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Abstract: Two distinct puzzles, which are both known as Gibbs’ paradox, have interested physicists
since they were first identified in the 1870s. They each have significance for the foundations
of statistical mechanics and have led to lively discussions with a wide variety of suggested resolutions.
Most proposed resolutions had involved quantum mechanics, although the original puzzles were
entirely classical and were posed before quantum mechanics was invented. In this paper, I show
that contrary to what has often been suggested, quantum mechanics is not essential for resolving
the paradoxes. I present a resolution of the paradoxes that does not depend on quantum mechanics
and includes the case of colloidal solutions, for which quantum mechanics is not relevant.
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1. Introduction

Among the conceptual difficulties encountered by early workers on the statistical foundations
of thermodynamics, the problems that have come to be known as Gibbs’ paradox (or paradoxes)
are among the most famous. In this paper, I give an interpretation of the origin of the paradoxes
and their resolution. Although quantum mechanics has often been suggested as essential to the
resolution of these paradoxes, I do not believe that quantum mechanics is necessary, or even relevant,
to the discussion.

The first paradox was noted by Gibbs in 1875 [1]. It concerned different expressions for the
entropy change from the mixing of two ideal gases, depending on whether the gases were the same or
different. If the two gases were the same, Gibbs found no change in total entropy. If the two gases were
different, even if the difference was very small, there was a change in the total entropy that depended
only on the number of particles in each gas, but not on the nature of the gases themselves. It was
especially disturbing that the difference in entropy vanished discontinuously as the difference in the
two gases went to zero. The lack of complete understanding of the mixing of two gases was regarded
as an indication that there might be something fundamentally wrong with the idea of entropy [2,3].
I will denote this puzzle as the first Gibbs’ paradox.

The second puzzle, which is also known as Gibbs’ paradox, arose in connection with
a misinterpretation of Boltzmann’s 1877 definition of the entropy [4,5]. It was assumed that Boltzmann
had defined entropy as being proportional to an accessible volume in phase space of an isolated
thermodynamic system. This definition led to an expression for the entropy of an ideal gas that was
not extensive because it lacked a term proportional to ln(1/N!), where N is the number of particles
in the system. As Gibbs had pointed out, if this term is omitted from the formula, the entropy of
a mixture of two gases of the same kind gives a spurious extra term [6]. The origin of the factor of
1/N! is still subject to debate. I will denote it as the second Gibbs’ paradox.

The factor 1/N! in the definition of the entropy is most commonly attributed to the quantum
nature of matter [7]. I hope to show in this paper that neither the first nor the second Gibbs’ paradox
has anything to do with quantum mechanics; their resolutions require only classical theory. I will make
no use of quantum concepts in my arguments.
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The resolution of Gibbs’ paradoxes requires an explicit statement of the assumptions forming
the basis of the theory of statistical mechanics. Unfortunately, such assumptions are not universally
accepted, but I will try to express mine clearly to serve as a basis for discussion. On the other hand,
the derivation of most equations in statistical mechanics does not require such a precise exposition—at
least if the arguments are not examined too closely. Because even incorrect arguments can lead to
(mostly) correct results, some dubious assumptions have become generally accepted and must be
challenged in order to achieve a final resolution of Gibbs’ paradoxes.

The entropy is a central concept in thermodynamics, which makes it necessary to specify
thermodynamics explicitly, which is done in the next section.

2. What is Thermodynamics?

First, the domain of thermodynamics must be specified, then the role of limited resolution, and the
purpose of the theory. The postulates of thermodynamics provide a convenient list of properties that
the entropy must satisfy [8–12].

2.1. The Domain of Thermodynamics

Thermodynamics is defined on the set of all finite, macroscopic systems that might exchange
energy, volume, or particles with each other. The number of such systems, M, is very large, but finite.
The prevention of any two systems from exchanging energy, volume, or particles is called a constraint.
Constraints can be either imposed or released, as the experimenter wishes.

Denoting the j-th system as Aj, I will denote this set of systems as A = {Aj|j = 1, . . . , M}.
The individual systems are not necessarily physically close to each other; they might be in different
cities or even on different continents. Systems that are located far apart are unlikely to interact,
but there is no reason to exclude them. Note that the set of systems, A , can be equally well viewed as
a composite system with internal constraints.

The j-th system contains Nj particles, which are confined to a volume Vj and are governed by a
Hamiltonian Hj. Direct interactions between systems are essential for thermal contact but are assumed
to be of negligible magnitude whether or not systems exchange energy. The energy of system j will
be denoted as Ej, and the total energy of the entire set A is ET = ∑M

j=1 Ej. Similarly, the total number

of particles is NT = ∑M
j=1 Nj, and the total volume is VT = ∑M

j=1 Vj. The total energy, ET , volume, VT ,
and particle number, NT , are all constants. The generalization to more than one type of particle is
straightforward and is discussed in Section 3.6.

