externally
applied magnetic fields. Finally, we conclude with the main discussion in Section 5. In Appendix B
we provide the derivation of quantum-mechanical transport coefficients in the context of irreversible
thermodynamics [23–25] and in analogy with Onsager reciprocal relations [24,26–28].

2. The Hybrid Nano-Junction

The Model

The system that we shall study along this work was first proposed in [14]. As sketched in Figure 1,
it consists on a hybrid nano-junction composed by a semiconductor quantum dot (QD), connected to
a normal s-wave superconductor (SC) and a one dimensional topological superconductor (TS), that
play the role of the left (L) and right (R) leads, respectively. The system is represented, in second
quantization, by the Hamiltonian

Ĥ = ĤSC + ĤQD + ĤT . (1)

Due to the presence of the normal superconductor, the Hamiltonian is conveniently represented
in spin and Nambu subspaces by a 4 × 4 matrix. The first contribution corresponds to the BCS
Hamiltonian in the standard and symmetric Bogoliubov-de Gennes form

ĤSC =
1
2 ∑

k
f̂ †
k

[(
ξk ∆
∆∗ −ξk

)
⊗ ŝ0

]
f̂k, (2)

where ∆ is the BCS order parameter of the superconductor. On the other hand, the QD contribution is
given by

ĤQD =
1
2

d̂†(ετ̂z ⊗ ŝ0 + Hτ̂0 ⊗ ŝz)d̂, (3)

where H = gµBh is the Zeeman-coupling to an external magnetic field h, whereas ε is the local energy
level at the quantum dot. Finally, the tunneling Hamiltonian, which couples the QD to the normal (L)
and topological superconductor (R) leads via the coupling constants ΓL, ΓR, respectively, is given by

ĤT =
1
2
(ΓL f̂ †(0)τ̂z ⊗ ŝ0 + ΓRγV†τ̂z ⊗ ŝ0)d̂ + h.c. (4)

Here, we have defined ŝµ and τ̂µ ,with µ = 0, 1, 2, 3, the unit and Pauli matrices

ŝ0 = τ̂0 =

(
1 0
0 1

)
, ŝ1 = τ̂1 =

(
0 1
1 0

)
, ŝ2 = τ̂2 =

(
0 −i
i 0

)
, ŝ3 = τ̂3 =

(
1 0
0 −1

)
, (5)
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acting on the spin ({ŝµ}) and Nambu ({τ̂µ}) subspaces, respectively. In this spin-Nambu basis,

the fermion operators f̂↑ and f̂↓ are organized in a 4-component vector f̂ =
(

f̂↑ f̂↓ f̂ †
↓ − f̂ †

↑

)T
,

with an identical structure for the QD fermion operators d̂↑ and d̂↓. On the other hand, the Majorana

operator γ is associated with the spinor Vθ =
(

gθ gθ g∗θ −g∗θ
)T

, where g = eiθ is a constant
phase [14]. For simplicity we will consider θ = 0, and neglect the Coulomb interaction between
electrons in the QD. Even though a TS hosts two Majorana Bound states (MBS) at each one of its ends,
assuming a very long, semi-infinite lead, the tunneling problem can be reduced to that of transport
through the SC-QD-MBS junction only.

Figure 1. Sketch of the nano-junction.

3. Non-Equilibrium Transport Through the Nano-Junction

Let us consider a finite bias voltage V imposed upon the s-wave superconductor lead.
In consequence, the BCS order parameter acquires a time-dependence ∆→ |∆|eiφ(t), where

φ(t) = φ0 + 2
e
h̄

∫ t

0
V(t̄)dt̄ = φ0 + 2

e
h̄

Vt (6)

is a Josephson phase [7,14]. Because of this periodic time dependency, transport across the junction is
highly non-linear and thus cannot be described by the standard Green-Kubo relations [23,29,30], which are
strictly valid only for the linear response regime and in agreement with the fluctuation-dissipation
theorem [29,30]. Therefore, transport in this quantum mechanical system must be analyzed with
a formalism appropriate for non-equilibrium regimes, such as the reduced density matrix [7], equations
of motion [15] or, as we chose in this work, non-equilibrium Green’s functions, also referred as the
Keldysh formalism in condensed matter theory [24,25,31,32]. For readers which are not familiar with
the method, we present a description of it in Appendix A.

For the nano junction described by the Hamiltonian Equation (1), the current operator is defined
via continuity equation at the left SC lead by the expression

Ĵ = e
d
dt

n̂L =
e
ih̄
[n̂L, Ĥ] = − ie

4h̄
ΓL

(
f̂ †(0)τ̂3 ⊗ ŝ0d̂− h.c

)
≡ − ie

4h̄
ĵ, (7)

where n̂L = 1
2 f̂ †(0)τ̂3 ⊗ ŝ0 f̂ (0) is the number operator of the conventional superconductor SC.

