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Abstract: Eco-cognitive computationalism sees computation in context, exploiting the ideas
developed in those projects that have originated the recent views on embodied, situated,
and distributed cognition. Turing’s original intellectual perspective has already clearly depicted the
evolutionary emergence in humans of information, meaning, and of the first rudimentary forms
of cognition, as the result of a complex interplay and simultaneous coevolution, in time, of the
states of brain/mind, body, and external environment. This cognitive process played a fundamental
heuristic role in Turing’s invention of the universal logical computing machine. It is by extending this
eco-cognitive perspective that we can see that the recent emphasis on the simplification of cognitive
and motor tasks generated in organic agents by morphological aspects implies the construction of
appropriate “mimetic bodies”, able to render the accompanied computation simpler, according to a
general appeal to the “simplexity” of animal embodied cognition. I hope it will become clear that
eco-cognitive computationalism does not aim at furnishing a final and stable definition of the concept
of computation, such as a textbook or a different epistemological approach could provide: I intend to
take into account the historical and dynamical character of the concept, to propose an intellectual
framework that depicts how we can understand not only the change of its meaning, but also the
“emergence” of new forms of computations.

Keywords: computation; information; eco-cognitive computationalism; mimetic minds; organic
agents; morphological computing; mimetic bodies; co-evolution; simplexity

1. Computationalism in an Eco-Cognitive Perspective

What I call Eco-Cognitive Computationalism sees computation in context, exploiting the
ideas developed in those projects that have originated the recent views on embodied, situated,
and distributed cognition: computation is seen as active in physical entities appropriately transformed
so that they become what I call cognitive mediators, in which data can be encoded and decoded
to obtain productive results. This eco-cognitive approach to the concept of computation is strictly
related to the tradition of research concerning the so-called distributed and embodied cognitive
systems. The “distributed” approach sees cognition as a socially distributed process, pragmatically
oriented, and affirms that cognitive processes can be better analyzed as situated in and distributed
across material artifactual circumstances, in which the “ecological” view also emphasizes the role
of the agent-environment interaction. The theory of distributed cognition was created by Edwin
Hutchins [1,2] to describe in a novel and more satisfactory way various problem solving processes
in real work situations, so providing a new perspective that encountered great success in general
cognitive science. I consider this approach particularly appropriate to treat the concept of computation:
I will try to show that using this perspective both Turing’s discoveries and the recent new deal on
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morphological computation can be better understood and at the same time seen as sharing analogous
epistemological characters. Indeed, eco-cognitive computationalism does not reduce computation to
digital computation (that is to the processing of strings of digits according to rules), but it is open to
include and consider other and new forms of computation. The perspective of the ecology of cognition
concentrates on “physical computation”, exactly following Turing’s original thoughts concerning the
emergence of computation in organic, inorganic, and artefactual agents, I will quickly describe in
this article.

Turing’s germinal speculations on how the so-called “unorganized brains” and “unorganized machines”
(On the meaning of these concepts in Turing’s sense, see Sections 2.1 and 5 below) are transmuted in
organized “machineries” are extremely interesting: the problem is to see how, so to speak, “innocent”
entities (in the sense of virginal objects “free from cognitive capacities”) become first of all carriers of
information and knowledge, but also carriers of computation. Turing is convinced that the emergence
of rudimentary forms of information and cognition can be clearly comprehended in an evolutionary
perspective, as the fruit of an eco-cognitive interplay and simultaneous coevolution, in time, of the
states of brain/mind, body, and external environment. At the same time, this evolutionary perspective
favors the subsequent creation of both the Universal Logical Computing Machine (which illustrates
computation as a pure syntactic process) and the concrete Universal Practical Computing Machine
(Further details on this view proposed by Turing are illustrated in [3]). Machines lose their cognitive
innocence (they were already merely involved in elementary low level cognitive tasks, such as in the
case of telephone, telegraph, etc.) and become universal cognitive physical entities, in so far as they
become computational artefacts that compute for humans or artefactual agents: those computers
that in this perspective offered by Turing I called “mimetic minds” [4] (the concept of mimetic
mind is explained below in the following Section 2). I hope it will become clear that eco-cognitive
computationalism does not aim at furnishing a final and stable definition of the concept of computation,
such as a textbook or a different epistemological approach could provide: I intend to take into account
the historical and dynamical character of this concept, to propose an intellectual framework that
depicts how we can understand not only the change of its meaning, but also the “emergence” of new
forms of computations.

2. The Birth of Mimetic Minds: Educating Human Brains/Educating Physical Entities

I have said in the previous section that what I call eco-cognitive computationalism sees computation
as active in physical entities suitably transformed so that they become what I call cognitive mediators,
in which data can be encoded and decoded to obtain useful results. I also stressed the importance of
an evolutionary framework that sees the emergence of information, cognition, and computation as the
result of a complex eco-cognitive interaction and simultaneous coevolution, in time, of the states of
brain/mind, body, and external environment. As I have stressed in [3], the concepts of information,
cognition, and computation must not be considered as static, and their meaning changes depending on
the modifications of theory and practice: in this article, I will present the new variation of the meaning
of the concept of computation generated by the involvement of morphological aspects.

Following the Peircean semiotic perspective, we can remember that signs can be externalized
in both natural and artefactual environments and we could add, using a term coming from the last
decades of research in cognitive science, that signs are distributed and so externalized in a process also
called “disembodiment of the mind”. In his seminal article Intelligent Machinery (1948) [5], Turing
illustrates this same process adopting some neurological metaphors: a big cortex can present an
evolutionary advantage when two conditions are fulfilled: (1) the presence of a huge quantity of
relevant signs (information and knowledge) available in an environment suitably “artificialized”
(props, supports, etc.); and (2) the embedment, discretely developed, in a small community able to
manage information (In [4], I have indicated that this speculative argumentation has been recently
supported by research in paleoanthropology on the birth of material culture).
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The birth of computation is indeed interestingly linked—in Turing’s article I have just
quoted—to creative heuristics intertwined with the analysis of the function—out there, in the external
environment—of organic bodies, physical entities, and artefacts.

