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Abstract: In multiphase (≥3) equilibrium calculations, when the Newton method is used to solve the
material balance (Rachford-Rice) equations, poorly conditioned Jacobian can lead to false convergence.
We present a robust successive substitution method that solves the multiphase Rachford-Rice
equations sequentially using the method of bi-section while considering the monotonicity of the
equations and the locations of singular hyperplanes. Although this method is slower than Newton
solution, as it does not rely on Jacobians that can become poorly conditioned, it can be inserted into
Newton iterations upon the detection of a poorly conditioned Jacobian. Testing shows that embedded
successive substitution steps effectively improved the robustness. The benefit of the Newton method
in the speed of convergence is maintained.

Keywords: multiphase equilibrium; Rachford-Rice equation; three-phase flash calculation; successive
substitution; Newton method

1. Introduction

Petroleum reservoir fluids are multi-component mixtures primarily made of hydrocarbons, held
subsurface at high-temperature and high-pressure conditions [1,2]. Although under most situations
the phase behavior of these fluids can be adequately described by vapor-liquid two-phase equilibria,
multiphase phenomena (number of phases ≥3) have also been widely observed. Some of them,
such as wax precipitation [3–6], hydrate formation [7–10], and asphaltene precipitation [11–14] are
of significant importance to oil and gas production and transportation. In enhanced oil recovery,
mixtures of reservoir oil and injected gas, such as CO2, can also exhibit complex phase behaviors
at low pressures [15–17]. For these reasons, research on multiphase equilibrium calculations is still
very active.

Multiphase (≥3) equilibrium calculation includes phase-stability [18] and phase-split [19]
calculation steps. These two steps are usually carried out in series, except for the class of methods
that was started by Gupta et al. [20], where they are carried out simultaneously. In the phase-split
calculation step, mass balance equations and fugacity equations are solved. These two sets of equations
can be solved sequentially using the method of successive substitution: the mass balance equations are
first solved for a given set of equilibrium ratios; then, the equilibrium compositions of the phases that
were obtained from the solution of the mass balance equations are used to update the equilibrium ratios
through each phase’s equation of state or activity correlation [21–23]. These two sets of equations can
also be solved simultaneously by the Newton method [24]. Although the Newton method converges
more rapidly than the method of successive substitution, its accuracy is often influenced by the initial
guess. For this reason, Michelson [19] recommended to begin phase-split calculations with successive
substitutions and then switch to the Newton method. Successive substitution method and Newton
method for phase-split calculations are abbreviated as SS-PS and NM-PS in this study.
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This study focuses on the solution of the mass balance equations, the first step in SS-PS.
Mass balance equations can be either solved by the Newton method [21–23,25,26] or by formulating
the equations into a problem of minimization [27–29]. They are usually expressed in the Rachford-Rice
form [30], which, for the case of two-phase equilibria, is easy to solve owing to its monotonicity and
bounds of solutions explicitly indicated by the poles [31]. Following the abbreviations of SS-PS and
NM-PS, we will abbreviate Newton method for the Rachford-Rice equations as NM-RR, and the
minimization method for the Rachford-Rice equation as MM-RR. For multiphase (≥3) Rachford-Rice
equations, the Newton method that was presented in Leibovici and Neoschil [26] is a widely-used
NM-RR. Their method uses the locations of singular hyperplanes of the Rachford-Rice equations to
confine the Newton iterations. The result is a robust convergence toward a unique solution in the
multi-dimensional hypervolume, including the “negative flash” [32] region. It was found, however, by
Okuno and coworkers [29], that Leibovici and Neoschil’s method would occasionally fail to converge
to the correct answer, because the condition of the Jacobian becomes too large when the Newton steps
are carried out very close to the singular hyperplanes. Okuno et al.’s method, which is based on the
principle of minimization, uses the condition of non-negative phase compositions to further constrain
the solutions and can overcome the problem of poorly conditioned Jacobians. Their method also
converges with a fewer number of iterations as compared to the Leibovici and Neoschil’s method.
The method of Okuno et al. is one example of the latest MM-RR.