The thermodynamic entropy is a function of the equilibrium state of the system. It has certain
specific properties, discussed in Section 2.4, that enable the calculation of the new equilibrium values
after releasing (or reimposing) any of the constraints on exchanges between systems. The state of a
system j is specified by the values of Ej, Vj, and Nj. The entropy of system j, Sj(Ej, Vj, Nj), does not
depend on any variables other than Ej, Vj, and Nj.

It is essential to thermodynamics that the measurements cannot be made with arbitrary precision,
as described in the next subsection.

2.2. Limited Experimental Resolution

As Gibbs wrote in the preface to his book on statistical mechanics,

The laws of thermodynamics . . . express the laws of mechanics of such systems as they appear
to beings who have not the fineness of perception to enable them to appreciate quantities of
the order of magnitude of those which relate to single particles, and who cannot repeat their
experiments often enough to obtain any but the most probable results [6].

I will call a system macroscopic if it has enough particles to make the relative fluctuations too
small to observe. This criterion depends on the resolution of the relevant experiments, and to some
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extent on choices made by the experimenter. This is discussed in Section 3.2. I will only consider finite
systems because real systems are finite and it is not necessary to consider the limit of infinite size.

2.3. The Purpose of Thermodynamics

The purpose of thermodynamics has been described by Callen as follows.

The single, all-encompassing problem of thermodynamics is the determination of the
equilibrium state that eventually results after the removal of internal constraints in a closed,
composite system [8,9].

The inverse process, in which the equilibrium state is to be determined after the imposition of
internal constraints (or the separation of systems) is trivial because the thermodynamic states of the
systems do not change.

2.4. The Postulates of Thermodynamics

To accomplish its purpose of predicting the thermodynamic behavior after exchanges between
systems, the entropy must satisfy certain postulates, which were originally codified by originally
codified by Callen [8–11]. I have simplified these postulates so that they are more generally
applicable [13]. The essential postulates are:

Postulate 1: Equilibrium States
There exist equilibrium states of a macroscopic system that are characterized uniquely by a
small number of extensive variables.

Postulate 2: Entropy Maximization
The values assumed by the extensive parameters of an isolated composite system in the
absence of an internal constraint are those that maximize the entropy over the set of all
constrained macroscopic states.

Postulate 3: Additivity
The entropy of a composite system is additive over the constituent subsystems. The entropies
of two systems are additive when SA,B = SA + SB.

Postulate 4: Continuity and differentiability
The entropy is a continuous and differentiable function of the extensive parameters.

The four essential postulates specify various properties of the entropy. When a function is found
that satisfies all four postulates, it is a satisfactory form for the entropy. There are two optional
postulates, which are not necessary for a valid entropy function, but which are often satisfied and quite
useful [13].

Postulate 5: Extensivity
The entropy is an extensive function of the extensive variables. The entropy of a system is
extensive when λS(U, V, N) = S(λU, λV, λN).

This postulate is true only if the system is homogeneous. It forbids adsorbing walls. If it is true,
the Euler equation and the Gibbs-Duhem relation are valid [8,9,11].

Postulate 6: Monotonicity
The entropy is a monotonically increasing function of the energy for equilibrium values of
the energy.



Entropy 2018, 20, 450 4 of 16

If this postulate is true, it allows the entropy as a function of energy to be inverted to give the
energy as a function of entropy. Legendre transforms then produces the familiar thermodynamic
potentials [8,9,11]. Montonicity is, however, not necessary. Massieu functions are less familiar, but
no more difficult, produce the usual results for monotonically increasing entropy, and the consistent
results for non-monotonic entropy [13–15].

Postulate 7: Nernst Postulate
The entropy of any system is non-negative.

The Nernst postulate, also known as the third law of thermodynamics, is only valid for quantum
systems. It is not needed in the current discussion.

2.5. The Neglect of the Energy Dependence for This Discussion

The original paradoxes were stated in the context of the classical ideal gas, so I will follow this
tradition. The examples in this paper will use only classical statistical mechanics in the limit that there
are no interactions between particles. For this paper, only the particle-number dependence of the
entropy is relevant. Therefore, I will ignore the energy, and restrict the analysis to the configurational
degrees of freedom.

2.6. The Models Used in This Paper

Since the first paradox involves a comparison between mixing two different gases and mixing
two samples of the same gas, I introduce two distinct ideal gases, labeled a and b. For each system j,
the number of each type of particle must be specified separately as Na,j and Nb,j. The total number of
each type of particle is Nx,T = ∑M

j=1 Nx,j, where x = a or x = b.
In the following section, I give a theoretical derivation of the configurational contributions to the

entropy based on the theory of probability. In Section 4, I discuss an important detail in the definition
of the entropy, before concluding the discussion in Section 5 with the resolution of Gibbs’ paradoxes.

3. Definition of Entropy

Definitions of entropy are usually based on the properties of isolated systems in equilibrium.
The use of isolated systems is odd because the most important properties of the entropy involve the
exchange of energy, volume, or particles between systems. Although Boltzmann began his 1877 paper
with explaining the concept of entropy on the basis of the exchange of energy between two systems [4,5],
his definition has gone into the general literature as a property of an isolated system. The famous
equation on Boltzmann’s tombstone, “S = k log W,” is due to Planck [16], and was put there long after
Boltzmann’s death.

