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Abstract: Given the increasing size and complexity of datasets needed to train machine learning
algorithms, it is necessary to reduce the number of features required to achieve high classification
accuracy. This paper presents a novel and efficient approach based on the Monte Carlo Tree Search
(MCTS) to find the optimal feature subset through the feature space. The algorithm searches for the
best feature subset by combining the benefits of tree search with random sampling. Starting from an
empty node, the tree is incrementally built by adding nodes representing the inclusion or exclusion of
the features in the feature space. Every iteration leads to a feature subset following the tree and default
policies. The accuracy of the classifier on the feature subset is used as the reward and propagated
backwards to update the tree. Finally, the subset with the highest reward is chosen as the best feature
subset. The efficiency and effectiveness of the proposed method is validated by experimenting on
many benchmark datasets. The results are also compared with significant methods in the literature,
which demonstrates the superiority of the proposed method.

Keywords: feature selection; Monte Carlo Tree Search (MCTS); heuristic feature selection; dimensionality
reduction; wrapper; MOTiFS

1. Introduction

In the current era of information overload, the size of datasets is growing extensively. This leads
to the high dimensional datasets containing many redundant and irrelevant features, resulting in
computationally expensive analysis and less accurate predictive modeling [1–3]. Feature selection
comes to the rescue and aids in reducing dimensions. The feature selection algorithm looks for the
optimal or most informative features by putting aside the redundant and irrelevant features, retaining
accurate information and data structures where possible, resulting in efficient and more accurate
predictive models. Feature selection has been studied for decades in various fields including machine
learning [4–6], statistics [7,8], pattern recognition [9–11], and data mining [12,13].

When addressing the feature selection problem, there are two key aspects: search strategy and
evaluation criterion. An efficient search strategy finds the best candidate subsets rather trying each
and every possible subset, thus reducing the time complexity. A good evaluation criterion judges the
goodness of candidate subsets and identifies the best one among them, thus improving performance in
terms of accuracy. Based on the evaluation criterion, feature selection approaches are mainly classified
as filter, wrapper, or hybrid approaches. In terms of the search strategy (ignoring evaluation criteria),
feature selection algorithms can be classified into exhaustive search, heuristic search, or meta-heuristic
search-based methods. Figure 1 shows the key aspects and classifications of feature selection methods.
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Genetic Algorithm (GA) [15,16], Ant Colony Optimization (ACO) [17,18], Particle Swarm 
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[25,26]. The use of these approaches is still in infancy stages with a debate on which approach is 
better than the others. Although the performance of meta-heuristic algorithms is pretty useful 
compared to traditional heuristic approaches, they are complex in that they need to be fine-tuned on 
many hyper parameters and need enough time to achieve convergence [27]. The tradeoff between 
the computational feasibility, model complexity and optimal features selection is still an unsolved 
puzzle among all these methods [14]. Therefore, vast room for improvement is available and new 
algorithms are immensely needed to overcome such issues, which can efficiently achieve high accuracy 
with less model complexity. 

In this paper, we present a novel approach for feature selection which combines the robustness 
and dynamicity of Monte Carlo Tree Search (MCTS) with the accuracy of wrapper methods. We 
employ MCTS as an efficient search strategy within wrapper framework developing the efficient 
and effective algorithm, named as MOTiFS (Monte carlO Tree Search Based Feature Selection). 
MCTS is a search strategy which finds the optimal solutions probabilistically by using lightweight 
random simulations [28]. It takes random samples in the search space and builds the search tree 
accordingly. Currently, MCTS is successfully being deployed in games with huge search space [29]. 
However, its effectiveness is not well explored for feature selection problems, which is the major 
motivation of this study. 

The proposed algorithm, MOTiFS, starts with an empty tree node, meaning no feature has been 
selected. The tree is then incrementally built by adding nodes one by one representing either of the 
two corresponding feature states: a feature is selected or not selected. Every iteration leads to the 
generation of a feature subset following the tree and default policies. The tree policy not only exploits 
the expanded feature space by searching for the features which have already shown good 
performance in the previous iterations, but also explores the new features by expanding the tree 
incrementally. The default policy, then, induces randomness by choosing the features randomly from 
the remaining set of yet unexpanded features. This perfect blend of tree search with random 
sampling accelerates the process and provides the opportunity to generate the best feature subset in 
a few iterations, even if the search tree is not fully expanded. MOTiFS uses the classification accuracy 
as a goodness of the current feature subset as well as the reward for the current iteration. The search 
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Meta-heuristic approaches, often referred as Evolutionary Algorithms (EA), have recently gained
much attention in feature selection [14]. Meta-heuristic algorithms dig the search space by keeping
the good solutions and improving them (exploitation), as well as looking for the new ones in other
areas through the search space (exploration). Examples of Evolutionary Algorithms are the Genetic
Algorithm (GA) [15,16], Ant Colony Optimization (ACO) [17,18], Particle Swarm Optimization
(PSO) [19–21], Multi-Objective Evolutionary Algorithms [22–24] and Bat Algorithms [25,26]. The use
of these approaches is still in infancy stages with a debate on which approach is better than the others.
Although the performance of meta-heuristic algorithms is pretty useful compared to traditional heuristic
approaches, they are complex in that they need to be fine-tuned on many hyper parameters and need
enough time to achieve convergence [27]. The tradeoff between the computational feasibility, model
complexity and optimal features selection is still an unsolved puzzle among all these methods [14].
Therefore, vast room for improvement is available and new algorithms are immensely needed to
overcome such issues, which can efficiently achieve high accuracy with less model complexity.