In this study, we present a successive-substitution method to solve the multiphase Rachford-Rice
equations that we will mention henceforth as SS-RR. Considerations of monotonicity and the locations
of singular hyperplanes help this method to achieve robust convergence. The speed of convergence is
slow when compared to NM-RR. However, as it does not use Jacobian or any derivatives, it can achieve
convergence where NM-RR of Leibovici and Neoschil [26] cannot, due to poorly conditioned Jacobians.
A hybrid code that combines the benefits of SS-RR and NM-RR is also presented. Section 2 is a
presentation of the SS-RR method. In Section 3, we present the hybrid Newton-successive substitution
method (NSS-RR) and two examples for which NM-RR could not converge to the correct answers,
whereas both SS-RR and NSS-RR did. In Section 4, we present comparisons to show that the results
from our calculations agree with those that were reported in the literature, including a complete
phase-split calculation for an oil-gas-water system with equation of state and Henry’s law.

2. Successive Substitution Method for Multiphase Rachford-Rice Equations

In this study, we use ñj to denote the mole fraction of phase j in a multiphase, multicomponent
mixture, xj

i to denote the mole fraction of component i in phase j, and zi to denote the mole fraction
of component i in the mixture. NC is the total number of components and NP is the total number of
phases. The equilibrium ratio of component i between phase α and phase β is defined as Kαβ

i = xα
i /xβ

i .
The multiphase Rachford-Rice equations that are derived from mass balances are

NC
∑

i=1

(1−K j1
i )zi

1−
NP
∑

k=2
ñk(1−Kk1

i )
= 0 j = 2, · · · , NP (1)

Here, selection of reference phase “1” is arbitrary, but it should contain every component of the system.
While the selection of reference phase does not affect the results, it does affect convergence path and
speed. We recommend to select reference phase to avoid extreme values of equilibrium ratios.

For a given set of equilibrium ratios K j1
i (i = 1, 2, · · · , NC, j = 2, · · · , NP) and mole fractions zi,

Equation (1) is solved to give ñ2 through ñNP . Then, the compositions of phases are obtained using

xj
i =

ziK
j1
i

1+
NP
∑

k=2
ñk(Kk1

i −1)
i = 1, 2, · · · , NC j = 1, 2, · · · , NP (2)



Entropy 2018, 20, 452 3 of 19

In this study, we introduce
ξ

j
i = K j1

i − 1 j = 2, · · · , NP (3)

to simply Equation (1) into a set of fractional equations

Fj

(
ñ2, · · · , ñNP

)
=

NC
∑

i=1

ξ
j
i zi

1+
NP
∑

k=2
ξk

i ñk
= 0 j = 2, · · · , NP (4)

The values of ξ
j
i vary between −1 and ∞.

Although Equation (4) appears simple, formulating a robust numerical solution is rather complex,
because of the presence of NC hyperplanes

1 +
NP
∑

k=2
ξk

i ñk = 0 i = 1, 2, · · · , NC (5)

on which Equation (4) becomes singular. Precarious application of the Newton method, without proper
consideration of the hyperplanes, can lead to non-convergence or convergence toward non-physical
solutions. Leibovici and Neoschil [26] recognized that the physical constraint on the mole fractions

of the phases, 0 ≤ ñj ≤ 1 and
N
∑

j=2
ñj < 1, defines a hypertetrahedron in the

[
ñ2, . . . , ñNP

]
space, and

this hypertetrahedron cannot be dissected by any of the hyperplanes. This property ensures that Fj in
Equation (4) are continuously differentiable in the hypervolume

1 + ξ
j
i ñ

j > 0 (6)

that encloses the hypertetrahedron of the physically admissible solutions and the immediately adjacent
negative flash region. By starting the initial guess within the hypervolume defined by Equation (6)
and relaxing the Newton steps such that they do not cross the singular hyperplanes, Leibovici and
Neoschil [26] were able to ensure that their Newton method does not generate a solution outside
of Equation (6). However, the condition of Fj being continuously differentiable does not guarantee
that the Jacobian that is needed by the Newton method is always well conditioned. When Newton
iteration approaches the boundaries of Equation (6), the Jacobian can become nearly singular, causing
the Newton method to fail [29].