2.1. Educating Human Brains

Turing contends that human intelligence is obviously generated by an appropriate education ([5],
p. 3) and an analogy between human brains as organic entities and computational machines as
physical artefacts has to be built. Brains of the human infant are similar to what he calls unorganized
machines—machines which are largely random in their construction—that can be educated thanks to
“rewards and punishments”. The analogy created by Turing “the cortex of an infant is an unorganized
machine” ([5], p. 16) is speculative and just plays a central heuristic role in his creative cognitive
processes: obviously, we know from basic neuroscientific research that the brain is a highly organized
system. Turing just refers to the fact that the cortices of infants are kinds of blank slates which are
“socially” fulfilled through language. From this perspective, the hypothesized random construction
of the infant cortex does not deal with neurobiological aspects but with the absence of “education”
coming from the external social world—for example, language. Thus, the definition of “unorganized
machinery” is related to a special level of description.

When an unorganized machine (such as an infant cortex) is submitted to suitable interferences,
its behavior changes and step after step the machine becomes organized (and possibly also universal).
Not only is the existence of a human cortex evolutionarily justifiable only in terms of its organization
in the framework of a coevolution between it and the external information available to organize it: “[. . . ]
the possession of a human cortex (say) would be virtually useless if no attempt was made to organize
it. Thus if a wolf by a mutation acquired a human cortex there is little reason to believe that he would
have any selective advantage” ([5] p. 16). An environment full of information (made real thanks to
speech and at the same embedded in a social background in which several “techniques” are usable and
learnable) has to be already available, but also, as I have noted above, together with a small community
that can grant the passage of information across generations.

We have said that, to educate an infant brain, rewards and punishments are needed: this fact
indicates that organization can happen only through those two inputs and, finally, the unorganized
human cortex is changed in an intelligent one thanks to discipline and initiative, which Turing considers
the two main aspects of a process that has to be studied as it happens in humans to “copy it in machines”
([5], p. 21).

2.2. Educating Physical Entities

It is natural for Turing to employ the idea of education in the case of humans to construct the
new concept of computation: also physical machines can be educated to produce certain kinds of
modification. In this last case, education coincides with programming, which is an imitation of the
human case: we can modify machines thanks to programming to the aim of reaching some good
and interesting responses. The concept of (Universal) Logical Computing Machine (LCM) emerges
in this epistemological atmosphere and, on the basis of this abstract theoretical tool, also one of the
(Universal) Practical Computing Machines (PCM). These are digital computers (as physical entities)
that can be built and “educated”, able to imitate the behavior of a human computer very well. I have
already anticipated that, to show Turing’s externalization of both the abstract (the logical machine) and
the concrete (the practical machine) entities, I have called them mimetic minds [4,6]: these machines are
indeed capable of imitating the mind in a universal manner and are objectified in the environment,
as clearly expressible formal intellectual structures and practical machines. They are universal because
we do not need various machines that do different performances: thanks to suitable programming
activities, we can have various performances done. The analogy is completed saying that universal
machines are subjected to paper interference, when the introduction of new information in the machine
modifies its behavior, but also (and here the analogy is no longer active) to screwdriver interference,
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when some parts of the machine are eliminated and and replaced by others, giving rise to completely
new machines (by the way, in organic agents, this effect of changing the structure is caused by the
evolution) (More details on Turing’s ideas summarized in this section are illustrated in ([6], Chapter 3)).

3. Building Computational Mimetic Bodies through Morphology-Based Enhancing

It is in the framework I have described in the previous section that we can limpidly see—naturally
extending Turing’s perspective—that the recent emphasis on the simplification of cognitive and motor
tasks generated in organic agents by morphological aspects implies—once exploited in robotics—the
need not only of further computational mimesis “à la Turing” of the related performances—when
possible—but also the construction of appropriate mimetic bodies able to render the accompanied
and integrated computation simpler, according to a general appeal to the simplexity of animal
embodied cognition, which stresses possible complementary relationships between complexity and
simplicity [7,8]. To comprehend this process, it is first of all necessary to illustrate various aspects of
the so-called physical computation, in which we see exactly at play a further detailed description of
that “organization of unorganized entities” introduced by Turing.

3.1. A Computer Is a Physical System

In my article [3], I have illustrated some aspects of the relationships between the concepts of
information, cognition, and computation, trying to ask the question “Is cognition computation?”.
We can give a positive answer, it is, but it is not only computation, so that we cannot identify cognition
with computation. Of course, information processing and computation are involved in cognition,
and plenty of research has been done to clarify the various roles and types of computation and
information processing implicated in cognition, even if these kinds of research, at least from an
eco-cognitive perspective, are damned to become old-fashioned. I prefer to affirm, from a perspective
informed by a kind of naturalistic epistemology, that, given the fact the concept of computation changes
and is subject to meaning variations, the other two concepts, already individuated in themselves
by precarious definitions, being associated with the developments of knowledge, technologies,
and cultural frameworks, also vary. Recent rich and informed studies offered by Fresco [9] and
Piccinini [10,11] fruitfully aim at disambiguating the concept of digital computation in contemporary
cognitive science, by illustrating how digital computation is implemented in physical systems: these
studies do not end up in pancomputationalism (Cfr. also below, Section 4), that is, the view that
every physical system is a digital computing one and can be described in computational terms (on the
related discussions regarding the various recent views on the relationships between computation and
representation in neuroscience (and on computationalism with respect to brain, that is the view that
the brain too executes “computations”) cf. a recent special issue of the journal Minds an Machines [12]).