In this paper, we present a novel approach for feature selection which combines the robustness and
dynamicity of Monte Carlo Tree Search (MCTS) with the accuracy of wrapper methods. We employ MCTS
as an efficient search strategy within wrapper framework developing the efficient and effective algorithm,
named as MOTiFS (Monte carlO Tree Search Based Feature Selection). MCTS is a search strategy which
finds the optimal solutions probabilistically by using lightweight random simulations [28]. It takes
random samples in the search space and builds the search tree accordingly. Currently, MCTS is
successfully being deployed in games with huge search space [29]. However, its effectiveness is not
well explored for feature selection problems, which is the major motivation of this study.

The proposed algorithm, MOTiFS, starts with an empty tree node, meaning no feature has been
selected. The tree is then incrementally built by adding nodes one by one representing either of the
two corresponding feature states: a feature is selected or not selected. Every iteration leads to the
generation of a feature subset following the tree and default policies. The tree policy not only exploits
the expanded feature space by searching for the features which have already shown good performance
in the previous iterations, but also explores the new features by expanding the tree incrementally.
The default policy, then, induces randomness by choosing the features randomly from the remaining
set of yet unexpanded features. This perfect blend of tree search with random sampling accelerates
the process and provides the opportunity to generate the best feature subset in a few iterations, even
if the search tree is not fully expanded. MOTiFS uses the classification accuracy as a goodness of
the current feature subset as well as the reward for the current iteration. The search tree is then
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updated by propagating the reward backwards through the selected nodes. Finally, the feature subset
with highest accuracy is chosen as a best feature subset. For experimental purposes, the K-Nearest
Neighbor classifier is employed as a reward function. MOTiFS is tested on 25 real-world datasets and
the promising results prove its validity. The comparison with latest and state-of-the art methods shows
the superiority of MOTiFS and serves as a proof of concept. The main contributions of this study are
listed below:

• The novel feature selection algorithm, MOTiFS, is proposed which combines the robustness of
MCTS with the accuracy of wrapper methods.

• MOTiFS searches through the feature space efficiently and find the best feature subset within a
few iterations, relatively.

• Only two hyper-parameters, scaling factor and termination criteria, are required to be tuned, making
MOTiFS simple and flexible to handle.

• MOTiFS is tested on 25 benchmark datasets and results are also compared with other established
methods. The promising results demonstrate the superiority of MOTiFS.

The rest of the paper is organized as follows. The review of the literature is provided in Section 2.
Section 3 provides the necessary background for the proposed method. Section 4 presents the
demonstration of the proposed method (MOTiFS). The results and experimental details are presented
in Section 5. Finally, the conclusions and future research directions are discussed in Section 6.

2. Literature Review

The key aspects of feature selection are illustrated above in Figure 1. This section presents a brief
overview of various feature selection methods.

Filter methods are independent of the specific classification algorithm. They use the inherent
properties, like distance and information gain, of the dataset and measure the importance of each
feature with respect to the class label and rank them [30–32]. Filter-based methods are fast enough
and can be used with any classification algorithm, but there is a major drawback in that they show a
lower performance in terms of classification accuracy. In wrapper methods, the classification algorithm
is directly related in a way that the accuracy of the classifier serves as a measure of goodness of the
candidate feature subsets [33–35]. They are computationally expensive because they run the classifier
repeatedly but deliver high accuracy compared to filter methods. Hybrid methods integrate the
filter and wrapper methods in order to take advantage of both types [36,37]. Such methods use the
independent metric and a learning algorithm in order to measure the goodness of each candidate
feature subset in the search space.