Starting from the full Hamiltonian Equation (1), we construct the effective action for the system
on the Keldysh contour, following the argument presented in Equation (A16), by defining a source
term involving the current in Equation (7)
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Ĵs =
1
4

α(t) ĵ. (8)

This source couples to the effective action via the first Pauli matrix σ̂1 =

(
0 1
1 0

)
, thus breaking

the symmetric time evolution on the Keldysh contour.
After integrating out the fermionic fields of the superconductor ( f̂ ) and the quantum dot (d̂),

we obtain an effective action in terms of the Green’s function of the Majorana fermions at the TS.
Therefore, the reduced generating functional, including the source, can be expressed as

ZC [α] =
∫
D[γ] exp

{
i
2

∫
dtγTĜ−1

TS [E, α]γ

}
, (9)

with Ĝ−1
TS [E, α] the Green’s function of the TS after the integration of the SC and QD fields.

When expressed in the form of a Dyson equation, we have

Ĝ−1
TS [E, α] = Ĝ−1

TS,0(E)− Σ̂TS(E, α), (10)

with the TS self-energy given by

Σ̂TS(E, α) = |ΓR|2(σ̂0 ⊗ (V† · (τ̂3 ⊗ ŝ0)))ĜQD(E, α)(σ̂0 ⊗ ((τ̂3 ⊗ ŝ0) ·V)), (11)

and the non-interacting TS Green’s function components defined on the Keldysh space (A: Advanced,
R: Retarded, K: Kinetic) as

Ĝ(R,A)
TS,0 (E) =

1
E± iη

and ĜK
TS,0(E) = 0. (12)

On the other hand, the QD’s Green’s function is given by

ĜQD(E, α) =
[

Ĝ−1
QD,0(E)− |ΓL|2(α̂−ĜSC(E)α̂+)

]−1
. (13)

Here, α̂± = 1
2 [M̂030 ± αM̂100], M̂ijk ≡ σ̂i ⊗ τ̂j ⊗ ŝk with i, j, k = {0, 1, 2, 3} and the non-interacting

QD Green’s function components on the Keldysh space are given by

Ĝ(R,A)
QD,0 (E) = [(E± iη)τ̂0 ⊗ ŝ0 − ετ̂3 ⊗ ŝ0 − Hτ̂3 ⊗ ŝ3]

−1 and ĜK
QD,0(E) = 0. (14)

The QD and TS kinetic Green’s functions are identically zero, because in the absence of self-energy
terms for these non-interacting subsystems, they are proportional to the complex regulator iη and
hence they vanish in the limit η → 0+, in agreement with the fact that non-interacting systems are
dissipationless [29,32]. Finally, the SC Green’s function in equilibrium (V = 0) is

Ĝ(R,A)
SC (E) = A(R,A)(E)τ̂0 ⊗ ŝ3 + iBR,A(E)τ̂3 ⊗ ŝ2, (15)

with A(E) and B(E) functions obtained from the standard BCS theory by [32]

A(R,A)(E) =


−iE√
|∆|2−E2

|E| < ∆
±E√

E2−|∆|2
|E| > ∆

, B(R,A)(E) =


−i∆√
|∆|2−E2

|E| < ∆
±∆√

E2−|∆|2
|E| > ∆

, (16)

whereas the kinetic component, assuming that the SC is a macroscopic system at finite temperature T,
is given by Equation (17) (see Equation (A29) and Appendix A for details).

ĜK
SC(E) = [ĜR

SC(E)− ĜA
SC(E)] tanh

(
E

2kBT

)
. (17)
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Non-Equilibrium Green’s Function in the Floquet Basis

At non-zero bias, the SC Green’s function depends on time due to the Josephson phase φ(t) of the
order parameter Equation (6), via the transformation

ˆ̃Gλ
SC(t, t′) = exp

[
i
φ(t)τ̂0 ⊗ τ̂3

2

]
Ĝλ

SC exp
[
−i

φ(t′)τ̂0 ⊗ τ̂3

2

]
, (18)

with λ = R, K, A. Moreover, the time-dependence of the Josephson phase of the normal SC lead in
Equation (6), determines a periodic time-dependence on the Green’s functions, and hence a Floquet
representation [33] in Fourier space is the natural choice. Moreover, when Fourier transforming to the
energy domain it is clear that, as a consequence of the voltage dependence of the Josephson phase,
the Green’s functions acquire an energy shift 2eV, which we express as

Ĝλ
SC(E + 2eVm, E + 2eVn) ≡

[
Ĝλ

SC(E)
]

mn
. (19)

Each Ĝλ
SC, for λ = A, R, K, is a 4× 4 matrix, with indices m, n = 1, . . . , 4(2D + 1). This motivates

the introduction of new indices M, N to designate the matrix elements associated to the Floquet basis
in each of the Green’s function components R, K, A

M = integer
[

m− 1
4

]
, N = integer

[
n− 1

4

]
, (20)

with EN = E− 2eV(D− N), and D representing the Floquet mode. Therefore, the superconductor
Green’s function in the Floquet basis is a block matrix expressed as[

Ĝλ
SC(E)

]
mn

=
[

Ĝdiag
SC (E)

]
mn

+
[
Ĝ+

SC(E)
]

mn +
[
Ĝ−SC(E)

]
mn , (21)

where

[
Ĝdiag

SC (E)
]

mn
= δM,N


A(EN − eV)

−A(EN + eV)

A(EN + eV)

−A(EN − eV)


m−4N,n−4N

[
Ĝ−SC(E)

]
mn = δM,N+1


0 B(EN + eV)

0 0
0 0

−B(EN + eV) 0


m−4(N+1),n−4N

[
Ĝ+

SC(E)
]

mn = δM,N−1


0 0

B(EN − eV) 0
0 −B(EN − eV)

0 0


m−4(N−1),n−4N

.