The abovementioned limitation of the Newton method motivated us to seek a method that
does not require the computation of Jacobian or any derivatives of Fj. Our method began with the
recognition that since

∂Fj

∂ñj =
NC

∑
i=1
−

(ξ
j
i)

2
zi[

1 +
NP
∑

k=2
ξk

i ñk

]2 < 0 (7)

Fj must be monotonically decreasing in the direction of increasing ñj. Because of this property, when
ñj is increased to approach a singular hyperplane while all the other variables are kept constant,
Fj → −∞ . When ñj is decreased to approach a singular hyperplane while all the other variables
are kept constant, Fj → +∞ . Additionally, when ñj → +∞ while all other variables are kept finite,
Fj decreases and approaches zero; when ñj → −∞ while all other variables are kept finite, Fj increases
and approaches zero. Figure 1 shows, qualitatively for a three-phase system, the monotonicity of F2

and F3 to ñ2 and ñ3.
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Figure 1. (a) The blue triangle is the domain of physically admissible solutions, surrounded by four
singular lines. The variation in F2 along the horizontal dashed line A-B-C and that in F3 along the
vertical dashed line D-E-F are shown in (b,c), respectively. Both F2 and F3 decrease monotonically with
increasing ñ2 and ñ3. The monotonic trends are separated by poles at A, B, C and D, E, F.

The monotonicity of Fj to ñj, but not the other variables motivated us to design a
successive-substitution method to solve Equation (4), as follows. First, an initial guess is made within
the hypertetrahedron of physically admissible solutions, ñ2

0 = ñ3
0 = · · · = ñNP

0 = 1/NP. Here, the
subscripts to ñj denote the number of iterative substitutions. We begin the first iteration by holding
the values of ñ3

0 through ñNP
0 constant and seek ñ2

1 to satisfy F2

(
ñ2

1, ñ3
0, · · · , ñNP

0

)
= 0. Once ñ2

1 is

identified, we hold ñ2
1 and ñ4

0 through ñNP
0 constant and seek ñ3

1 to satisfy F3

(
ñ2

1, ñ3
1, ñ4

0, · · · , ñNP
0

)
= 0.

This process continues till FNP = 0 is solved and subscripts of all ñj are updated to level “1”, which
finishes the first iteration. The second iteration begins by holding the values of ñ3

1 through ñNP
1 constant

and seek ñ2
2 to satisfy F2

(
ñ2

2, ñ3
1, · · · , ñNP

1

)
= 0, and ends when all the subscripts of ñj are updated to

level “2”. Iteration would then begin at level “3”, and continue till all ñj are converged.
With this successive-substitution strategy, solution of Equation (4) is reduced to successive

solutions of single-variable equation Fj
(
ñj) = 0. Recognizing that Fj

(
ñj) is monotonic between its

poles, we used the following method to solve Fj
(
ñj) = 0:

• Evaluate Fj

(
ñ2

m, · · · , ñj−1
m ,

[
ñj∗

m−1

]
, ñj+1

m−1, · · · , ñNP
m−1

)
. Here, m refers to the level of iteration

and ñj∗ in the square bracket is the variable that needs to be updated to level “m” such that
Fj

(
ñ2

m, · · · , ñj−1
m , ñj

m, ñj+1
m−1, · · · , ñNP

m−1

)
= 0.

• Determine the direction along which to vary ñj∗ . If Fj

(
ñ2

m, · · · , ñj−1
m ,

[
ñj∗

m−1

]
, ñj+1

m−1, · · · , ñNP
m−1

)
> 0,

ñj∗ should be increased. If, however, Fj

(
ñ2

m, · · · , ñj−1
m ,

[
ñj∗

m−1

]
, ñj+1

m−1, · · · , ñNP
m−1

)
< 0, ñj∗ should

be decreased.
• Check whether a solution exists along the direction of increasing (or decreasing) ñj∗ . This is

achieved by performing a line search to see whether increasing (or decreasing) ñj∗ would lead
to an intersection with a singular hyperplane. If ñj∗ needs to be increased and increasing ñj∗

generates intersections with singular hyperplanes, one solution must exist between the current
ñj∗ and the nearest intersection, because, as ñj∗ approaches the intersection, Fj

(
ñj∗) approaches

−∞. If ñj∗ needs to be increased, but there is no intersection with singular hyperplanes along the
direction of increasing ñj∗ , there is no solution to Fj

(
ñ2

m, · · · , ñj−1
m , ñj

m, ñj+1
m−1, · · · , ñNP

m−1

)
= 0

and the calculation stops. Similar criteria apply when ñj∗ needs to be decreased.