Irrespective of the evaluation criterion, feature selection methods fall into one of the following
search strategies: exhaustive, heuristic or meta-heuristic. In earlier literature, a few attempts at feature
selection have been made, involving exhaustive searches [38]. However, applying an exhaustive
search on datasets with many features is practically impossible due to the complexity involved,
so they are seldom used. Hence, researchers have adopted heuristic search strategies, like greedy hill
climbing and best first search, which use some heuristics to reach the goal rather traversing the whole
search space [30,39]. Greedy hill climbing approaches include SFS (Sequential Forward Selection),
SBS (Sequential Backward Selection) and bidirectional search algorithms. They look for the relevant
features by evaluating all local changes in a search space. However, the major drawback associated
with such algorithms is that whenever a positive change occurs—either a feature is added to the
selected set in SFS or deleted from the selected set in SBF—this feature does not get a chance to be
re-evaluated, and it becomes highly probable that the algorithm will deviate from optimality. Such a
problem is referred as the nesting effect [14]. In efforts to tackle this major issue, researchers came up
with some useful algorithms like SFFS (Sequential Forward Floating Selection) and SBFS (Sequential
Backward Floating Selection).
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Recently, meta-heuristic approaches like the Genetic Algorithm (GA) [15,16], Ant Colony
Optimization (ACO) [17,18], Particle Swarm Optimization (PSO) [19–21], Multi-Objective Evolutionary
Algorithms [22–24] and Bat Algorithms [25,26] have gained much attention [14]. However,
the involvement of too many hyper parameters makes tuning the models for optimized performance
too complex [27]. For example, in GAs, a sufficient population size is required with high enough
generations to obtain the desired results. Obviously, this leads GAs to be computationally expensive.
Also, many parameters are involved in GAs, like population size, number of generations, crossover
probability, permutation probability, etc., which makes it more challenging to find the suitable model
for effective feature selection. One earlier attempt using MCTS in feature selection is found in [40].
The method proposed in [40] maps the feature selection as an exhaustive search tree and, therefore,
has a huge branching factor and is computationally very expansive with unacceptable bounds.

In this study, we proposed a novel feature selection algorithm based on MCTS and wrapper
methods. We define the feature selection tree in a novel and incremental fashion, where exploration and
exploitation are well balanced within limited computational bounds. The extensive experimentation
on many benchmark datasets and comparison with state-of-the-art methods demonstrates the validity
of the proposed method.

3. Background

This section presents the background concepts used in the proposed method.

3.1. Working Procedure of Monte Carlo Tree Search (MCTS)

MCTS is a heuristic search method which uses lightweight random simulations to reach a goal
state [28]. Each MCTS iteration consists of four sequential steps: selection, expansion, simulation
and backpropagation.

1. Selection: Starting from the root node, the algorithm traverses the tree by selecting nodes with the
highest approximated values, until a non-terminal node with unexpanded children is reached.

2. Expansion: A new child node is added to expand the tree, according to the available set of actions.
3. Simulation: From the new child node, a random simulation is performed until the terminal node

is reached, to approximate the reward.
4. Backpropagation: The simulation result (reward) is backpropagated through the selected nodes to

update the tree.

The selection and expansion steps are performed using the tree policy, whereas the simulation step is
performed with the default policy.

3.2. Upper Confidence Bounds for Trees (UCT) Algorithm

The tree policy uses the Upper Confidence Bounds for Trees (UCT) algorithm for node selection.
The value of each node is approximated using the UCT algorithm, as shown in Equation (1).
The tree policy then selects the nodes at each level which have the highest approximated values.
This maintains a balance between exploiting the good solutions and exploring the new ones.

UCTv =
Wv

Nv
+ C ×

√
2 × ln

(
Np
)

Nv
, (1)

where, Nv and Np represents number of times nodes v and its parent p are visited, respectively.
Wv represents the number of wining simulations (considering a games perspective) at node v. C is the
exploration constant.
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4. MOTiFS (Monte Carlo Tree Search Based Feature Selection)

The Monte Carlo Tree Search (MCTS) is used as a search strategy within a wrapper framework
to develop a novel approach for feature selection. Using the efficient and meta-heuristic approach of
MCTS and the predictive accuracy of the wrapper method, the goal is to find the best feature subset to
give maximum classification accuracy. Figure 2 shows the depiction of the proposed method.
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The preliminary step is to map the feature selection problem into some sort of game tree. In feature
selection, either a feature is selected or not selected in a feature subset, and represented by 1 or 0 at
the corresponding feature position in a total set of feature space. Using this intuition, we map the
problem as a single player game where the goal is to select best possible features with the maximum
accumulative reward. MOTiFS constructs a special tree where each node represents either of the
two corresponding feature states: a feature is selected or not selected. The definition for the feature
selection tree is provided below:

Definition 1. For a feature set, F = { f1, f2, . . . , fi, . . . , fn}, the feature selection tree is a tree satisfying the
following conditions:

1. The root is ∅0, which means no features are selected.
2. Any node at level i− 1 has two children, fi and ∅i, where 0 < i < n.

Where, nodes fi and ∅i represent the inclusion or exclusion of the corresponding feature, fi, in the
feature subset, respectively. Any path from the root node to one of the leaves represents a feature
subset. So, the goal is to find a path which gives the best reward (accuracy). We use MCTS for tree
construction and traversal, and finally choose the path (feature subset) with best accuracy.