Taking functional derivatives of the generating functional with respect to the source terms
(see Appendix A), we obtain the current flowing across the nano-junction

J(T, V) ≡ 〈 Ĵ(T, V)〉 =
δZC [α]
δα(t)

∣∣∣∣
α→0

=
e|tR|2|tL|2

8
Tr
∫

dEĜTS(E)Λ̂T {ĜQD(E)M̂030ĜSC(E)M̂100ĜQD(E)

− ĜQD(E)M̂100ĜSC(E)M̂030ĜQD(E)
}

Λ̂, (22)
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where Λ̂ = (σ̂0 ⊗ ((τ̂3 ⊗ ŝ0) ·V)) and Tr implies taking the trace over Keldysh and Floquet subspaces,
respectively. Similarly, the energy flux through the nano-junction is given by the expression

U(T, V) =
|tR|2|tL|2

8
Tr
∫

dE E ĜTS(E)Λ̂T {ĜQD(E)M̂030ĜSC(E)M̂100ĜQD(E) −

ĜQD(E)M̂100ĜSC(E)M̂030ĜQD(E)
}

Λ̂. (23)

4. Results

4.1. Electrical Current

For the current J - voltage V characteristics, we considered a bias in the range eV < ∆, with ∆
the BCS gap of the normal superconductor. The total number n of Floquet modes to be included
in the numerical evaluation of the formulas was adjusted such that the calculated electrical current
converged. In our case, we found that the first n = 6 Floquet modes were sufficient to achieve
the convergence criteria. The contribution of the first n = 0 mode is notoriously small because the
n = 0 Green’s function has only diagonal elements, with the off-diagonal elements being present
only for the n ≥ 1 Floquet modes. The current through the nano-junction is shown in Figure 2,
where the oscillating behavior as a function of bias V is a consequence of the presence of multiple
Andreev reflections (see Figure 3), responsible for tunneling from the quantum dot to the non-trivial
topological superconductor.

The current is notoriously sensitive to small changes in the externally applied magnetic field.
Indeed, the Zeeman energy splitting H = gµBh of the dot energy level contributes to a local spin
filtering effect for the current, as seen in the highest peak in the inset of Figure 2. For small magnetic
fields, the principal peak will be present, varying smoothly its position, but for H > 0.3∆ the highest
Zeeman-splitted level will not be reachable for electron states at the dot, thus reducing the transport rate.
As a consequence, configurations with single electronic occupation at the dot dominate transport in this
high-field regime in favour of double occupation, as verified from the local dot’s occupation number

〈n̂QD〉 = Tr
∫

dE nF(E, V, T)
(
− 1

π
Im{ĜR

QD(E, V, T}
)

, (24)

where nF(E, V, T) = (exp[(E− eV)/kBT] + 1)−1 is the Fermi distribution function. In Figure 4,
we represent the bias dependence of the local occupation number at the quantum dot, at different
values of the external magnetic field expressed in terms of the Zeeman splitting H.

Figure 2. Tunneling current through the nano-junction for zero (a) and H = 0.3∆ (b) magnetic
field. We set ε = −0.01∆, T = 0.1∆/kB and the coupling constants ΓL = 0.7∆ and ΓR = 0.05∆
with j0 = e∆/2h̄. Here ∆ represents the BCS order parameter, chosen as the natural energy scale in
the model.
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Figure 3. (a) A Cooper pair suffers an AR at the interface with the QD (red dashed line), and two AR’s
at the TS interface and at the SC interface (dotted line) respectively, thus generating Andreev bound
states; (b) The Cooper pair splits into two electrons of opposite spin, in order to occupy the dot’s level,
thus producing two backscattered holes at the TS interface. The AR of an electron (hole) is equivalent
to the transfer of a single Cooper pair in (out) of the superconducting condensate.

Figure 4. Occupation number for different values of the magnetic field h, with effective Zeeman
coupling H = gµBh. The curves represent the dot occupation at H = 0 (dotted line), H = 0.1∆ (solid
line) and H = 0.3∆ (dashed line), respectively, with ∆ the BCS order parameter, chosen as the natural
energy scale in the model.