• When solution exists, vary ñj∗ to find ñj∗
m . Because there is one and only one solution between ñj∗

m−1
and the nearest intersection with singular hyperplanes, a bi-section method is used. Testing begins
at the midpoint between ñj∗

m−1 and the nearest intersection. The interval that contains the solution
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is continuously halved until Fj evaluated at the midpoint of the interval becomes zero within a
prescribed precision.

Successive substitution and bi-section methods that are presented above are very robust. As the
initial guess is within the hypervolume defined by Equation (6) and solution search is bounded by the
singular hyperplanes, this algorithm will never generate a solution outside the hypervolume. A flow
chart for this algorithm is provided in Appendix B.

At the end of this section, we present an example that involves gas, oil, and water phases.
The system that is considered here only consists of three components: methane, n-butane, and water.
The pressure is 13.8 MPa and the temperature is 93.3 ◦C. Methane, n-butane, and moisture are
present in the gas phase (g = 1); methane, n-butane, and dissolved water are present in the oil
phase (o = 2); and, dissolved methane, dissolved n-butane, and water are present in the water phase
(w = 3). The equilibrium ratios needed by the calculation were obtained from solubility data of pure
hydrocarbons in pure water [33], published equilibrium ratios for hydrocarbons in a retrograde gas [34],
moisture content in natural gas [35], and water solubility data in hydrocarbons [36]. At the pressure
and temperature of interest, the mole fractions of methane and n-butane in the water phase are:
xw

C1
= 1.6× 10−3, xw

nC4
= 1.5× 10−4. Assuming that the equilibrium ratios for methane and n-butane,

between gas and oil phases, are not affected by whether these phases contain water or not, we obtained
Kgo

C1
= 2.181, Kgo

nC4
= 0.350. Data on moisture content in natural gas suggests that at the pressure and

temperature of interest, the mole fraction of water in the gas phase should be xg
H2O = 2.894× 10−2.

Correlation in Hibbard and Schalla [36] suggests that mole fraction of water in the oil phase can be set
to xo

H2O = 0.004. The calculated compositions of the three phases and the equilibrium ratios are listed

in Table 1, together with their corresponding ξ
j
i .

Table 1. Compositions of phases and equilibrium ratios.

xg
i xo

i xw
i Kgo

i Kgw
i ¸o

i ¸w
i

H2O 0.02894 0.004 0.99825 7.235 0.029 −0.862 33.494
CH4 0.74143 0.33995 0.0016 2.181 463.394 −0.541 −0.998

n-C4H10 0.22963 0.65605 0.00015 0.350 1530.867 1.857 −0.999

This example was solved using a mixture composition of zC1 = 0.6, znC4 = 0.35 and zH2O = 0.05.
The initial guess was (ñg, ño, ñw) = (1/3, 1/3, 1/3). The case converged within five iterations with
convergence criterion ‖[∆ño, ∆ñw]‖ ≤ 10−7.

Figure 2 shows the path of convergence from the initial guess. Solution for ñg, ño, and ñw is
(0.6725, 0.2981, 0.0294).

We note that this SS-RR method can be used to obtain, for three-phase equilibrium calculations,
the lines on which F2 = 0 and F3 = 0. These lines are of special interest, because their intersection is
the needed solution. Such lines have been used by Haugen et al. [37] and Li and Firoozabadi [24] in
order to explain their area-based bi-section method to solve F2 and F3. The dotted lines in Figure 2
mark the locations where F2 = 0 and F3 = 0, respectively. They were constructed from the paths
of convergence of 1780 SS-RR calculations, each with a different initial guess within the area that is
defined by Equation (6). These calculations all converged to the same solution, which indicates that
initial guess is not important as long as it is bounded by Equation (6).
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Figure 2. Red line ended with circle and cross marks the path of convergence for the three-component,
three-phase example presented in Table 1. Circle is the initial guess and cross is the converged solution.
The smaller shaded triangle is the domain of the physically permissible solutions. The larger shaded
triangle is the domain defined by Equation (6) including the negative flash region. The dashed lines are
the singular lines. The dotted lines inside the larger shaded triangle correspond to F2 = 0 and F3 = 0,
the intersection of which is the converged solution.