The search starts with an empty root node and incrementally builds the tree by adding nodes
representing features states, one by one, with a random probability of being selected or not. At each
turn, a subset of features is selected following the tree and default policies. The classification accuracy of
the current feature subset is used as a reward, and the search tree is updated through backpropagation.
The feature selection tree and four steps search procedure are graphically represented in Figure 3.
Table 1 summarizes the notations used throughout the text.
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Table 1. Notations used in the proposed method.

Notation Interpretation

F Original feature set
n Total number of features
vi Node v at tree level i
a(vi) Action taken at vi
Qsimulation Simulation reward

4.1. Feature Subset Generation

A feature subset is generated during the selection, expansion and simulation steps, in each
MCTS iteration.

4.1.1. Selection

In the selection step, one path is selected from the already expanded tree. The path selected is the
one whose inclusion gave a high reward in the previous iterations. The features in the selected path are
included in the feature subset of the current iteration. The algorithm traverses the already expanded
tree following the tree policy until a node is reached which is non-terminal and has an unexpanded
child. The UCT algorithm is used to decide which node to be chosen at each level. If the UCT algorithm
selects node fi at level i, feature fi is included in the current feature subset. If it selects ∅i, feature fi is
not included. If fi is selected, this is based on an intuition that the inclusion of feature fi gave a high
reward in previous iterations, so needs to be included in the current feature subset. On the other hand,
if it is not selected, it is better not to choose feature fi as it did not contribute much towards a better
reward, previously.
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The vanilla UCT algorithm approximates the reward at each node by dividing by the number
of times the node is visited, as shown in Equation (1). This kind of approximation is most suitable
in the game theoretic perspective where the reward is either a 1 (win) or 0 (loss), and the goal is to
select the nodes (moves) which give the maximum number of wins in the minimum number of visits.
However, feature selection is a different sort of a problem where the goal is to select the path which
gives the maximum reward (accuracy). Using this intuition, instead of approximating the reward and
penalizing by the number of visits, we used the maximum reward obtained at each node. The modified
form of the UCT algorithm used in MOTiFS is shown in Equation (2). During tree traversal, the nodes
which receive the highest scores from Equation (2) are selected until a non-terminal node with an
unexpanded child is reached.

UCTvj = max
(

Qvj

)
+ C ×

√
2 × ln(Nvi )

Nvj

, (2)

where, max
(

Qvj

)
is the maximum reward at node vj and C > 0 is a constant. Nvj and Nvi represent

the number of times nodes vj and its parent vi are visited, respectively.

4.1.2. Expansion

During expansion, a new child node is added to the urgent node (the last selected node in
the selection step). The addition of a new child node at node vi is also based on the UCT function.
If UCTfi+1

is larger than UCT∅i+1 then child node fi+1 is added, and thus, feature fi+1 is included in
the current feature subset. Conversely, child node ∅i+1 is added and feature fi+1 is not included in the
current feature subset.

4.1.3. Simulation

The simulation step induces randomness in feature subset generation following the default policy.
It choses features from the remaining unexpanded features, with a uniform probability of being
selected or not. If the recently expanded node is vi, a path from vi to a leaf node is randomly selected.

Assuming the current expanded node is vi, the inclusion of features from f1 to fi into the current
feature subset is determined in the selection and expansion steps, whereas the inclusion of the remaining
features from fi+1 to fn in the current feature subset is randomly determined in the simulation step.
A tree search and a random search participate together in feature subset generation, thus giving the
opportunity to obtain the best feature subset in fewer runs even if the search tree is not fully expanded.

4.2. Reward Calculation and Backpropagation

The classifier is then applied to evaluate the goodness of the feature subset. The classification
accuracy of the current feature subset is also used as a simulation reward, Qsimulation, for the current
selected nodes and propagated backwards to update the search tree.

Qsimulation = ACCclassi f ier(Fsubset) (3)

where, ACCclassi f ier(.) represents the accuracy of the classifier on the current feature subset, Fsubset.
If the accuracy of the current feature subset is better than the previous best, then the current feature
subset becomes the best feature subset. This process goes on until stopping criteria is met.

For the purpose of this study, we employed the nearest neighbors (K-NN) classifier to evaluate
the candidate feature subset and as a reward function. We used the simple and efficient nearest
neighbors classifier as it is well-understood in the literature and works surprisingly well in many
situations [41–44]. Moreover, many other similar studies and comparison methods in literature,
mentioned in Section 5.3, have applied the nearest neighbors classifier and therefore, we considered it
to be a better choice for the comparative analysis. However, any other classifier can be used within the
proposed framework. The algorithm for MOTiFS is provided below as Algorithm 1.
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Algorithm 1 The MOTiFS Algorithm