These studies mainly aim at philosophical/ontological and definitory results. My concern here is
more humble: my eco-cognitive computationalism does not aim at furnishing an ultimate and static
definition of the concepts of information, cognition, and computation, such as a textbook or a more
“analytic” perspective can provide. Instead, by valuing their historical and dynamical aspects, I will
suggest an epistemological perspective that depicts how we can understand the change and extension
of their meanings thanks to the example (and the description of the “emergence”) of what I call the
new computational “domestication” of physical entities, thanks to morphological computing. To this
aim, I will adopt the perspective on physical computation offered by ([13], p. 14) that is particularly
appropriate to favor my concerns.

1. A computer is a physical system with actual constituent parts and its own internal interactions
that take it from one physical state to another.

2. Hence, I agree with Horsman et al. who contend that physical computing is “the use of a physical
system to predict the outcome of an abstract evolution” ([13], p. 14). Indeed, it is interesting to
note that in computations we do not have to deal with a physical system that needs to be described
(this is, for example, the case of physics), but, on the contrary, with an abstract object that we
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want to evolve thanks to the physical system itself. Once we have realized this exploitation of
a physical entity, the physical evolution performs a computation, so interpreted by a human or
another artificial agent.

3. A computer is usually a technology built by using our scientific theories to precision-engineer
physical systems to desired specifications (I will illustrate more details on this issue below in
Section 3.3).

4. A physical system is computing when a special relationship of abstract mathematical/logical
entities to the physical ones at stake is enforced.

5. Beyond conventional and unconventional cases (An interesting alternative view of computation
is expressed by the so-called Actor model [14]: computation is conceived as distributed in space
where computational machines communicate asynchronously and the whole computation is not
in any well-defined state. In response to a message that it receives, an Actor can perform local
decisions, generate more Actors, send new messages, and choose how to respond to the next
message received. Turing’s Model is a particular case of the Actor Model. In this perspective,
the Internet performs unconventional computations and seems controlled by super-recursive
algorithms [15]), the notion of computation, and its related system property, information, has been
imported into other fields in an attempt to describe and “explain” such diverse processes as
photosynthesis and the conscious mind, and a strand of modern cross-disciplines have given
us the claims that “everything is information” or “the universe is a quantumcomputer” or
“everything computes” ([13], p. 2). Obviously, many researchers plausibly contend that, defining
the universe and everything in it as a computer, the notion of physical computation becomes empty.
I will come back to this issue below in Section 4.

3.2. Physical Computing vs. Physics

As I have already anticipated, following the approach proposed by Horsman, Stepney, Wagner
and Kendon [13], physical computing can be usefully considered the inversion of mathematical
science: a physical system is used to predict the outcome of an abstract dynamics, on the contrary, in physics,
an abstract model is used to predict physical dynamics. Indeed, physics works by representing physical
systems abstractly, using abstract theories to predict the result of physical evolution. Let us repeat: if
physical computing is the inversion of mathematical science, and uses a physical system to predict the
outcome of an abstract dynamics, without this predictive element, a physical system is not a computer,
in the same way that a group of mathematical equations is a bad physical model if it does not have
predictive power. Hence, in physical computation, we want to take an abstract entity, a computation,
and represent it physically. It is a process of representation that grants a possible “comparison between
physical processes and mathematical described computations” ([13], p. 2). On the contrary, in physics,
for example, an electron is represented as a wave function, constituting a map between physical and
abstract spaces.

In summary, in a computation, “the initial impetus is not a physical system that needs to be
described, but rather an abstract object that we wish to evolve. An abstract problem is the reason
why a physical computer is used” ([13], p. 10). We therefore start immediately with the problem of a
reversed representation.

3.3. Computational Physical Systems Usually Are Technological Devices

The construction of what Turing called Universal “Practical” Computing Machines is not at all
unrelated to the development of technologies able—in this case—to “domesticate” physical artefacts
to behave in a certain way: after all, with the aim of having at our disposal physical computations,
we need appropriate physical entities able to perform the task, and this is a fruit of technological
advances. It is surely astonishing that humans were able to transport the Turing’s abstract machine, as a
Discrete-State Machine (DSM) [16]) to physical machines, creating artificial technological processes that
are able to evolve by discrete states, thanks to the role played by silicon electronic devices. We have to
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add some considerations that can help to understand the meaning of the concept of DSM. Since Turing
computer science teaches us that physical artefactual entities are built to process the organization
of information and knowledge into little boxes, bits and pixels, which present discrete accuracy
(each datum is clearly distinguished and accessible and each measure exact, in contrast to what is
occurring for all—classical—physical processes), with no fuzziness and no contingency. In chaotic
deterministic systems, a fluctuation/variation below the interval of measurement generates strongly
different evolutions for a system. Turing notes in the 1950s that this consequence is theoretically
evitable in his Discrete State Machine (DSM): The Turing machine is an abstract (logical, he said)
machine, endowed with a Laplacian behavior, as a DSM the machine processes values that are
inevitably discrete. The concept of a program and its mathematical characters that are related to its
implementation are deterministic exactly in Laplace’s sense: the use of rule (or in the case of Laplacian
mechanics, of equations, entails predictability).