4.2. Thermoelectric Performance

In order to study the thermoelectric properties of the nano-junction, we need to consider the
temperature dependence of the electric current. We assume that the s-wave superconductor (L-lead) is
in local thermal equilibrium at temperature TL = T, while the topological superconductor (R-lead)
is at zero temperature TR = 0, such that the thermal flux is generated by the temperature difference
between the leads ∆T = TL − TR = T. As before, we set T < ∆/kB . Transport coefficients are usually
defined within the linear response regime [23,27,29,30,34], where Onsager relations [23,26,27,30] and
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Green-Kubo [25,29,32] formulas can be applied. For non-equilibrium quantum systems with strong
non-linearities, however, it is possible to define generalizations of those transport coefficients [24].
In particular, for electric transport in non-linear systems it is customary to define the differential
conductance [24,35,36]

σ(T, V) =
∂J
∂V

∣∣∣∣
T

. (25)

For thermal transport coefficients, starting from the entropy flux JΣ(T, V) = T−1U(T, V) −
T−1µe−1 J(T, V), it is possible to define a thermal flux JQ = TJΣ, such that differential thermal
conductance in the nonlinear response regime [24] becomes (see Appendix B for details)

κ(T, V) =
∂JQ

∂T

∣∣∣∣
J=0

=
∂U
∂T

∣∣∣∣
J=0

. (26)

The condition of vanishing electrical current J(T, V) = 0 involved in the definition of the thermal
conductance, establishes an implicit (nonlinear) relation between the temperature difference and the
bias voltage across the junction, i.e., V(T)|J=0. Therefore, applying the implicit function theorem for
partial differentiation, we have that under the condition J(T, V) = 0

∂

∂T
J(T, V)

∣∣∣∣
J=0

= 0 =
∂J
∂T

∣∣∣∣
V
+

∂J
∂V

∣∣∣∣
T

∂V
∂T

∣∣∣∣
J=0

(27)

Solving from the equation above, we obtain a natural generalization of the Seebeck coefficient to
the nonlinear response regime [24],

S(T, V) = −∂V
∂T

∣∣∣∣
J=0

=

∂J
∂T

∣∣∣
V

∂J
∂V

∣∣∣
T

. (28)

The differential conductance in Equation (25) follows an operational definition that trivially
matches the linear response value in the limit V → 0. For the generalized nonlinear Seebeck coefficient
and thermal conductance, despite they clearly match the standard definitions in the linear response
limit V → 0 [24,27,28,37], a more careful analysis is required to justify them from the perspective of
entropy flow and production in the context of irreversible thermodynamics [23,24,26,30], as presented
in Appendix B.

The thermoelectric performance of the nano-junction is represented by the thermoelectric figure
of merit, commonly expressed by the dimensionless quantity [20,21,27,37,38]

ZT =
S2σ

κ
, (29)

where σ(T, V) and κ(T, V) are the electrical and thermal differential conductances defined
by Equations (25) and (26), respectively, and S(T, V) is the Seebeck coefficient calculated from
Equation (28).

Figure 5 shows the thermoelectric figure of merit of the junction for different bias voltages,
reaching its maximum at 0.7 eV/∆ when H = 0.3∆ (the inset). The magnetic field breaks the electronic
spin symmetry, giving rise to different energy contributions for spin up or spin down fermions:
electrons with a spin parallel to the field dominate in the whole transport process as compared
to those with anti-parallel spin, thus leading to a spin-filtering effect in the current through the
junction. This filtering effect is reflected on the sharp thermal response of the figure of merit at
finite magnetic fields, as seen in Figure 5. Until now it has been very hard to achieve high ZT in
thermoelectric devices, because σ, κ and S cannot be independently controlled in the linear response
regime: a material with large electrical conductivity σ has a large thermal conductivity κ when the
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Wiedemann-Franz law applies [24,27,37]. It is possible, however, to achieve some decoupling in
materials where electron-phonon scattering is weak, while phonon-phonon scattering is high [19–22].
In this system, the comparatively small values of ZT are a consequence of the Seebeck coefficient of the
device, due to the weak dependence of the electrical current on the temperature (see Equation (28)).
This feature is not so surprising, considering that the model does not involve lattice phonons besides
the BCS Hamiltonian for the normal s-wave superconductor, where they are implicitly involved
through the BCS gap ∆.

Figure 5. Thermoelectric figure of merit as a function of temperature at a fixed bias of 0.7 eV/∆,
at different magnetic fields h, with H = gµBh the effective Zeeman coupling (a). Notice the sharp
response at T ∼ 0.5∆/kB at an applied magnetic field H = 0.3∆ (b). Here ∆ represents the BCS order
parameter, chosen as the natural energy scale in the model.

We remark the strong and sharp response of the thermoelectric performance of the system as
a function of temperature, when H > 0, as seen for instance in Figure 5b. We propose that this interesting
feature can be applied for thermal sensing with nano-metric spatial resolution in microelectronics and
future nano-electronics, in order to mitigate and prevent the deleterious effects of excessive Joule
heating in device components.