Load dataset and preprocess
Initialize SCALAR, BUDGET //Scaling factor & Number of MCTS simulations (hyper parameters)
function MOTiFS (featuresList)

create rootNode
maxReward, bestFeatureSubset← UCTSEARCH (rootNode)
return (maxReward, bestFeatureSubset)

function UCTSEARCH (rootNode)
Initialize maxReward, bestFeatureSubset
while within computational budget do

frontNode← TREEPOLICY (rootNode)
reward, featureSubset← DEFAULTPOLICY (frontNode.state)
BACKUP (frontNode, reward)
if reward is greater than maxReward then

maxReward← reward
bestFeatureSubset← featureSubset

return (maxReward, bestFeatureSubset)
function TREEPOLICY (node)

while node is non-terminal do
if node not fully expanded then

return EXPAND (node)
else

node← BESTCHILD (node, SCALAR)
return node

function EXPAND (node)
choose a ∈ untried actions from A(node.state)
add a newChild with f (node.state, a)
return newChild

function BESTCHILD (v, C)

return max
v′∈ children of v

max(Qv′ ) + C
√

2 × ln(v.visits)
v′ .visits

function DEFAULTPOLICY (state)
while state is non-terminal do

choose a ∈ A(state) uniformly at random
state← f (state, a)

traverse state.path
if ai is equal to fi+1 then

featureSubset← INCLUDE (fi+1)
reward← REWARD (featureSubset)
return (reward, featureSubset)

function BACKUP (node, reward)
while node is not null do

node.visits← node.visits + 1
if reward > node.reward then

node.reward← reward
node← node.parent

return

5. Experiment and Results

The efficacy of the MOTiFS was demonstrated by experimenting on many publicly-available
benchmark datasets. Twenty-five benchmark datasets of varying dimensions were used and results
were compared with other significant methods in the literature.
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5.1. Datasets

Twenty-five benchmark datasets were used for validation and comparison purposes. Twenty-four
datasets were taken from two publicly available repositories, LIBSVM [45] and UCI [46]. However,
one dataset “Klekota Roth fingerprint (KRFP)” representing the fingerprints of the chemical compounds
was taken from the 5-HT5A dataset to classify between active or inactive compounds [11,47]. The details
of the datasets are summarized in Table 2. The datasets taken were of varying dimensions and sizes.
In feature selection, literature categorizes datasets into three dimensional ranges, based on the total number
of features (F): low dimension (0–19), medium dimension (20–49), and high dimension (50–∞) [48]. In the
current study, 10 datasets were low dimensional, 5 datasets were medium dimensional, and 10 datasets
were high dimensional.

Table 2. Summary of the selected datasets.

# Dataset No. of Features No. of Instances No. of Classes

1 Spambase 57 4701 2
2 WBC 9 699 2
3 Ionosphere 34 351 2
4 Arrhythmia 195 452 16
5 Multiple features 649 2000 10
6 Waveform 40 5000 3
7 WBDC 30 569 2
8 Glass 9 214 6
9 Wine 13 178 3
10 Australian 14 690 2
11 German number 24 1000 2
12 Zoo 17 101 7
13 Breast cancer 10 683 2
14 DNA 180 2000 2
15 Vehicle 18 846 4
16 Sonar 60 208 2
17 Hillvalley 100 606 2
18 Musk 1 166 476 2
19 Splice 60 1000 2
20 KRFP * 4860 215 2
21 Soybean-small 35 47 4
22 Liver disorders 6 345 2
23 Credit 15 690 2
24 Tic-tac-toe 9 985 2
25 Libras movement 90 360 15

* downloaded from [11].

5.2. Experimental Procedure and Parameter Setup for MOTiFS

We conducted 10-fold cross validation for the whole feature selection procedure. A dataset was
equally divided into 10 random partitions. Then, a single partition was retained as a test set, while the
remaining 9 partitions were used as a training set. This procedure was repeated 10 times (each partition
behaved as a test set exactly once).

The significant advantage of MOTiFS is that only two hyper-parameters are required to be
tuned. The parameter values used in the experiments are presented in Table 3. The “scaling factor”, C,
maintains the balance between exploiting good solutions and exploring new ones in the search space.
An excessively large value of C benefits the exploration part and slows down convergence, whereas,
an insufficient C may cause the search to be stuck in a local optimum by penalizing the exploration
and only sticking to locally good solutions. After careful examination and series of experimentation,
we limited our choice of C to 0.1, 0.05, and 0.02. During training, we constructed three feature selection
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trees with different scaling factors (0.1, 0.05, 0.02) and selected one of them based on 5-fold cross
validation accuracy. That is, the scaling factor was auto-tuned during the training process. For the
“termination criteria”, we used the fixed number of iterations (MCTS simulations). This depends on the
dimensional size of the dataset. We set the number of simulations to 500 if the total number of features
dimensions was less than 20, otherwise it was set to 1000, excluding the “KRFP” dataset. For the very
high dimensional dataset, “KRFP”, we used 10,000 simulations.

Table 3. Parameters setup for MOTiFS.