When a scientific theory in natural sciences is accepted (that is, when it is appropriately confirmed
and relatively exempt of intolerable anomalies or falsifications), explanatorily powerful, and usually
endowed with predictive capabilities, it is the prototype of the success of progressive scientific research
program, as the philosopher of science Imre Lakatos clearly described [17]. We also perfectly know
that these good scientific theories are at the basis of engineering: they are not only tools for discovering
new physical systems (and to make predictions regarding their behavior), but also for constructing
new artefactual physical systems. Scientific theories are used to engineer physical systems that
humans can further “domesticate” to obtain technologies endowed with desired specifications and
expected behaviors.

In the case of technologies, we do not have to deal with a theory that models a physical system
but something reversed: it is necessary to start from a good physical theory T , able to provide an
abstract specification of the physical system that we aim at building that can be called mp′ . The aim of
technology is to construct the corresponding physical system, p′, effectively reversing the modeling
relation: “The process of technology to produce this reversal consists of finding a physical system
p, the theory T and a specific set of evolutions H that will perform the evolution p → p’ such that,
when p′ is represented using RT , it becomes the desired mp′ (which is an abstract specification of
the physical system that we wish to construct, within the representation of the theory at stake, to the
aim of de facto reversing the modeling relation). The physical system p is thus engineered using the
process H to produce the desired physical system p′. An example would be taking a set of steel girders
and building a bridge out of them” ([13], p. 9). Of course, finding the ways for reaching the final
technological artifact requires a project that is fruit of ingenuity and skill on the part of the various
actors at play.

New Computational Substrates

We know that present standard substrates for computation are highly engineered silicon entities
whose behaviors can be explained by very established and reliable physical theories. Now, we are
dealing with the problem of finding new physical substrates able to carry computation, the first
requirement is the availability of a reliable physical theory of them, able to guarantee good expected
functions and their regularity. Because physical computing is the inversion of mathematical science,
as I have indicated in the previous subsection, the physical system is used to predict the result of
an abstract dynamics (rather than an abstract model predicting physical dynamics). Consequently,
knowing the predictive capacities of the physical system is fundamental. Horsman et al. usefully
describe an “unfortunate” method for attributing computational capacities to a non-standard system:

A novel computing substrate is proposed (a stone, a soap bubble, a large interacting
condensed-matter system, etc.) The physical substrate is “set going” and an evolution occurs.
At a certain point, the end of the process is declared and measurements taken. The initial
and final states of the system are compared, and then a computation and a representation
picked such that if the initial state and final states are represented in such a way, then such a
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computation would abstractly connect them. The system is then declared to have performed
such a computation: the stone has evaluated the gravitational constant, the soap bubble has
solved a complex optimization problem and so on ([13], p. 20).

In summary, the computational description of a physical evolution does not have to be enforced
“only” post-hoc: “the challenge then for non-standard computation is to demonstrate that the theory of
the device, and the representation of data within it, is known and stable enough to use the physical
device to predict the desired abstract computation” ([13], p. 21).

3.4. Encoding, Decoding, Computational Entities, Unconventional Substrates

Four basic items are indispensable to illustrate the role of coding and decoding when exploiting
physical computational entities and the the status of their relationship with the presence of a
“computational agent”.

1. To start a computation, it is first of all necessary to initiate a process of encoding—which is an
act of representation—abstract data and actual embedding the related problem in a physical system
(indeed, we are assured that our artefactual physical system works because—as illustrated in
the previous subsection—we have a good physical theory that can predict how encoded data
will work). We have to add that encoding and actual embedding constitute the act of putting
the problem into a form—thanks to some appropriate cognitive representation, for example
mathematical—that can be carried by an abstracts algorithm, which in turn through refinement
and composition will be encoded into the machine (the artefactual physical entity that starts
to play the role of a computer), which will be able to manage it. It is through this process that
the abstract algorithm becomes a concrete algorithm. In the meantime, abstract algorithms are
transformed into equivalent concrete algorithms, exactly as Turing already described, and when
the artefactual physical system is “domesticated” as a computer, and we can reliably expect to
find the computable results of abstract evolutions, we finally face what Turing called universal
practical machine (cf. above Section 2). I have already observed that the act of encoding is
subjective and related to a particular human or artefactual agent (indeed, the meaningfulness of
encoding and decoding information in physical entities can be, for example, performed by non
biological but computational entities, such as an AI program).

2. Thanks to the physical evolution of the system—as I have said, these systems are usually
artefactual highly engineered silicon devices with an extremely well developed physical theory
in which we have a great deal of confidence— we arrive at the final physical state (which is
decoded as another abstract state). Consequently, this final abstract state did not evolve abstractly,
but concretely, physically. Without the encode and decode steps, there is no computation; there
is simply an “ignorant”—so to speak—physical system undergoing evolution: “going about its
business”, only potentially computational ([13], p. 15) (We can usefully add “This is how we can
escape from falling into the trap of ‘everything is information’ or ‘the universe is a computer’:
a system may potentially be a computer, but without an encode and a decode step it is just
a physical system” ([13], p. 15). We have to remember that non standard physical artefactual
entities that are used as computing devices and substrates—with the exception of quantum
computers—have a theory much less developed and, consequently, the reliability is low).

3. Coding and decoding imply the need of a so-called computational entity (it can be organic or not:
human, animal, artefactual) that is able to represent—and at the same time to delegate and to
recognize meaning to—that specific physical system as that specific abstract object.