5. Discussion

Along this work, we studied the non-equilibrium electric and thermal transport through
a topological nano-junction, in the context of the Keldysh formalism, by exploring the non-linear
response of the junction at different applied magnetic fields. Due to the diversity of quasi-particle
excitations present in the system, such as Majorana fermions and Cooper pairs, the electrical current
presents a high nonlinear behavior as a characteristic signature of virtual processes known as multiple
Andreev reflections between the leads and the quantum dot (see Figure 3), in agreement with the
literature [7,8]. The transport coefficients in the nonlinear regime are defined as generalizations of
the ones in linear response, closely following the analysis in [24]. In particular, the definition of
thermal transport coefficients are tied to the notion of entropy production and fluxes through the
junction. We have provided a detailed discussion on the implication of those definitions in the context
of classical Onsager reciprocal relations [23,26,30], particularly on the restrictions imposed by the
positive-definiteness of the entropy production rate [23,24,26,27,30] (see Appendix B for details).

As seen in Figure 6, the Lorenz number for this system strongly differs from the Wiedemann-Franz
law, which is only valid at low temperatures and in the linear-response regime [27,37]. On the first hand,
as stated in Section 3, the junction corresponds to a system which is far from the linear response regime,
due to the oscillatory effect of the bias voltage on the Josephson phase of the BCS superconducting
lead. Therefore, the system is far from the domain of applicability of Wiedeman-Franz law [24,27,37].
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In addition, as depicted in Figure 3, the multiple Andreev reflections tend to decouple the net particle
flow from the electric charge flow. While the energy flux U(T, V) is always in the same direction as
the particle flux, the charge flow may have the opposite direction. Consider for instance the process
depicted in Figure 3b, where an electron pair flows from left to right, representing two quanta of
negative charge in this direction, while a pair of positively charged holes is backscattered in the opposite
direction: The net charge flow associated to this process is equivalent to four quanta of negative charge
transported from left to right. However, the energy carried by electrons and holes, that determines the
heat flux associated to the process, moves in counterflow for both types of particles. This decoupling
between the electric and thermal flux directions is what leads to an extremely nontrivial behavior of
the Lorenz number, thus exhibiting strong deviations from the Wiedemann-Franz law.

Figure 6. Lorenz number for H = 0.3∆. The minimum at T ∼ 0.5∆/kB coincides with the sharp
response in the thermoelectric figure of merit in Figure 5.

The applied magnetic field imposes a filtering effect over the electronic spin components of the
current, thus suppressing transport of the antiparallel spin component at sufficiently strong fields.
The magnetic field also contributes to the thermoelectric efficiency: at higher magnetic fields, the higher
the electrical-heat conversion efficiency. We reported a maximum efficiency of 0.28∆/kB at a bias of
0.7 eV/∆, for an applied magnetic field of H = 0.3∆. We remark that the sharp thermoelectric response
obtained at finite magnetic fields, could be used to construct a highly sensitive temperature sensor
based on this topological nano-junction. A nanoscale thermocouple with nanometer-scale resolution
may be an important contribution to mitigate and prevent the deleterious effects of excessive Joule
heating in nano and micro-device components.

Author Contributions: E.M. conceived the study, formulated the model and developed the theoretical approach;
M.A. performed explicit analytical and numerical calculations and made the different figures along the text.
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Appendix A. Non-Equilibrium Green’s Function Method

Along this appendix, we provide a brief but comprehensive review of the non-equilibrium
Green’s functions formalism, particularly the Keldysh functional integral approach [31,32,39], which
has demonstrated to be an effective method to deal with transport processes and other strongly
correlated quantum phenomena [24,28,36].
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Appendix A.1. Closed-Time Contour Formalism

Let us first consider a general quantum system governed by the time-independent Hamiltonian

Ĥ = Ĥ0 + ĤI , (A1)

where Ĥ0 corresponds to the free particle Hamiltonian and ĤI represents all the many-body interactions
and static potentials acting upon the system. For t < t0, we assume that the system is in thermal
equilibrium and therefore it is characterized by an equilibrium density matrix operator

ρ̂0 = ∑
ν

pν|ψν〉〈ψν| =
eβĤ

ZH
=

e−βĤ

Tr(e−βĤ)
, (A2)

where β = 1
kBT is the inverse temperature and ZH the canonical partition function. We further

assume that at time t = t0, the system is disconnected from the thermal reservoir and exposed
to a time-dependent perturbation, such that the unitary time evolution of the system from its initial
state is governed by the time-dependent Hamiltonian

H(t) = Ĥ + Ĥ′(t), (A3)

and represented by the density matrix operator ρ̂(t), with the initial condition ρ̂(t = t0) = ρ̂0.
The density matrix operator follows a unitary evolution in time,

ρ̂(t) = ÛH(t, t0)ρ̂(t0)Û †
H(t, t0), (A4)

where the evolution operator corresponding to the time-dependent HamiltonianH(t) is defined as

ÛH(t, t0) =

 T̂ exp
[
− i

h̄

∫ t
t′ dt̄Ĥ(t̄)

]
for t > t′

ˆ̃T exp
[
− i

h̄

∫ t
t′ dt̄Ĥ(t̄)

]
for t < t′

, (A5)

and ( ˆ̃T )T̂ denotes the (anti-) time ordering operator.
The time-dependent expectation value of an operator Ô representing a physical observable for

t > t0 is given by

〈Ô(t)〉 = Tr(ρ̂(t)Ô) = 1
ZH

Tr
[
e−βĤÔH(t, t0)