Both of Gibbs’ paradoxes involve the exchange of particles between systems, and an
understanding of the dependence of the entropy on the particle numbers is crucial. In the first
sentence of the abstract of a paper on the Gibbs’ paradox, van Kampen wrote that,

The dependence of the entropy on the number of molecules can never be found from studying
closed systems [17].

Jaynes made a similar comment a few years later.

As a matter of elementary logic, no theory can determine the dependence of entropy on the
size N of a system unless it makes some statement about a process where N changes [18].

I agree with these statements. By considering the exchange of particles between multiple systems,
we can determine the particle-number dependence of the entropy.
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3.1. Exchanging Particles or Volume

The set of systems, A , includes all macroscopic thermodynamic systems that might exchange
particles with each other. At the beginning, I assume that each system is perfectly isolated from all the
other systems. Later, constraints may be removed or added according to the wishes of the experimenter.

Each system, j, has walls that can confine an arbitrary number of particles, Nx,j, of each type
(x = a or x = b) to a volume, Vj. The total number of each type of particle is given by Nx,T = ∑M

j=1 Nx,j,

and the total volume is VT = ∑M
j=1 Vj.

The derivation of the entropy presented below assumes that the pistons exchanging volume
between two systems have the same cross section, although that cross section may be different for the
pistons linking two other systems. This is not the most general experimental situation. The same form
of the entropy will correctly predict equilibrium for the case of pistons with differing cross sections on
each side linking the systems [8,9]. This application has nothing to do with Gibbs’ paradox.

3.2. Measurable Difference

Particles have traditionally been classified as distinguishable or indistinguishable (or as identical
or non-identical), with definitions that have been many and varied [19]. In my opinion, what is
necessary to the definition of entropy is whether or not the particles are measurably different.

The example that seems to bring out the essential issue is that of colloidal particles—especially
particles containing roughly 109 atoms and suspended in a liquid [20–24]. A colloidal suspension can
be identified by the Tyndall effect. Such particles are large enough to be well described by classical
mechanics, and if they are sufficiently dilute, as a classical ideal gas. It is well known from experimental
work that the ideal gas entropy describes such colloids well, but it does need the factor of 1/Nj!.
This produces difficulties for traditional explanations that rely on indistinguishability because colloidal
particles are not indistinguishable. They have different numbers of atoms, different arrangements
of the atoms, and even different types of atoms. They cannot be regarded as indistinguishable or
identical, which traditionally would imply that the factor of 1/Nj! should be missing [20–24].

It is important to note that whether particles are measurably different depends on the equipment
available for the experiments. An experimenter can also choose not to pay attention to differences that
could be measured with a different experimental arrangement. Ignoring these differences would affect
the appropriate form of the entropy, but would still yield consistent thermodynamics for that choice of
experimental resolution [18].

This approach to defining the thermodynamic entropy might be regarded by some as being
subjective, and therefore unsuitable for physics. I disagree with such a point of view. A physical theory
should be objective in the sense of giving the same results for different investigators who have the same
information. This definition provides correct results both before and after the discovery of Whifnium
(see Section 3.7 for a discussion of Jaynes’ delightful example), or before and after the discovery of
isotopes [18].

3.3. Initial Probability Distribution of Particles

Since the behavior of classical particles that are not measurably different from each other is the
same for distinguishable and indistinguishable particles, I will use distinguishable particles to calculate
the probabilities [25]. Imagine that the Nx,T particles of type x are numbered, although we are not able
to measure the number of any particle to identify it experimentally.

Consider the problem of dividing the Nx,T particles (x = a or x = b) among the M systems
introduced above in Section 3.1. Begin with a single particle, say particle number 1. I assume that the
probability of any particle being in system j is proportional to the volume Vj so that normalization
gives the probability equal to Vj/VT . In the absence of further information, particle 1 could be in any
of the M systems.
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Next consider all NT particles. The total number of particles is given by NT = Na,T + Nb,T ,
where Nx,T = ∑M

j=1 Nx,j. If the particles of a given type have the property that they are not measurably
different and they do not interact with other particles, their probability of being in any particular
system is independent of the position of any other particle. The probability of a macroscopic state
specified by the occupation numbers {Nx,j|j = 1, . . . , M} is then

P
(
{Na,j, Nb,j}

)
=

(
Na,T !

VNa,T
T

)(
Nb,T !

VNb,T
T

)
M

∏
j=1

V
Na,j
j

Na,j!

V
Nb,j
j

Nb,j!

 (1)

3.4. Definition of the Boltzmann Entropy

In the spirit of Boltzmann [4,5], we can define the configurational component of the total entropy
of the M systems as the logarithm of the probability distribution in Equation (1) [12,13,20,25–29].

SB

({
Na,j, Nb,j

})
= kB ln P

({
Na,j, Nb,j

})
+ X, (2)

where kB is Boltzmann’s constant (first introduced by Planck [16,30]), and X is an arbitrary constant.
When I first wrote about this way of defining the thermodynamic entropy, I only used exchanges

between two systems to illustrate the idea [25–28]. Objections to this approach and its extension to
many systems were raised [31–33] and answered [12,29]. For completeness, I have included a sketch
of the original argument in Appendix A [25].