3. Hybrid Newton–Successive Substitution Method

The convergence speed of the above SS-RR method is slow when compared to the NM-RR method
of Leibovici and Neochil [26]. However, as SS-RR is robust and it does not require the Jacobian or any
derivative of Fj, it can be integrated into NM-RR to handle situations with poorly conditioned Jacobians.

In hybrid Newton-Successive substitution (NSS-RR) method, the Newton step is identical to
that in Leibovici and Neochil [26]. Prior to each Newton step, however, the condition number of the
Jacobian matrix, κ, is evaluated. A Newton iteration is carried out if κ is less than a prescribed value
and a successive-substitution iteration is carried out if otherwise. A flow chart for NSS-RR is provided
in Appendix B.

When starting a success-substitution iteration, the result from the previous Newton step can be
directly used. When starting a Newton step after a successive-substitution iteration, however, care
should be taken because at the end of successive substitution FNP = 0. Assume that

[
ñ2

m−1, · · · , ñNP
m−1

]
is the result of the m − 1-th iteration and

[
ñ2

m, · · · , ñNP
m

]
is the result of the m-th iteration, which

is a successive-substitution. If the m + 1-th iteration is a Newton step, we recommend not to use[
ñ2

m, · · · , ñNP
m

]
to start the Newton step, but a combination of

[
ñ2

m−1, · · · , ñNP
m−1

]
and

[
ñ2

m, · · · , ñNP
m

]
.

We specifically used

ñi∗ =
i− 1

NP − 1
ñi

m−1 +
NP − i
NP − 1

ñi
m (8)

to start the Newton step after successive-substitution. Geometrically, ñi∗ is the average of the points
along the path of successive-substitution from

[
ñ2

m, ñ3
m−1, · · · , ñNP

m−1

]
to
[
ñ2

m, ñ3
m, · · · , ñNP

m

]
. As each

of these points makes one and only one Fj zero, ñj∗ calculated from Equation (8) is guaranteed to
separate from surfaces Fj = 0, thus making it a good choice in our opinion to start the Newton step.

In what follows, we present two examples for which NM-RR of Leibovici and Neoschil [26]
did not converge to the correct answers, whereas both SS-RR and NSS-RR were successful. The first
example is a fifteen-component, three-phase mixture. The second example is a twenty-component,
five-phase mixture. In NM-RR and NSS-RR, the relaxation parameter that regulates the Newton step
when it intersects with the singular hyperplanes was set to 0.5. The maximum condition number in
NSS-RR was set to 1010. In all of the methods, the convergence criterion set on the difference between
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vectors ñi
m−1 and ñi

m was 10−7. Note that if the convergence criterion is tightened, then NM-RR can
find the correct solutions for these examples. We are only using these examples to compare NM-RR
and NSS-RR under the same convergence criterion.

Table 2 gives the composition of the fifteen-component, three-phase mixture, the equilibrium
ratios, and the equilibrium composition of the three phases. For this example, both NSS-RR and
SS-RR converged to the correct root (−0.01686263294, −1.1254155641). NM-RR of Leibovici and
Neoschil [26] however converged to a wrong root (−0.04078420653, −1.1004615900). As shown in
Figure 3, many Newton steps were carried out very close to a singular line of the mixture. At the 21st
step, a very large condition number of 5.0977 × 1011 was encountered. The hybrid method carried
out a successive-substitution step at this location and the subsequent Newton steps converged to the
correct solution. The NM-RR method, on the other hand, lost accuracy at this location and it converged
to a wrong solution. Figure 4 shows the variations in the condition number of the Jacobian during
iterations. NM-RR finished in 29 iteration steps and NSS-RR finished in 28 iteration steps. The 21st
step in NSS-RR is the only successive-substitution step carried out.