]
. (A6)

Considering that the Boltzmann exponential operator in the equilibrium density matrix can be
written as

e−βĤ = e−
i
h̄
∫ t0−iβ

t0
dt̄Ĥ

= ÛH(t0 − iβ, t0), (A7)

the expectation value in Equation (A6) has the form

〈Ô(t)〉 =
Tr
(
ÛH(t0 − iβ, t0)ÛH(t0, t)ÔÛH(t, t0)

)
ZH

. (A8)

By noticing the sequence of operators in Equation (A8) from right to left, it is straightforward
to see that they follow the time ordering of t0 → t → t0 → t0 − iβ. This motivates the introduction
of the Konstantinov-Perel [39] contour C with three branches: γ+ : t0 → tmax, γ− : tmax → t0 and
γM : t0 → t0 − iβ, as is shown in Figure A1.
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Figure A1. Contour C = γ+ ⊕ γ− ⊕ γM, considering t0 = 0.

Noticing that the time-dependent contribution Ĥ′(t) along the forward (γ+) and backward (γ−)

contour cancels if no other operator is inserted, we can redefine the contour of ÛH(t0 − iβ, t0) in
Equation (A8) to the corresponding action of the full time-dependent Hamiltonian Ĥ(t):

ÛH(t0 − iβ, t0)→ ÛH(t0 − iβ, t0). (A9)

The fundamental object in any many-body theory is the single-particle Green’s function,
which contains the information about single-particle excitations and their statistical distribution.
The non- equilibrium Green’s function is defined as the contour-ordered expectation value

G(t, t′) = −i〈T̂C ĉα(t)ĉ†
β(t
′)〉, (A10)

where (ĉ†) ĉ corresponds to the (creation-) annihilation operator, t, t′ ∈ C and α, β may represent any
internal degree of freedom. Due to the three branches of the contour C, the non-equilibrium Green’s
function can be expressed conveniently as a 3× 3 matrix [39]

Ĝ =

G++ G+− G+M
G−+ G−− G−M
GM+ GM− GMM

 , (A11)

where each component Gij, with ij = {+,−, M}, represents the position of times t, t′ on each of the
three different branches of C.

Appendix A.2. Non-Equilibrium Keldysh Formalism

A simpler approach to describe non-equilibrium scenarios is the Keldysh formalism [31,32,39],
where it is assumed that an interaction is adiabatically turned on from t0 → −∞, and the time evolution
is extended to tmax → ∞. As a consequence, the imaginary-time contour γM is decoupled from the
contour C, thus neglecting correlations between initial states and evolving states [32,39] and restricting
the time evolution to the real contour γ+ ⊕ γ−. In steady state situations, initial correlations are
expected to disappear for evolution times longer than the relaxation times of the system, making
the Keldysh approximation a suitable formalism to deal with these problems [31,32,39]. Using these
assumptions, the expectation value in Equation (A8) acquires the form

〈Ô(t)〉 = 1
ZH

Tr
[
ÛH(t0 − iβ, t0)ÛH(t0, t)ÔÛH(t, t0)

]
. (A12)

Using the semi-group property of the unitary time evolution operator

ÛH(t0, t) = ÛH(t0, tmax)ÛH(tmax, t), (A13)
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and taking the limits (t0, tmax)→ (−∞, ∞) one obtains

〈Ô(t)〉 = 1
ZH

Tr
[
ÛH(−∞, ∞)ÛH(∞, t)ÔÛH(t,−∞)ρ̂0

]
. (A14)

The contour-ordered Keldysh Green’s function is now a subspace of Equation (A11), represented
by the 2× 2 matrix [25,32,39]

Ĝ =

(
G++ G+−
G−+ G−−

)
, (A15)

acting on the Keldysh contour as described in Figure A2.

Figure A2. Keldysh contour C = γ+ ⊕ γ−, considering t0 → −∞ and tmax → +∞.

In order to obtain expectation values from Equation (A12), it is convenient to modify the
time-dependent Hamiltonian in a non-trivial way by adding a source term α(t)

Ĥ(t)→ Ĥ(t)± Ôα(t). (A16)

Here, the plus (minus) sign refers to the forward (backward) contour, respectively, making the
time-evolution along the two branches no longer symmetric [32].

In this work, we will adopt the modern framework of many-body physics out of equilibrium,
which corresponds to the integral formulation of quantum field theory. Consequently, we construct
a generating functional given by [24,32,36]

ZC [α] ≡
Tr
(
ÛC [α]ρ̂0

)
ZH

α→0−−→ 1, (A17)

where ÛC [α] is the time evolution operator along the closed-time contour C, containing the information
of the source term α(t).

Using this new generating functional, the expectation value of any observable is obtained by
means of functional differentiation

〈Ô(t)〉 = δ

δα(t)
ZC [α]

∣∣∣∣
α→0

. (A18)

In contrast to equilibrium field theory methods, where the expectation value is given by functional
derivatives of the logarithm of the generating functional, on the Keldysh contour the presence of the
logarithm is unnecessary thanks to Equation (A17).