4. Can living organisms of all sorts be considered physical entities that potentially perform
information processing, and that can potentially be exploited to perform their computations for us?
As I will describe in the following subsection, the physical RC—Reservoir Computing—approach
implies that we can exploit the dynamical properties of various kinds of body parts to carry out
relevant computational tasks.
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3.5. Morphology-Based Enhancement of Mimetic Bodies

Cognitive science has clearly illustrated that intelligent abilities in performing behaviors of natural
agents is often explained with reference to their bodily structure (morphology). This morphology can
be used for the engineering of intelligent abilities in artificial agents, such as robots. Literature has
individuated three main roles played by morphology (see, for example, the rich treatment provided by
Müller and Hoffmann [18]):

1. morphology that facilitates control, where no control system, no motors and no sensors are
present;

2. morphology that facilitates perception;
3. morphological computation in proper sense, such as “reservoir” computing, in which embodiment

and computation are strictly connected.

In the first case, an example is the passive dynamic walker (in which the behavior is occurring by
purely mechanical interaction); in the second case, the classical case is illustrated by the Gecko feet,
which can in turn be considered as active extensions of the passive walker, thanks to actuators and
sensors (the specific ability of the Gecko is the result of its morphology interacting with a particular
environment—not primarily that of higher-level central control); also the case of the eye of the fly,
which not only concerns movement, but also cognitive abilities related to perception, is another good
example; the third case refers to the so-called Reservoir Computing, abstractly proposed by the neural
network community, and optimally extended to the role of physical devices that can operate as a
reservoir (Physical RC (Reservoir Computing)), in which the body is effectively domesticated for
computation. Reservoir computing is not only limited to morphological computations, but, as I have
just said, originates from research on neural networks, and contemplates a collection of neurons,
as Müller and Hoffmann summarize,

[. . . ] with nonlinear activation functions and with recurrent connections that have a random
but bounded strength; this is referred to as a dynamic reservoir. These neurons are randomly
connected to input streams, and the dynamics of the input is then spread around and
transformed in the reservoir, where it resonates (or “echoes”—hence the term “echo-state
networks”) for some time. It turns out that tapping into the reservoir with simple output
connections is often sufficient to obtain complex mappings of input stream to output stream
that can approximate the input–output behavior of highly complex nonlinear dynamical
systems. During training, the weights from the input streams and between the reservoir
neurons are left intact; only the output weights—from the reservoir to the output layer-are
modified by a learning algorithm (e.g., linear regression). The complexity of the training
task has been greatly reduced (as opposed to training all the connections) by exploiting
the reservoir to perform a spatiotemporal transformation of the input stream (the temporal
aspect of the input sequence has basically been unfolded by the reservoir and can be retrieved
directly at any instant). Furthermore, if feedback loops from the output back to the reservoir
are introduced and subject to training, the network can be trained to generate desired output
streams autonomously ([18], p. 6).

The amazing novelty is that some physical entities can work as a reservoir as well, giving origin to
the so-called Physical RC, which can also be the body of an agent: indeed, biological bodies interacting
with their environments can present the needed properties—high dimensionality, nonlinearity and
fading memory (More updated details can be found in [18] (pp. 3–7) and [19,20]).

3.6. The Birth of Mimetic Bodies: Enhancing Ignorant Bodies through Distributed Computation

To further examine the ways of domesticating—beyond the usual world-wide widespread use
of silicon devices—non-stardard entities for computation, we need describe some cognitive and
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epistemological aspects of the so-called RC (Reservoir Computing). In this case, a classical “digital”
computational controller tool (also a robot for example)—that already needs its own “conventional”
physical embodiment—is enhanced by the fact that some cognitive “virtues” are outsourced to the
morphology of physical entities with the aim of getting the good fruits of an “analog” computation.
Where should we draw the line between morphological computation and pure digital computation?
Hauser et al. ([20], p. 227) furnish the following explanation of the mechanisms of the RC (Reservoir
Computing) (Various real physical systems—certainly not explicitly built for computation—can
potentially serve as reservoirs: examples of actual implemented reservoirs such as the well-known case
of a soft silicone based octopus arm, employed to emulate desired nonlinear dynamical systems and
adopted to carry out computations and to implement a feedback controller, are illustrated in [19–21]):

At the core of RC lays the so-called reservoir, a randomly initialized high-dimensional,
nonlinear dynamical system, which maps the typically low-dimensional input (stream) onto
its high-dimensional state space in a nonlinear fashion. In that sense the reservoir takes
the role of a kernel (in the machine learning sense, i.e., the nonlinear projection of a low
dimensional input into a high-dimensional space [. . . ]). In addition, the reservoir, being a
dynamical system, has the inherent property to integrate input information over time, which
is obviously beneficial for any computation that needs information on the history of its input
values. It is important to note that the reservoir is not altered during the learning process.
Although it is randomly initialized, its dynamic parameters are fixed afterwards. In order
to learn to emulate a desired input output behavior (to be more precise, a desired mapping
from input streams to output streams), one has to add a linear output layer, which simply
calculates a linearly weighted sum of the signals of the high-dimensional state space of
the reservoir. These output weights are the only parameters that are adapted during the
learning process ([20], p. 227).

Implementation of the so called Physical RC involves real physical bodies that are used as
reservoirs and as computational sources. Obviously, both the entities involved in classical highly
engineered silicon devices and in Physical RC exploitation of bodies do not “know” that they are part of
a computational device. They simply conform to the laws of physics and they respond spontaneously.
In the case of Physical RC, we have to note “[. . . ] that this also implies that the body does not over—nor
under—compensate, since it is a stable physical system. The proposed setup simply adds some linear
readouts to the body to complete the computation. The body would react exactly the same, if there
were no readouts at all. If this output is used, e.g., in a feedback loop as a control signal for the robot,
the behavior of the robot of course should be different if we close the loop by adding the readout”
([20], p. 230). It is important to note that, in the case of morphological computation, a physical computer
does not need to be intelligently conceived: it can be naturally (or even computationally) evolved.
This means that living organisms or parts of organisms (and their artefactual copies) can potentially
execute information processing, and can potentially be exploited to execute their computations for us
(On this issue, cf. also ([13], pp. 19–22)).