Parameter Values Used for Different Datasets

Scaling factor, C (0.1, 0.05, 0.02)
Termination criteria (500, 1000, 10,000) iterations

5.3. Comparison Methods

We compared MOTiFS with state-of-the-art methods in the literature. The comparison methods
were diverse and varied between established sequential approaches, fuzzy rule-based, evolutionary
and entropy reduction-based methods, as summarized in Table 4. Most of the comparison methods
were wrapper based, except FS-FS and FR-FS (well established filter-based methods) which we included
for generalized comparison of accuracies achieved with different datasets earlier. For fair comparison
against each dataset we deployed the classifier reported in available comparison methods. For datasets
“Spambase”, “WBC”, “Ionosphere”, “Arrhythmia”, “Multiple features”, “Waveform”, “WBDC”,
“Glass”, “Wine”, “Australian”, “German number”, “Zoo”, “Breast cancer”, “DNA”, “Vehicle”,
“Sonar”, “Hillvalley”, “Musk 1”, “Splice” and “KRFP”, the used classifier was 5-NN. For datasets
“Soybean-small”, “Liver disorders”, “Credit”, “Tic-tac-toe” and “Libras movement”, the 3-NN classifier
is deployed.

Table 4. Summary of the methods for our comparison.

Method Description

SFS, SBS Sequential Forward Selection and Sequential Backward Selection * [22] (2015)
FS-FS Feature Similarity Technique [49] (2002)
FR-FS Fuzzy Rule Based Technique [50] (2012)
SFSW An Evolutionary Multi-Objective Optimization Approach [22] (2015)

DEMOFS Differential Evolution Based Multi-Objective Feature Selection * [22] (2014)
BA Bat Algorithm and Optimum-Path Forest Based Wrapper Approach [26] (2014)

PSO Particle Swarm Optimization Based Method * [26] (2014)
SCE, CCE Shannon’s Entropy Reduction, Complementary Entropy Reduction * [39] (2016)

PDE-2 Partition Differential Entropy Based Method [39] (2016)

* Reported from the mentioned reference.

5.4. Results and Comparisons

We conducted 10-fold cross-validation for the whole feature selection procedure, as detailed
in Section 5.2. As our method is heuristic, we ran our algorithm five times on every datasets and
reported the average of five runs. We reported the average accuracy and the number of features
selected. Tables 5 and 6 present a detailed summary of the results and comparisons with other methods.
The bold values in each row indicate the best among all the methods.

In Table 5, results are reported for 20 datasets using 5-NN as a classifier. Comparing classification
accuracies, it is obvious that MOTiFS overall outperformed on 15 datasets, namely “Spambase”, “WBC”,
“Ionosphere”, “Multiple features”, “WBDC”, “Glass”, “Wine”, “Australian”, “German number”,
“Breast cancer”, “Vehicle”, “Sonar”, “Musk 1”, “Splice” and “KRFP”, compared to all other methods.
Moreover, for two datasets, “Arrhythmia” and “Waveform”, MOTiFS ranked second among all the
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competitors. However, for three datasets, namely “Zoo”, “DNA” and “Hillvalley”, MOTiFS did not
perform well.

Table 5. Comparison of MOTiFS with other methods, according to 5-NN.

Dataset
Avg. Acc.

# Sel. Feat.

MOTiFS SFSW
[22]

SFS
[22]

SBS
[22]

FS-FS
[49]

FR-FS
[50]

DEMOFS
[22]

BA
[26]

PSO
[26]

Spambase 0.907 ± 0.003 0.885 0.874 0.870 0.900
31.5 26.0 35.7 37.3 29.0

WBC
0.968 ± 0.001 0.961 0.960 0.951 0.956

5.52 4.2 6.4 7.3 4.0

Ionosphere 0.889 ± 0.007 0.883 0.887 0.859 0.788 0.844 0.780 0.790
12.32 11.5 1.2 9.1 16.0 4.33 21.0 14.0