In the continuum notation, the generating functional may be written in terms of continuum
Grassmann variables or fermionic fields (ψ̄(t), ψ(t)), representing creation and annihilation operators,
respectively, according to

ZC [α] =
∫
D[ψ̄(t), ψ(t)] exp

(
i
∫
C

dt[ψ̄(t)Ĝ−1ψ(t)]
)
=
∫
D[ψ̄(t), ψ(t)]eiS [ψ̄(t),ψ(t)], (A19)
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where S [ψ̄(t), ψ(t)] is the action containing all the information of the full time Hamiltonian H(t).
In order to avoid the contour integration and work with real time variables, the contour integration is
split into two time branches [32,39]∫

C=γ+⊕γ−
dτ =

∫ ∞

−∞
dt +

∫ −∞

∞
dt =

∫ ∞

−∞
dt−

∫ ∞

−∞
dt, (A20)

and hence the fields split into two components

ψ(t)→
(

ψ+(t)
ψ−(t)

)
, (A21)

where ψ+(t) and ψ−(t) reside on the forward and backward contour, respectively. As a consequence,
the action is now written as

S [ψ̄(t), ψ(t)] =
∫ ∞

−∞
dtψ̄(t)σ̂3Ĝ−1ψ(t), (A22)

where σ̂3 =

(
1 0
0 −1

)
is the third Pauli matrix acting on the Keldysh space, containing the minus

sign from the contour splitting operation in Equation (A20).
The components of the matrix Green’s function in Equation (A15) are not linearly independent,

but by definition they satisfy the constraint

G++(t, t′) + G−−(t, t′) = G+−(t, t′) + G−+(t, t′), (A23)

which allows us to eliminate one of the components. To this end, one introduces the so-called Keldysh
rotation [32,40] for fermionic fields ψ, by defining new fields according to

ψ1(t) =
1√
2
(ψ+(t) + ψ−(t)) ; ψ2(t) =

1√
2
(ψ+(t)− ψ−(t)), (A24)

while for the bar fields

ψ̄1(t) =
1√
2
(ψ̄+(t)− ψ̄−(t)) ; ψ̄2(t) =

1√
2
(ψ̄+(t) + ψ̄−(t)). (A25)

Performing these transformations, the fermionic Green’s function can be represented in its
triagonal form [32,39]

Ĝ(t, t′) =

(
GR(t, t′) GK(t, t′)

0 GA(t, t′)

)
, (A26)

where the three linearly independent Green’s functions GR, GA, GK are called retarded (R), advanced
(A) and kinetic (K) Green’s functions, respectively. In the fermionic operator formalism, these Green’s
functions are given by [31,32,39]

GR(t, t′) = −iθ(t− t′)〈[ĉ(t), ĉ†(t′)]+〉,
GA(t, t′) = iθ(t′ − t)〈[ĉ(t), ĉ†(t′)]+〉,
GK(t, t′) = −i〈[ĉ(t), ĉ†(t′)]−〉, (A27)

where [, ](+)− denotes the (anti-)commutator. In addition, stationary states satisfy time translational
invariance GR/A/K(t, t′) = GR/A/K(t− t′), which allows for a Fourier representation of the Green’s
functions. The imaginary part of the retarded and advanced Green’s functions gives the single-particle
spectral function [32,39]
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A(ω) = − 1
π

ImGR(ω) =
1
π

ImGA(ω), (A28)

which represents the distribution of quasi-particle excitations in frequency (Fourier) space. On the
other hand, in thermal equilibrium situations, it can be shown that Equation (A28) leads to [32,39]

GK(ω) = [GR(ω)− GA(ω)] tanh
(

βω

2

)
, (A29)

which corresponds to the fluctuation-dissipation theorem for a quantum mechanical system [25,29,32,39].

Appendix B. Thermoelectric Transport Coefficients and Onsager Relations

At finite temperature, electric and thermal transport are interconnected. At the classical level,
this connection is expressed by Onsager reciprocal relations [23,26,27,37]. In this appendix, we shall
discuss the generalization of the electric and thermal transport coefficients for a quantum mechanical
system, in connection with Onsager’s relations, mainly following the formalism presented in Ref. [24].