The value of X does not affect any physical prediction of the theory, which is perhaps made
more obvious by emphasizing that all possible thermodynamic systems are involved in the derivation,
and M is an enormous (and unknown) number [12].

Inserting Equation (1) into Equation (2), we find

SB

({
Na,j, Nb,j

})
= kB ln

( Na,T !

VNa,T
T

)(
Nb,T !

VNb,T
T

)
M

∏
j=1

V
Na,j
j

Na,j!

V
Nb,j
j

Nb,j!

+ X, (3)

which can be written as

SB

({
Na,j, Nb,j

})
= kB

[
ln

(
Na,T !

VNa,T
T

)
+ ln

(
Nb,T !

VNb,T
T

)

+
M

∑
j=1

ln

V
Na,j
j

Na,j!

+
M

∑
j=1

ln

V
Nb,j
j

Nb,j!

+ X. (4)

Collecting the terms that contain only the variables related to an individual system j gives

SB,j

(
Na,j, Nb,j

)
= kB ln

V
Na,j
j

Na,j!

+ kB ln

V
Nb,j
j

Nb,j!

 . (5)

This is the configurational part of the Boltzmann entropy of the system j. We can write the total
Boltzmann entropy of the M systems as

SB

({
Na,j, Nb,j

})
=

M

∑
j=1

SB,j + kB ln

(
Na,T !

VNa,T
T

)
+ kB ln

(
Nb,T !

VNb,T
T

)
+ X. (6)

Since Na,T , Nb,T , VT and X are all constants, the last three terms in Equation (6) do not play any
role in thermodynamic predictions and may be ignored [12].
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The initial conditions for the values of
{

Na,j, Nb,j

}
(and

{
Ej, Vj

}
if we consider the full

entropy) are arbitrary, subject to the sum rules for Na,T and Nb,T (and ET and VT), and are
determined by the experimenter. To start, all systems are isolated to establish their initial values.
Once the initial conditions have been established, the systems can exchange particles or not, as the
experimenter decides.

The four essential postulates that the entropy must satisfy are given above in Section 2.4.
SB,j

(
Na,j, Nb,j

)
clearly satisfies the first essential postulate, and the form of Equation (6) confirms

that it satisfies the third postulate (additivity). Equation (2) gives the entropy as the logarithm
of the probability distribution so that the location of the maximum of the entropy automatically
gives the mode of the probability distribution. For a large number of particles, the mode is not
experimentally distinguishable from the mean [34]. Therefore, SB,j

(
Na,j, Nb,j

)
satisfies the first three

essential postulates.
The fourth essential postulate presents a difficulty. The number of particles is, by definition,

discrete. The usual way to deal with this problem is to ignore it, and this is what I will do in this
section. However, in Section 4, I will return to the problem and give a more satisfactory solution.

In the meantime, if Stirling’s approximation (ln N! ≈ N ln N − N) is used, the expression for the
Boltzmann entropy becomes continuous and easy to work with. Equation (5) becomes

SB,j

(
Na,j, Nb,j

)
= kBNa,j ln

(
Vj

Na,j

)
+ kBNb,j ln

(
Vj

Nb,j

)
+ kBNa,j + kBNb,j, (7)

and all four essential postulates are satisfied for this approximate form of the entropy.

3.5. Exchange of Particles of a Single Kind

Consider the release of the constraint that systems ` and m cannot exchange particles of type
a, with all other constraints remaining in place. This release would correspond to replacing an
impermeable wall between the two systems with a semipermeable membrane that allows particles of
type a to pass through, but not particles of type b. If there are no particles of type b in either system,
this is the case of only one type of gas.

After allowing particles of type a to be exchanged between systems ` and m, the exact value of
the location of the mean of the probability distribution for Na,` from Equation (1) is known to be

〈Na,`〉 =
(

Na,` + Na,m

V` + Vm

)
V`. (8)

From Stirling’s approximation to the Boltzmann entropy (Equation (7)), the maximum (or mode)
of the probability distribution (or the entropy) can be found easily under the condition that the sum
Na,` + Na,m is constant. Inserting Na,m = Na,b − Na,` into Equation (7) and setting the derivative
with respect to Na,` equal to zero, gives a very good approximation for the mode of the distribution,
which turns out to be the exact mean in Equation (8).

Separating systems ` and m gives no difficulties since 〈Na,m〉 and
〈

Na,`
〉

are known. However,
the probability distribution for the particle numbers now has a width. Since all systems might
reasonably be assumed to have exchanged particles with another system sometime in their history,
all thermodynamic systems have a width in their probability distributions, and this should be reflected
in the entropy. In Section 4, I will introduce (and justify) the grand canonical entropy, which solves
that problem. First, I will turn to the problem of mixing two different kinds of particles.
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3.6. Exchange of Particles of More than One Kind

If the impermeable wall in Section 3.5 is simply removed, particles of both types, a and b, can be
exchanged between systems ` and m. Now, Equation (4) for the relevant part of the entropy (without
Stirling’s approximation) becomes

SB,rel = kB ln

(
VNa,`
`

Na,`!