Arrhythmia 0.650 ± 0.003 0.658 0.599 0.580 0.589
94.4 100.0 89.4 49.2 100.0

Multiple
features

0.980 ± 0.001 0.979 0.903 0.912 0.783
321.84 270.0 210.0 305.0 325.0

Waveform
0.816 ±0.002 0.837 0.778 0.785 0.752

19.42 16.0 18.4 18.3 20.0

WBDC
0.967 ± 0.004 0.941 0.901 0.898 0.936

15.42 13.5 13.9 17.8 2.14

Glass
0.705 ± 0.003 0.678 0.631 0.636 0.615

4.80 4.4 5.8 7.0 6.96

Wine
0.963 ± 0.004 0.961 0.914 0.914 0.955 0.897

7.52 6.9 6.0 7.5 4.38 6.0

Australian
0.850 ± 0.002 0.846 0.830 0.828 0.773

6.98 4.7 3.7 3.0 4.0
German
number

0.725 ± 0.008 0.713 0.682 0.658 0.701
11.46 10.5 12.2 10.8 1.0

Zoo
0.920 ± 0.022 0.954 0.949 0.980 0.954

9.06 11.0 9.0 13.0 11.0

Breast cancer
0.967 ± 0.003 0.965 0.951 0.949 0.940 0.930

6.14 4.3 6.10 6.10 5.0 5.0

DNA
0.810 ± 0.006 0.831 0.822 0.823 0.760 0.760

89.26 71.8 18.8 20.6 96.0 91.0

Vehicle
0.721 ± 0.008 0.653 0.686 0.673

10.14 9.1 10.8 10.7

Sonar
0.850 ± 0.002 0.827 0.729 0.786

28.96 20.0 5.85 10.0

Hillvalley 0.535 ± 0.003 0.575 0.605
45.18 40.0 26.0

Musk 1
0.852 ± 0.003 0.815 0.835

81.34 59.3 58.0

Splice 0.778 ± 0.002 0.680 0.670
25.66 28.0 28.0

KRFP
0.896 ± 0.001 0.842 * 0.884 *

2390.2 6.0 1866

* evaluated using weka library.

Table 6 presents the result according to 3-NN on five datasets. Clearly, MOTiFS outperformed
on four datasets, namely “Liver-disorders”, “Credit”, “Tic-tac-toe” and “Libras movement” in terms
of classification accuracy. However, on the “Soybean-small” dataset, the average MOTiFS score was
not 1.0, as reported by all other methods, although MOTiFS achieved an accuracy of 1.0 on three out of
five independent runs.
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Table 6. Comparison of MOTiFS with other methods, according to 3-NN.

Dataset
Avg. Acc.

# Sel. Feat. Avg. Acc.

MOTiFS SCE [39] CCE [39] PDE-2 [39]

Soybean-small 0.988 ± 0.015
1.000 1.000 1.00012.18

Liver-disorders
0.645 ± 0.012

0.602 0.592 0.5903.94

Credit
0.845 ± 0.007

0.646 0.654 0.6598.22

Tic-tac-toe
0.794 ± 0.006

0.774 0.747 0.7577.18

Libras movement
0.807 ± 0.011

0.538 0.552 0.55444.94

We also reported the standard deviation of five independent runs of MOTiFS for each dataset in
Tables 5 and 6, according to the average accuracy. For almost all of the datasets, the standard deviation
was too small to be negligible. Thus, the stability and reliability of MOTiFS was evident.

While comparing the number of selected features in Table 5, MOTiFS could not outperform
because of marginal differences among all the methods. The reason is quite obvious; MOTiFS does not
account for the selected features in reward evaluation and employs the classification accuracy only as
the reward function. However, the DR (dimensional reduction) achieved by MOTiFS is presented in
Figure 4. We calculate the DR on each dataset using Equation (4).

DR = 1− # selected f eatures
# total f eatures

(4)

Entropy 2018, 20, x  12 of 16 

 

Table 6. Comparison of MOTiFS with other methods, according to 3-NN. 

Dataset 
Avg. Acc. 

# Sel. Feat. 
Avg. Acc. 

MOTiFS SCE [39] CCE [39] PDE-2 [39] 

Soybean-small 
0.988 ± 0.015 

1.000 1.000 1.000 
12.18 

Liver-disorders 
0.645 ± 0.012 

0.602 0.592 0.590 3.94 

Credit 
0.845 ± 0.007 

0.646 0.654 0.659 
8.22 

Tic-tac-toe 0.794 ± 0.006 0.774 0.747 0.757 
7.18 

Libras movement 
0.807 ± 0.011 

0.538 0.552 0.554 44.94 

We also reported the standard deviation of five independent runs of MOTiFS for each dataset in 
Tables 5 and 6, according to the average accuracy. For almost all of the datasets, the standard 
deviation was too small to be negligible. Thus, the stability and reliability of MOTiFS was evident. 

While comparing the number of selected features in Table 5, MOTiFS could not outperform 
because of marginal differences among all the methods. The reason is quite obvious; MOTiFS does 
not account for the selected features in reward evaluation and employs the classification accuracy 
only as the reward function. However, the DR (dimensional reduction) achieved by MOTiFS is 
presented in Figure 4. We calculate the DR on each dataset using Equation (4). 

DR = 1 − 
# 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 (4) 

 
Figure 4. Graphical representation of dimensional reduction (DR) achieved by MOTiFS on all the 
datasets. 

MOTiFS performed remarkably well in terms of accuracy and DR on all datasets compared to 
all other methods. On high dimensional datasets, “Ionosphere”, “Arrhythmia”, “Multiple features”, 
“Sonar”, “Musk 1”, “Splice”, “KRFP” and “Libras movement”, MOTiFS obtained DR values above 
50%, achieving a high accuracy compared to other methods. 