Classical irreversible thermodynamics, according to Onsager’s perspective, assumes that fluxes
and forces are linearly coupled [23,26,28,30]

Ji = ∑
j

LijXj, (A30)

where Ji and Xj are the thermodynamic fluxes and forces, respectively, and Lij represent a matrix of
phenomenological coefficients. In the presence of a temperature gradient ∇T and an electric field
E = −∇V, the macroscopic charge J and energy U fluxes, respectively, are given by

J = LEE(−∇V) + LET∇T,

U = LTE(−∇V) + LTT∇T. (A31)

In the absence of temperature gradients, the charge flux reduces to J = LEE(−∇V) = σE,
where σ = LEE is the electrical conductivity. On the other hand, if the electric current through the
system vanishes, then the electric field and thermal gradient are linearly coupled via

E = −∇V = −L−1
EE LET∇T = S∇T. (A32)

Here, the proportionality factor is known as the Seebeck coefficient or thermopower

S = −L−1
EE LET = − ∂V

∂T

∣∣∣∣
J=0

. (A33)

For vanishing electric current, the thermal flux is given by the relation

U = −(LTEL−1
EE LET − LTT)∇T = −κ∇T, (A34)

from which it follows that the thermal conductivity is given by

κ = LTEL−1
EE LET − LTT . (A35)

A similar hydrodynamic analysis can be applied in terms of the charge J(T, V) and energy U(T, V)

fluxes across a nano-junction [24]. Taking the QD as an open system in contact with the macroscopic
leads, the continuity equation in steady-state regime reads

∂t〈n̂〉 = e−1 JL − e−1 JR = 0, (A36)
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where JR/L are the currents from the left (L) and right (R) leads, respectively. Therefore, in steady-state
when there is no charge accumulation at the QD, we have JR = JL = J(T, V) . Similarly, for the energy
balance across the QD, we have that in steady-state

∂t〈E〉 = UL −UR = 0, (A37)

thus leading to the condition UL = UR = U(T, V) of no net accumulation of energy at the QD. Let us
now analyze the process from the perspective of non-equilibrium thermodynamics. The continuity
equation for entropy (Σ) flow across the QD reads [24]

∂tΣ + JR
Σ − JL

Σ = PΣ (A38)

Here, the entropy fluxes from left (JL
Σ) and right (JR

Σ ) leads are given by [24]

TL JL
Σ = UL − µLe−1 JL = U(T, V)− µLe−1 J(T, V),

TR JR
Σ = UR − µLe−1 JR = U(T, V)− µRe−1 J(T, V), (A39)

with µL/R the chemical potentials at the left and right leads, respectively, whose difference corresponds
to the bias imposed across the junction, µL − µR = eV. The temperatures at each lead are TL = T and
TR = T − ∆T, respectively, with ∆T = TL − TR the temperature difference across the nano-junction.
The entropy production rate PΣ should, according to classical irreversible thermodynamics, be expressible
as a positive-definite linear combination of generalized fluxes and forces, i.e., [23,24,26–28]

P classical
Σ = ∑

i
Xi Ji. (A40)

Notice that, under steady-state conditions, ∂tΣ = 0, direct substitution of Equations (A39)
into (A38) leads to [24]

PΣ = −U(T, V)∆
(

1
T

)
+ e−1 J(T, V)∆

( µ

T

)
. (A41)

Remarkably, this has precisely the same structure of the classical expression Equation (A40),
but generalized to account for the nonlinear dependence of the energy and electric fluxes. In particular,
notice that under the conditions where the thermal conductance and Seebeck coefficient are defined,
that is when the electric current across the junction vanishes, J(T, V) = 0, the entropy production rate
reduces to the expression [24]

PΣ|J=0 = −U(T, V)∆
(

1
T

)
= U(T, V)

TL − TR
TLTR

> 0. (A42)

Here, the inequality (positive entropy production) implies that the energy (heat) flow has the same
direction as the temperature difference across the junction, in perfect agreement with the second law of
thermodynamics in the context of irreversible processes [23,26,30]. Therefore, the definition of thermal
transport coefficients such as the thermal conductance and Seebeck coefficient in this non-linear regime
is possible without violating the laws of irreversible thermodynamics. In particular, we have that the
heat fluxes from the left and right leads to the dot are defined from the entropy fluxes as [24]

JL
Q = TL JL

Σ = U(T, V)− µLe−1 J(T, V),

JR
Q = TR JL

Σ = U(T, V)− µLe−1 J(T, V). (A43)
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The thermal conductance is thus defined, as in standard experimental situations, under conditions
where the electric current vanishes J(T, V) = 0, thus implying that JL

Q = JR
Q = U(T, V), and hence [24]

κ(T, V) =
∂U
∂T

∣∣∣∣
J=0

. (A44)

We remark that this definition is fully consistent with the standard linear-response limit
Equation (A35), and the non-linear heat flux satisfies the second law of thermodynamics as seen
in Equation (A42). The condition of vanishing electric current J(T, V) = 0 establishes an implicit
functional relation between the bias voltage V(T) and temperature. We can extract such relation from
the theorem of implicit function differentiation

∂

∂T
J(T, V)

∣∣∣∣
J=0

= 0 =
∂J
∂T

∣∣∣∣
V
+

∂J
∂V

∣∣∣∣
T

∂V
∂T

∣∣∣∣
J=0

. (A45)

Solving the equation above, we obtain a natural generalization of the Seebeck coefficient to the
nonlinear response regime [24],

S(T, V) = −∂V
∂T

∣∣∣∣
J=0

=

∂J
∂T

∣∣∣
V

∂J
∂V

∣∣∣
T

. (A46)

We remark that this definition is in full agreement with the standard one in the limit of linear
response V → 0, Equation (A33).
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