)
+ kB ln

(
VNa,m

m
Na,m!

)
+ kB ln

(
VNb,`
`

Nb,`!

)
+ kB ln

(
VNb,m

m
Nb,m!

)
, (9)

and, in addition to Equation (8), there is

〈Nb,`〉 =
(

Nb,` + Nb,m

V` + Vm

)
V`. (10)

The single equation for one type of gas now becomes two equations.
The cases of one vs. two gases therefore explicitly differ in the form of the entropy. Which form is

chosen should be made on the basis of what is measurable.

3.7. Other Treatments without Quantum Mechanics

There have been several previous arguments for the factor of 1/N! that did not require the use of
quantum mechanics.

Gibbs showed that the entropy of an ideal gas must be extensive to predict the correct
behavior [1,6]. In this calculation he used the fact that the ideal gas is an homogeneous system,
so his proof really relied on the factor of 1/N!, rather than the extensivity. It has been quite common to
restrict consideration to the thermodynamics of homogeneous systems [8,9]. Homogeneity has the
advantage of making the Euler equation valid, although it is really not necessary.

Gibbs also presented a derivation of the 1/N! factor in Chapter XV of his book on statistical
mechanics [6]. He discussed the difference between using “specific” phases (without the factor of
1/N!) and “generic” phases (with the factor of 1/N!). Gibbs’ derivation was essentially correct,
but his reasoning was sufficiently convoluted to lead most people to prefer an explanation based on
quantum mechanics.

Gibbs explored the limits of the concept of distinct gases by considering two gases with identical
properties except for an attraction to “some other substances” [1]. Jaynes investigated much the same
situation by assuming that there might be two types of Argon, which seem identical in all measurable
properties. He further assumed that a hypothetical “Whifnium” (“which is so rare that it has not yet
been discovered” [18]) would dissolve one type of Argon but not the other. Jaynes predicted that
Whifnium would be discovered “in the next Century” [18].

In the example of Jaynes, if an experimenter uses a form of the entropy that corresponds to
measurable differences—either with or without Whifnium—the results would be correct. The worst
that could be said about treating different gases as if they were the same, is that some phenomena
would be missed. However, they would be missed in any case because the difference would not
be measurable.

Van Kampen wrote an insightful paper in which he showed how to get the factors of 1/N1!
and 1/N2! by combining two systems [17]. However, van Kampen only kept the factor of 1/N1! in
the definition of the partition function for system 1 under the assumptions that system 2 became
infinitely large. He also assumed that the two systems remained open to the exchange of particles.
van Kampen’s demonstration contained an error in the assumption that both the pressure and the
temperature were fixed while the system was connected to an infinite particle reservoir. Under such
conditions, the number of particles in the system is undetermined.

In 1992, Jaynes demonstrated that the definition of entropy depended on the state of knowledge
of the experimenter [18]. He considered the effects of two imaginary elements he called Whifnium
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and Whoofnium. Jaynes showed that experiments that did not use these elements and did not include
their effects in the entropy functions used to analyze these experiments were still capable of giving
correct and consistent results.

Warren maintains the traditional expression for the partition function without the factor of 1/N!.
However, he notes that when two systems are considered together, “one must sum over the N!/N1!N2!
ways of partitioning the particles” [22]. Unfortunately, he stops short of using that fact as a basis for
developing a new definition of entropy. His basic reason for including the factor of 1/N! is to obtain
an extensive expression for the entropy.

Frenkel argues that the explanation of Gibbs’ paradox does not depend on quantum
mechanics [21], citing both Warren [22] and myself [20,27]. Our justifications of the factor of 1/N! are,
of course, different, but our results are consistent with each other.

Sethna introduced the concept of “undistinguished” particles, by which he apparently meant the
same thing I mean by not measurably different [35]. He advocated dividing the partition function for
N undistinguished particles by N!.

Cates and Manoharan commented that,

First, not all reasonable-sounding definitions of entropy for classically distinguishable
particles are equivalent: some are right and some are wrong. Second, experiments on
colloidal suspensions can resolve with striking clarity what the right definitions are [23].

They discuss several suggested approaches to entropy based on subjective and objective
definitions [23]. They come to the conclusion that, “the informatic view is the simplest way to interpret
experiments on colloids,” but do not advocate any particular definition as being generally correct.

4. Refining the Definition of Entropy

Up to this point, I have been ignoring the energy dependence of the entropy. Although it is not
directly relevant to the main question, its inclusion is natural for the next step. If we release a constraint
and allow two systems to exchange particles, they will also inevitably exchange energy. Just as the
width of the particle-number distribution must be non-zero after an exchange of particles, so must the
width of the energy distribution be non-zero.

In both cases, the widths can be calculated in the grand canonical ensemble, which is clearly
correct if the system has interacted with one that is much bigger. As I will explain in the next subsection,
even when the system has interacted with a smaller system, the grand canonical entropy is valid [12].