Hence, the body is so to speak “ignorant” ([20], p. 231), it behaves the same whether we add
readouts or not and can be used in various computations on the same input at the same time adding
the needed readout. Defining the body “ignorant” of the computations that are carried through it can
sound awkward to some ears. However, determining the body as an ignorant term of the computation
does not automatically imply that we can find a more knowledgeable part of it—nor it should point in
that direction. On the contrary, considering the fact that no part of the system knows that is part of the
system itself, I think that is significant to point out the “ignorant” feature of the body, as a fundamental
part of the system, not with respect to the other “knowledgeable” parts, but in order to indicate a
particular state of ignorance that we can attribute to it, which is not just lack of the permanence (and
contamination) of information, but a form of passivity to the computation that happens through it.
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Moreover, the classical “physical” computational entities (hardware) as silicon devices or robots
endowed with an abstract controller (Hauser et al. also usefully note that “Another important point is
that classical robot designs (built out of rigid body parts connected with high torque servos) don’t have
any deliberate computation in the physical layer, hence, any computation in the robot is carried out only
in the abstract controller layer” ([20], p. 234)) are based on the discreteness of digital processing and,
from the point of view of their macroscopic features, are stable, unperturbable, and robust with respect
to the external influences different from the processes of encoding and decoding (see above Section 3.4).
On the contrary morphological computation, in the case of Physical RC, is occurring in the continuous
reality (without digital complication) as a clear form of very fast analog computation, in which the
exploitation of real entities at the same time involves obvious limitations and constraints. We also
have to note that to weaken the lack of what we call cognitive/computational plasticity (and—so
to speak—of “universality” with respect to the classical Turing machines) of the physical adopted
reservoir a kind of morphosis (just to make a simple example, moving the body into a new posture)
([20], p. 235) is necessary: the morphology could be modified online to get multiple computational
benefits, also taking advantage of the possible effects on the whole system caused by the environment.

In summary, the bodies that are, as I illustrated above, “ignorant”, in the framework of
morphological computation become mimetic bodies, that is, bodies that are able to mime various
cognitive mediating tasks. I call them mimetic exactly in Turing sense: Turing says by “mimicking
education, we should hope to modify the machine until it could be relied on to produce definite
reactions to certain commands” ([5] p. 14). Similarly, mimicking the morphological features we can get
computational results: a standard example is furnished by Nakajima et al. [21,22], who have “strictly”
mimicked part of the morphology of an octopus using a model of a soft robotic arm inspired by it.
Seeing to the new developments of morphological computation, we can surely conclude that we are
facing with new interesting epistemological and technological aspects of what we can call distributed
computation: we see computation more and more distributed in a wide variety of props, tools, bodies,
and devices to the aim of new cognitive results. The promise of morphological computation principles
in robot design can originate a new generation of robots with better adaptability and restricted number
of required control parameters.

4. Pancomputationalism Naturalized

The problems of pancomputationalism is nicely summarized in the following passage by
Horsman et al.:

There is currently no accepted answer to this question, and an absence of a worked out
formalism within which to determine whether a computation is happening physically gives
rise to a great deal of confusion when discussing non-standard forms of computation. We can
all agree that a laptop running a Matlab calculation and a server processing search engine
queries are physical systems performing computation. However, when we move beyond
standard and mass produced technology, the question becomes more difficult to answer. Is a
protein performing a compaction computation as it folds? Does a photon (quantum) compute
the shortest path through a leaf in photosynthesis? Is the human mind a computer? A dog
catching a stick? A stone sitting on the floor? One answer is that they all are – that everything
that physically exists is performing computation by virtue of its existence. Unfortunately,
by thus defining the universe and everything in it as a computer, the notion of physical
computation becomes empty. To state that every physical process is a computation is simply
to redefine what is meant by a “physical process”—there is, then, no non-trivial content
to the assertion. A statement such as “everything is computation” is either false, or it is
trivial; either way, it is not useful in determining properties of physical systems in practice
([13], p. 2).
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The assumption of pancomputationalism clearly states that everything is computational [23].
This view is often defended contending that, when we say that everything is computational, we are just
describing something as computational as a way of “interpreting” it, and everything can be interpreted
that way. Unfortunately, this defense leads pancomputationalism to conflate computational modeling
with computational explanation. Other forms of pancomputationalism contend that the whole universe
can be considered computational and seem to also claim that information or computation have a kind
of priority with respect to physical materiality ([11], p. 5). Gordana Dodig Crnkovic [15,24,25] proposes
a richer info-computational view of the universe (a synthesis of pancomputationalism—naturalist
computationalism—with informational structural realism) and defends it by observing the central role
of computing in nature (natural computing).

As I have observed in [3], taking advantage of an evolutionary perspective and of the Thom’s
concepts of the catastrophe theory [26], when we see the case of an infection as a pregnance
(mediated by a virus, that is a material/biological medium) that affects healthy subjects, who are
the invested saliences that in turn can re-emit that same contagion as a pregnance into the natural
niche (in which, in turn, other media such as air or blood are the transmitters), it seems weird to
contend that information (or computation) is at play, in this case against paninformationalism and
pancomputationalism. One count is to produce a “model” of that event from an informational point of
view or by using a computational program, and another count is to produce a biological knowledge of
it (In the following section of this article, I will describe the dangers that can emerge by thinking that
mimetic computational modeling “is” immediately, ipso facto, scientific knowledge). However, I think
that the positions which defend paninformationalism and pancomputationalism are significative for
two reasons. The first reason is related to the consideration of natural human evolution, which presents
that widespread activity of semiosis (including all kinds of signs, not only the propositional ones)
that has been created by humans since the times of our primitive ancestors. In this way, humans
have built those voluminous cognitive niches, hugely endowed with informational (and more recently,
computational) processes [27–29] certainly favors an inclination to envisage some ontological status to
information and computation. In addition, I contend that thinking in terms of “distributed computation”
(an expression I have introduced above in Section 3.6) helps us see pancomputationalism in a more
naturalized way, avoiding ontological or metaphysical considerations.