Spa
m

ba
se

W
BC

Io
no

sp
he

re

Arrh
yth

m
ia

M
ult

ipl
e 

fe
at

ur
es

W
av

ef
or

m

W
BDC

Glas
s

W
ine

Aus
tra

lia
n

Ger
m

an
 n

um
be

r
Zoo

Bre
as

t c
an

ce
r

DNA

Veh
icl

e

Son
ar

Hillv
all

ey

M
us

k 1

Spli
ce

KRFP

Soy
be

an
-s

m
all

Liv
er

-d
iso

rd
er

s

Cre
dit

Tic
-ta

c-
to

e

Lib
ra

s m
ov

em
en

t

D
R

 (
%

)

Figure 4. Graphical representation of dimensional reduction (DR) achieved by MOTiFS on all the datasets.

MOTiFS performed remarkably well in terms of accuracy and DR on all datasets compared to
all other methods. On high dimensional datasets, “Ionosphere”, “Arrhythmia”, “Multiple features”,
“Sonar”, “Musk 1”, “Splice”, “KRFP” and “Libras movement”, MOTiFS obtained DR values above
50%, achieving a high accuracy compared to other methods.
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Summarizing the overall performance, MOTiFS outperformed the other methods on 19 out of
25 datasets, namely “Spambase”, “WBC”, “Ionosphere”, “Multiple features”, “WBDC”, “Glass”, “Wine”,
“Australian”, “German number”, “Breast cancer”, “Vehicle”, “Sonar”, “Musk 1”, “Splice”, “KRFP”,
“Liver-disorders”, “Credit”, “Tic-tac-toe” and “Libras movement”, compared to all other methods,
in term of classification accuracy. For three datasets, “Arrhythmia”, “Waveform” and “Soybean-small”,
MOTiFS ranked second among all methods. However, for three datasets, “Zoo”, “DNA” and
“Hillvalley”, MOTiFS could not stand as high as the other methods. Overall, considering the accuracy
and dimensional reduction together, MOTiFS performed remarkably well, as discussed above.

5.5. Discussion

We studied the effectiveness of MCTS in feature selection, which had previously been barely
researched. Defining a feature selection problem as the proposed feature selection tree and applying
MCTS to find best feature subset is a new concept, to the best of our knowledge. The proposed feature
selection tree has the potential benefit of having less branching factors. A tree can grow to sufficient
depth in a limited number of simulations, thus, taking adequate benefits from both the tree search and
random sampling.

For the total number of features, n, if complexities in the node selection operation (UCT algorithm
+ random selection) and classifier are b and c, respectively, then the complexity of one MCTS simulation
is O(nb + c). However, the complexity of the node selection operation is a constant, so the complexity
for s number of simulations is O(sn + sc). If the number of simulations is fixed, the complexity of
our proposed method is linear to the number of features, excluding the complexity of the classifier.
Our proposed method finds the best feature subset within a limited number of simulations, as shown
in the reported results and comparisons above.

We performed extensive experiments on 25 datasets of varying dimensions and sizes, with an aim
of properly testing the performance of the proposed method. The results and comparisons with other
state-of-the-art and evolutionary approaches showed the efficacy and usefulness of the proposed
method. However, the performance could further be improved by careful examination of the datasets’
characteristics, modifying the reward functions and optimization of model parameters accordingly.

Future research directions may include experimentations on very large dimensional datasets
and/or playing with different reward functions with an intention to further improve the performance
in terms of both increasing accuracy and reducing dimensions.

6. Conclusions

In this paper, we proposed a novel feature selection algorithm, MOTiFS, which combines the
robustness and dynamicity of MCTS with the accuracy of wrapper methods. MOTiFS searched the
feature space efficiently by balancing between exploitation and exploration and found the best feature
subset within a few iterations. Another significant feature of MOTiFS was the involvement of only two
hyper-parameters: scaling factor and termination criteria, thus, making MOTiFS simple and flexible to
handle. The K-NN classifier was used for experiments, and results were compared with the significant
and state-of-the-art methods in the literature. Besides offering an improved classification accuracy on
25 real-world datasets, MOTiFS significantly reduced the dimensions of high dimensional datasets.
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6. Sluga, D.; Lotrič, U. Quadratic mutual information feature selection. Entropy 2017, 19, 157. [CrossRef]
7. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning. Elements 2009, 1, 337–387.
8. Guo, Y.; Berman, M.; Gao, J. Group subset selection for linear regression. Comput. Stat. Data Anal. 2014,

75, 39–52. [CrossRef]
9. Saganowski, S.; Gliwa, B.; Bródka, P.; Zygmunt, A.; Kazienko, P.; Kozlak, J. Predicting community evolution

in social networks. Entropy 2015, 17, 3053–3096. [CrossRef]
10. Reif, M.; Shafait, F. Efficient feature size reduction via predictive forward selection. Pattern Recognit. 2014, 47,

1664–1673. [CrossRef]
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