4.1. Justification of the Grand Canonical Entropy

If system X has exchanged particles with another system Y at any time in its history, then its
particle-number probability distribution (as well as its energy distribution) has a non-zero width.
If system Y was much larger than system X, the particle-number probability distribution of X is given
by the grand canonical ensemble. The entropy of X can be evaluated in the grand canonical ensemble.

If Y was of comparable size or smaller than X, the width of the particle-number probability
distribution of X is smaller than that given by the grand canonical ensemble [36]. However, the entropy
is still equal to its grand canonical value [12].

To see this, consider three systems, A, B, and C, which differ in volume. Systems A and B are
equal in volume, VA = VB, but VC >> VA + VB. Let all three systems exchange particles, so that the
number densities of the three systems are the same.

〈NA〉
VA

=
〈NB〉

VB
=
〈NC〉

VC
(11)

The particle-number probability distributions of systems A and B are given by the grand canonical
ensemble, and the entropies of A and B are also calculated in the grand canonical ensemble.
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Now close system C and separate it from A and B. The entropies of the systems must remain
unchanged. If they decreased, it would violate the second law. If they increased, returning to the
original position would lower the entropy, which would also violate the second law. Therefore,
the entropies must remain the same.

However, with C separated from A and B, the two smaller systems are only in equilibrium
with each other. Their particle-number probability distributions are narrower than when they were
exchanging particles with C, but their entropies are unchanged.

No thermodynamic measurement can determine the size of the last system with which a given
system has exchanged particles. For all macroscopic systems, the entropy is given by the grand
canonical expression.

4.2. The Grand Canonical Entropy of the Classical Ideal Gas

The grand canonical entropy of the classical ideal gas has been calculated exactly in a previous
paper [13]. It is found to be exactly extensive, without using Stirling’s approximation. This may be
surprising to some, but it is quite reasonable since ideal gas particles are completely independent of
each other. An outline of the calculation is given in Appendix B.

It is trivial to extend the expression to the case of two different kinds of particles. The entropy of
the system j is a function of the average particle numbers 〈Na,j〉 and 〈Nb,j〉, and the average energy
Uj = 〈Ej〉.

SGC,j = 〈Na,j〉kB

[
3
2

ln

(
Uj

〈Na,j〉

)
+ ln

(
Vj

〈Na,j〉

)
+ ln

(
4πm
3h2

)3/2
+

5
2

]

+ 〈Nb,j〉kB

[
3
2

ln

(
Uj

〈Nb,j〉

)
+ ln

(
Vj

〈Nb,j〉

)
+ ln

(
4πm
3h2

)3/2
+

5
2

]
(12)

5. Resolution of the Paradoxes

The resolution of Gibbs’ paradoxes is now straightforward. The main feature of the resolution
is that the entropy should be defined in terms of the probability of transferring particles (or energy,
or volume) between systems. This was first argued by Boltzmann, who even included the word
“Wahrscheinlichkeitsrechnung” (probability calculation) in his title [4,5]. Planck missed an important
point by trying to apply Boltzmann’s ideas to an isolated system [30]. I believe that the definition of the
classical entropy as I have presented it in this paper and elsewhere represents Boltzmann’s intentions.

5.1. The First Gibbs’ Paradox

The first Gibbs’ paradox concerns the question of why mixing two volumes of the same gas does
not produce an increase in the entropy while mixing two different gases does.

It is useful to consider the probability distribution of the particles when mixing of two volumes of
the same gas. To be specific, assume that the two systems, ` and m, have no type b particles and the
same energy density and number density of type a particles, that is

Ua,`

〈Na,`〉
=

Ua,m

〈Na,m〉
, (13)

and
〈Na,`〉

V`
=
〈Na,m〉

Vm
. (14)

Remove the constraint between the two systems, ` and m, so that the two volumes of gas can mix.
After they have come to equilibrium, separate the two systems.

As described in Section 2, we originally assumed that any particle could be anywhere in the M
systems, which were scattered throughout the world. The probability of being found in system ` was
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given by V`/V. This assumption seems to be reasonable, since we have assumed that no measurement
can determine which system it is in. After the “mixing” of two gases, the probability distribution is
unchanged. Mixing two samples of the same gas has no effect at all; the probability of any particular
particle being in system ` is exactly the same before and after mixing. It is only to be expected that the
total entropy is unchanged.

The mixing of different kinds of gases has an effect on the probability distribution. We have
assumed that they are measurably different, so that we can set up an experiment with only particles
of type a in system ` and only particles of type b in system m. For simplicity, assume that V` =

Vm = Vo where Vo is a constant. Similarly, assume that 〈Na,`〉/V` = 〈Nb,m〉/Vm = No/Vo, with
〈Nb,`〉 = 〈Na,m〉 = 0. For simplicity, ignore the energy dependence in Equation (12) and the constant

ln
(
4πm/3h2)3/2

+ 5/2.
Before mixing, the relevant terms in the entropy of the two systems (ignoring the other M− 2

systems) are

SGC,before = NokB ln
(

Vo

No

)
+ NokB ln

(
Vo

No

)
= 2NokB ln

(
Vo

No

)
(15)

where the first term comes from the entropy of system ` and the second from the entropy of system m
(both have the same magnitude).