The second reason is epistemological: in the literature, there is even an all-encompassing
notion of information, a kind of paninformationalism, in which physical (or biological) information
is extrapolated to every state of a physical (or biological) system that is delineated as an
information-carrying state [30,31], which cannot be under-evaluated. Indeed, this perspective has
favored many excellent results that physicists (for example) [32,33] (and logicians) have reached,
for example providing mathematical frameworks for seeing quantum theory in the perspective of the
principles of information processing. My only warning does not concern these results, but the possible
abuse of the notions of information (and of computation) in physics and biology, a problem extensively
illustrated in detail in [16,34], as I will illustrate in the following section.

5. Using Physical Computing to Model Physical and Biological Systems

As I have indicated above (Section 2), Turing argumentations are coherent with the illustration of
physical computation as the realization in terms of a physical evolution of an abstract computation
I described in Section 3. To quickly recall Turing’s seminal ideas, we can say that he contends that a big
cortex constitutes an evolutionary advantage only if it is fertilized by a great quantity of meaningful
information and knowledge carried by external supports, props, and tools—interacting with it—that
only an already “evolved” collective of humans can have. In summary, information, but also cognitive
contents carried thanks to language, signs, icons, etc. have to be more and more available to promote
the useful exploitation of a big cortex. Paleoanthropologists such as Mithen [35,36] would also add
that storing in the external environment signs and drawings, and manipulating external entities
transforming them in artifacts, is the main process that characterizes not only the birth of the so-called
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material culture, but also the trigger of a fundamental process of coevolution between brains and
culture—on this issue cf. also the recent rich and informed book written by Laland [37].

Making an analogy to this evolutionary process, Turing contends that transmuting an external
physical artefactual entity (such as an electronic physical object) “paper interference” is needed,
when the introduction of new information in the machine modifies its behavior. The Turing lucubrations
about the “unorganized” brains, described as kinds of blank slates that are socially fulfilled through
language are really modern because, even if very abstract and characterized by a dominant heuristic
role, show that phylogenetic mechanisms acting in human cognition are crucial and worth being
taken into account, an attitude more powerful with respect to the one of traditional philosophical
Western schools.

It is important to note that, in this view offered by Turing, the digital machine (a discrete
state machine) is certainly an alphabetic machine: its conditions of possibility resort to human
evolution towards alphabetic natural language. Longo [16] contends that this fact is at the origin
of that tremendous “discretization of knowledge” that the Turing’s achievements have created.
The “continuous” natural language is indeed transmuted by the alphabet in something separated into
small atoms, which forge letters. These atoms do not present any kind of meaning that instead comes
out thanks to their syntactical aggregation made by skilled human agents able to sensibly combine
them. This discreteness, typical of digital machines, is the fundamental aspect that motivates their
imitation power—they are mimetic machines, mimetic minds, as I said—and Turing himself contrasted
this simple imitation power to the much stronger epistemological power of the modeling capacity of
mathematics, when he was thinking about the science of morphogenesis.

At this point, the problem of imitation leads us to consider a further aspect of physical
computation: when computers are further used to model physical (or biological systems), are we still
dealing with imitation or with a kind of reliable production of knowledge that could occasionally
be called “scientific”? Let us see more details concerning this problem. We have indeed said in
the previous section that physical computation is a transposition of physical evolution for abstract
computation, that is, we can say, following Turing, that we “educate” a physical system to perform a
computation. Once this task is performed, we can in turn submit a physical (or biological) dynamic of a
system to a computation modeling, that is, we can use computers to simulate the behavior of a physical
or a biological system. In the meantime, it is important to note that in this case the computational
simulator and the physical or biological system simulated interact at the abstract level and what is
simulated is a model of the physical or biological system, not the system itself ([13], p. 17). We know that
computational modeling of physical or biological processes can be extremely useful as a heuristic tool
in actual scientific research, also at the creative level (just to make a simple example, to simulate the
behavior—through modeling [38]—of a physical system during an experiment), but we have to note
that the study of a physical or a biological evolution can not always take advantage of a computational
representation. Hence, what is the epistemological status of computational simulation?

The dichotomy between discreteness and continuity involves a reflection upon the other related
dichotomy between imitation (as an effect of the computational representation) and intelligibility
(as the fruit of scientific knowledge). I will devote the next paragraphs to better describe this important
issue, at least from a general theoretical point of view. As Longo [16] illustrates, the digital machine
(a discrete state machine) is first of all an alphabetic machine, made possible thanks to the human
evolution to alphabetic natural language (of course, we know it is also based on the so-called logical
and formal machine). As I have already noted, this fact explains that powerful “discretization of
knowledge” that mainly characterizes the “computational turn”.