After mixing, a simple calculation gives the new entropy as

SGC,after =
No

2
kB ln

(
Vo

No/2

)
+

No

2
kB ln

(
Vo

No/2

)
+

No

2
kB ln

(
Vo

No/2

)
+

No

2
kB ln

(
Vo

No/2

)
(16)

or

SGC,after = 2NokB ln
(

Vo

No/2

)
= 2NokB

[
ln
(

Vo

No

)
+ ln 2

]
(17)

The increase in entropy is exactly as expected. The experimentally observed state has changed.

5.2. The Second Gibbs’ Paradox

The second Gibbs’ paradox is due to the apparent difficulty in explaining the factor of 1/Nj! in
the expression for the entropy of system j. The paradox is based on an expression for the entropy
that Boltzmann derived for the energy dependence alone. He had explicitly stated that the number of
particles was assumed constant [4,5]. That form of the entropy was not suitable for determining the
particle-number dependence; Boltzmann never claimed that it was.

The second Gibbs’ paradox is not a paradox at all if the entropy is derived from the properties
of a set of systems that can exchange particles, as it is in this paper. It follows immediately from the
multinomial distribution in Equation (1), which has a factor of Nj! for every system in the denominator.

The idea of exchanging energy between two systems and associating the entropy with the
maximum of the probability distribution was given in Boltzmann’s 1877 paper [4,5]. Extending it to
the exchange of particles is straightforward.

I have given a derivation of the entropy Sj for system j that Boltzmann could have given in the
19th century. The derivation includes the correct factors of 1/Nx,j!. No quantum mechanics was used
in the derivation.

6. Conclusions

The resolution of Gibbs’ first paradox is subtle. Gibbs understood the impossibility of returning a
mixture of like gases to the original containers. However, he assumed that it was meaningful to speak
of the original containers for each gas. Gibbs assumed that particles somehow took on the identity
of the system that they had been in at the start of an experiment. Actually, if the particles cannot
be identified at the end of an experiment because they are not measurably different, they certainly
could not have been identified before any measurements had been made. The probability distribution
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of the particles is given by Equation (1) both before and after mixing. Mixing particles that are not
measurably different has no effect at all.

The Gibbs’ second paradox is easier to understand because it is a consequence of the probability
distribution given in Equation (1). The message to be drawn from these calculations is that Boltzmann
would have saved physicists a great deal of trouble if he had applied his interpretation of the entropy
to calculate the particle-number dependence. It is far simpler than his calculation of the energy (or
temperature) dependence and would have dispensed with Gibbs’ second paradox during the 19th
century. There was no need to wait for the invention of quantum mechanics, which plays no role in
the explanation of either of Gibbs’ paradoxes.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Derivation of the Entropy Using Two Systems

If we only use two systems, we can still derive the entropy, including the factor of 1/Nj!. In fact,
this is the way I first presented the derivation [20,25]. I will limit the argument to one type of particle
for simplicity. I will also ignore the energy dependence of the entropy, as I have in the rest of this paper.

Consider two systems that could potentially exchange particles, except for constraints that
might prevent such exchanges. These constraints can be released or reimposed as the experimenter
decides. There are initially N1 particles in system 1 and N2 particles in system 2. N1 and N2 are
variables because the two systems can potentially exchange particles. The total number of particles,
N = N1 + N2, is constant because the two systems are isolated from the rest of the universe. System 1
has a volume V1 and system 2 has a volume V2.

If particle exchange is forbidden, the initial values of N1 and N2 can be anything. If the two
systems are allowed to exchange particles and each particle has a uniform probability density of being
anywhere in the total volume V = V1 + V2, the probability of finding N1 particles in system 1 and N2

particles in system 2, would be given by

P(N1, V1; N2, V2) =
N!

N1!N2!
VN1

1 VN2
2

VN . (A1)

To determine the equilibrium values, N∗1 and N∗2 , maximize P(N1, V1; N2, V2), subject to the
condition that N is constant. If the constraint forbidding particle exchange is subsequently reimposed,
the values N1 = N∗1 and N2 = N∗2 are retained.

I defined the configurational component of the total entropy of two systems as the logarithm of
the particle probability distribution [12,13,20,25–29], plus an arbitrary additive constant. The total
configurational entropy of the two systems then

S(N1, V1; N2, V2) = kB ln P(N1, V1; N2, V2) + X, (A2)

where X is an arbitrary constant, and the maximum of the entropy gives the equilibrium values of N1

and N2. The entropy can be written

S(N1, V1; N2, V2) = kB ln

(
VN1

1
N1!

)
+ kB ln

(
VN2

2
N2!

)
− kB ln

(
VN

N!

)
+ X (A3)

The last two terms are, of course, constant. Their values have no physical consequences. At this
point, I chose X = kB ln

(
VN/N!

)
to simplify the equation.

S(N1, V1; N2, V2) = kB ln

(
VN1

1
N1!

)
+ kB ln

(
VN2

2
N2!

)
= S1(N1, V1) + S2(N2, V2) (A4)
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The maximum of this expression still determines the equilibrium values of N1 and N2 when the
particle-number constraint is released under the condition that N and V are constant.

Since the entropy function for system 1, S1(N1, V1), does not depend in any way on the properties
of system 2, system 2 could be replaced by any other system along with its entropy function. Indeed,
any two systems could replace systems 1 and 2. Equilibrium conditions after the release of any
constraint and subsequent equilibration of the systems (holding the sum of the particle numbers
from the new pair of systems constant) would be found from the entropy functions without further
calculations in statistical mechanics. In this way, the expressions for the systems’ entropies would
satisfy the thermodynamic postulates for any set of systems.

Appendix B. The Grand Canonical Entropy of the Ideal Gas

This appendix gives the mathematics behind the perfectly extensive grand canonical entropy of
the classical ideal gas. The derivation requires the complete expression for the entropy, including the
energy dependence. Throughout this derivation, the subscript j, labelling the system, will be dropped.
It is useful to first calculate the canonical entropy.

Appendix B.1. The Canonical Entropy

To find the canonical entropy, we first calculate the canonical partition function in the usual way.

Z =
1

h3N N!
VN

∫ ∞

−∞
d3N p exp[−β

3N

∑
j=1

p2
i /2m] =

1
N!

VN
(

2πm
βh2

)3N/2
(A5)

For convenience, define a dimensionless entropy as S̃ = S/kB so that the the differential form of
the fundamental equation is

dS̃ = β dU + (βP)dV − (βµ)dN, (A6)

where P is the pressure, and µ is the chemical potential.The parentheses around (βP) and (βµ) are
reminders that these quantities are each to be treated as single variables.

Massieu functions give us a convenient way to derive the entropy. Defining the Legendre
transform of the entropy with respect to β as the first Massieu function, we have from Equation (A6),

β =

(
∂S̃
∂U

)
V,N

. (A7)

The Legendre transform (Massieu function) of S̃ with respect to β is given by

S̃[β] = S̃− βU = −β (U − TS) = −βF, (A8)

so that
S̃[β] = ln Z(β, V, N). (A9)

inserting the expression for Z from Equation (A5) gives

S̃[β] = ln

[
1

N!
VN

(
2πm
βh2

)3N/2
]

. (A10)

Using

−U =

(
∂S̃[β]

∂β

)
V,N

(A11)

we can easily derive

β =
3N
2U

(A12)
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This equation is exact, while the usual Boltzmann entropy gives a tiny error of order 1/N.
To obtain S̃ from S̃[β], simply invert Equation (A8) Writing this out gives the canonical entropy.

SC = kB

[
N
(

3
2

)
ln
(

U
N

)
+ ln

(
VN

N!

)
+ N

(
3
2

)
ln
(

4πm
3h2

)
+

3N
2

]
(A13)

Only the term involving the volume V contains a factor of 1/N!. Note that this expression uses
the average energy U instead of E.

Appendix B.2. The Grand Canonical Entropy

For the grand canonical ensemble, a second Massieu function S[β, (βµ)] is needed, which uses
the equation

− (βµ) =

(
∂S̃
∂N

)
U,N

, (A14)

in addition to Equation (A7).
The Legendre transform of S̃ with respect to both β and (βµ) is given by

S̃[β, (βµ)] = S̃− βU + (βµ)N = lnZ(β, V, (βµ)), (A15)

where Z is the grand canonical partition function.
To obtain the grand canonical partition function, multiply the canonical partition function by

exp[(βµ)N] and sum over N.

Z =
∞

∑
N=0

1
N!

(
V
(

2πm
βh2

)3/2
)N

exp[(βµ)N] (A16)

The series sums to an exponential, eliminating the factor of N!.

Z = exp

[(
V
(

2πm
βh2

)3/2
)

exp[(βµ)]

]
(A17)

Using Equation (A15) gives

S̃[β, (βµ)] =

(
V
(

2πm
βh2

)3/2
)

exp[(βµ)] (A18)

The usual equation for N gives

N =

(
∂S̃[β, (βµ)]

∂(βµ)

)
β,V

=

(
V
(

2πm
βh2

)3/2
)

exp[(βµ)] (A19)

We can use this equation to solve for (βµ).

(βµ) = ln

[
N
V

(
βh2

2πm

)3/2]
(A20)

Taking derivative of S̃[β, (βµ)] with respect to β,

−U =

(
∂S̃[β, (βµ)]

∂(β)

)
V,(βµ)

, (A21)
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gives

U =
3
2

β−1N. (A22)

Finally, the grand canonical entropy is

SGC = 〈N〉kB

[
3
2

ln
(

U
〈N〉

)
+ ln

(
V
〈N〉

)
+ ln

(
4πm
3h2

)3/2
+

5
2

]
. (A23)

Note that this expression is a function of 〈N〉 instead of N. This expression for the entropy of
a classical ideal gas is exactly extensive and no use has been made of Stirling’s approximation.
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