This discretization, in the case of the mental representations of “concepts”, generated great
consequences. We can guess that an isomorphism is established between the mental processes (where
of course “phonemes” play a dominant role), which ensure the stability of a concept, and the physical
and material processes that ensure the stability of the actual object represented by the concept.
A discretization of knowledge that—long before the computational turn—did not have a marginal role
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in the recent history of human cognition. The internalization of phonemes [39] has been related to the
development of the “enhanced working memory” (EWM) appeared about 30,000 years in hominids and
seemed to coevolve with the emergence of a phonological storage capacity along with consequent language
and other modern reasoning abilities such as planning, problem solving/algorithm manipulation,
analogy, modeling, holding inner representations, tool-use, and tool-making, but also cross-modal
thinking also needed in social tasks. In particular, an increase in phonological storage could also have
aided cross-modal thinking (and so hypothetical cognition) and the social tasks caused by the need
of the preservation and defense of collective coalitions: “[. . . ] enhanced phonological storage may
have freed language from the laconic and its confinement to present tense and simple imperatives to
rapidly-spoken speech and the use of future tense—the linking of past, present, and future, and the
use of the subjunctive [. . . ]. Although real enemy’s actions might be anticipated, imaginary enemies
could be envisioned and other intangible terrors could be given life. Great anxieties could arise with
novel vistas (e.g., the meaning of life, thoughts of death, life after death, etc.)” ([39], p. 22).

Notwithstanding the triumph of discretization, in western written natural languages but also
in philosophical and logical knowledge, from Democritus to Descartes and from the modern XIX
century axiomatics to the computational turn, we are still facing the conundrum represented by
the fact that, however, this simple reality of small components is actually very complex, as recent
scientific research into the dynamical systems theory, quantum physics, and biology demonstrates.
For example, it is difficult to study the cell only by referring to its constituents, and also its “wholeness”
is fundamental. The suspect is that, when we use computational devices, which are discrete machines,
to produce knowledge about physical and biological systems, some serious expressive limits arise:
it is unlikely that these machines can play the role of instruments for directly building scientific
intelligibility regarding complex objects/systems such as physical and biological entities (and also
human cognitive systems themselves) (We also have to note that, in the last few decades, the notion of
digital computation certainly played the role of modeling neural activity and of central features of
human cognition, but many neuroscientists (for example [40]) strongly contended that neural networks
do not perform digital computation at all: in this last case, cognition is trivially seen as being performed
by neural networks but is not computation and the approach we need to use to study cognition has to
be related to the theory of dynamical systems).

The deep difference between the idea of scientific knowledge as simple imitation, as developed by
digital machines and their “modeling capacity”, and the idea of scientific knowledge as generation of
rational intelligibility is a core problem of the dynamical approach [40]. As I already said above, Turing
himself emphasized the difference between the simple imitation capacity of machines and the modeling
power of mathematics: the double pendulum, which is a perfect deterministic machine, only expressed
by two equations, is sensible to minor variations, below the threshold of observability: it is a typical
chaotic deterministic system, and it is extremely difficult to represent it by a mimetic machine [16].
Longo also notes that this is a system sensitive to initial conditions. It can instead described using
the mathematics of deterministic chaos, in which determination does not involve predictability: in
this system, a process does not follow the same trajectory even if we reiterate it with the same initial
conditions, within the limits of physical measures (ibid.). Furthermore, we can also usefully observe
that, in the case of Turing machines that simulate such systems, when we restart after having processes
analog simulations, using the same initial data, the same already seen trajectory is performed and,
on the contrary, the “real” pendulum behavior is completely different, when we restart the pendulum
never performs the same trajectory.

Only “mathematical” models can explain the structure of physical causality of the a system at play,
and digital simulation only resembles or imitates causality, always realizing Laplacian and predictable
processes. The explanation of this conundrum resorts to the fact that, at the roots of digital data, there is
a discrete topology, but physical measurement is always an interval that is optimally represented by
continuous mathematics. Even if sometimes the use of mathematical equations in physics does not
have a predictive power, this provides a knowledge characterized by a rich qualitative epistemological
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value, able to make intelligible the physical causality of the system [41]. Finally, we have to note
that, with respect to physics, in the case of biological organisms, the gap between simulation and
intelligibility is even worse because the variability is dominant (In [42] Longo contends that, “in biology,
in particular, the introduction of information as a new observable on discrete data types has been
promoting a dramatic reorganization of the tools for knowledge” and that some consequences of this
effect have been induced in life sciences, with particular emphasis on research on cancer).

In summary, digital simulation—even if epistemological useful at the level of intermediate
modeling during the processes of scientific research and discovery, as I have already indicated above
in this section—produces an epistemologically distorting result due to its simply mimetic quality.

6. Conclusions

In this article, taking advantage of an approach I called “eco-cognitive computationalism”, I have
illustrated Turing’s original intellectual perspective that furnished the conceptual framework able
to show how, thanks to an imitation of the the evolutionary emergence in humans of information,
meaning, and of the first rudimentary forms of cognition, the subsequent invention of the Universal
Practical Computing Machine is achieved, that computer that, from the perspective offered by Turing,
I call “mimetic mind”. In the second part of the article, I have exploited this framework to illustrate the
recent results of morphological computation in which the emphasis on the simplification of cognitive
and motor tasks has rendered possible the construction of appropriate “mimetic bodies“ able to render
accompanied computations simpler, according to a general appeal to the “simplexity” of animal
embodied cognition. I have stressed that, in the case of morphological computation, we can surely
conclude that we are facing a new activity of what we can call “distributed computation”: the promise
of morphological computation principles in robot design can originate a new generation of robots with
better adaptability and restricted number of required control parameters. Finally, I have also dedicated
a short discussion to the concepts of paninformationalism and pancomputationalism, showing that
the framework of distributed computation helps us see them in a more naturalized and prudent
perspective, avoiding ontological or metaphysical considerations. The last section of the article is
devoted to illustrating the related problems regarding the epistemological limitations of computation
modeling when used to simulate the behavior of a physical or a biological system ([13], p. 17).
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