Table 3 gives the composition of the twenty-component, five-phase mixture, the equilibrium
ratios, and the equilibrium compositions of the five phases. For this example, both NSS-RR and SS-RR
converged to the correct root (−0.00538660799, −0.00373696250, −0.00496311432, −0.00415370309).
NM-RR of Leibovici and Neoschil [26], however, converged to a wrong root (−0.00287415017,
−0.00392609623, −0.00798417906, −0.00350187286). Figure 5 shows that, at the 38th step, the condition
number of the Jacobian reached 3.52 × 1011. Upon detecting this large condition number, NSS-RR
performed a single successive-substitution step, which helped the following Newton steps to converge
to the correct solution using a total of 54 iterations. NM-RR of Leibovici and Neoschil [26], however,
lost accuracy after the 38th step and converged to a wrong solution.Entropy 2018, 20, x FOR PEER REVIEW  8 of 21 
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Figure 4. Variations in the condition number of Jacobian during NM-RR and NSS-RR iterations for the
fifteen-component, three-phase example.

As observed from the above examples, as SS-RR does not use any Jacobians nor derivatives, it is a
useful method to switch to upon detection of a poorly conditioned Jacobian. In our hybrid NSS-RR,
successive substitution is only activated on rare occasions, and hence it does not add significantly to
the computational time. Checking the condition numbers of Jacobians, on the other hand, generated a
non-negligible overhead to the algorithm. In average, the run time of NSS-RR is about 1.4 times of that
of NM-RR.

Figure 5. Variations in the condition number of Jacobian during NM-RR and NSS-RR iterations for the
twenty-component, five-phase example.
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Table 2. Composition and equilibrium ratios of the 15-component, 3-phase example.

Component zi Ki1 Ki2 x1
i x2

i x3
i

1 0.0315583329803 1.8528741428663 1.8115659762243 0.4366767940810 0.8091071405424 0.7910688227638
2 0.4071270076623 0.2314055308386 0.6954909860157 0.3003165208873 0.0694949039355 0.2088674332287
3 0.4751941671726 0.5041709444335 0.0001084501767 0.2227137374279 0.1122857953373 0.0000241533442
4 0.0545811711566 0.0635482083897 0.0012603511720 0.0255077448600 0.0016209714859 0.0000321487161
5 0.0115700446895 0.4078908506272 0.0013474694481 0.0054220598442 0.0022116086020 0.0000073060600
6 0.0189113955704 0.5066231481075 0.0000038929319 0.0088630653086 0.0044902340485 0.0000000345033
7 0.0000455484805 27.1901689643580 0.0035219133166 0.0000271151486 0.0007372654706 0.0000000954972
8 0.0006404014374 0.0765095693423 0.0000171923836 0.0002991176091 0.0000228853595 0.0000000051425
9 0.0003675973687 0.1284992832837 0.0000021965300 0.0001717657315 0.0000220717734 0.0000000003773
10 0.0000037504895 1.4795557872248 0.0001633840436 0.0000017714844 0.0000026210100 0.0000000002894
11 0.0000002428846 12.7769884293417 0.0016090228536 0.0000001261729 0.0000016121100 0.0000000002030
12 0.0000001594408 13.7666844672269 0.0007523046170 0.0000000835080 0.0000011496277 0.0000000000628
13 0.0000000228589 52.4995561949013 0.0000798682401 0.0000000181866 0.0000009547879 0.0000000000015
14 0.0000000202543 33.9539240672109 0.0000023516037 0.0000000129031 0.0000004381100 0.0000000000000
15 0.0000001375537 5.1979194333821 0.0000127574489 0.0000000669487 0.0000003479939 0.0000000000009

Table 3. Composition and equilibrium ratios of the 20-component, 5-phase example.

Component zi Ki1 Ki2 Ki3 Ki4 x1
i x2

i x3
i x4

i x5
i

1 0.3817399509140 2.3788914318714 0.1826346252218 2.1341148433378 0.7101073236142 0.3851281921976 0.9161781565910 0.0703377430444 0.8219077915568 0.2734823498098
2 0.0764336433731 0.8354537404402 2.0684286685920 1.9043018392943 6.0440859895389 0.0786796419224 0.0657332011406 0.1627432269869 0.1498297868279 0.4755465214053
3 0.1391487737570 0.1155938461254 2.8473183476162 0.0144945209799 0.4369041160293 0.1384439969943 0.0160032740856 0.3941941327593 0.0020066794190 0.0604867521264
4 0.0643992218952 0.0062262830625 2.1383860381928 0.0442168936781 0.9918488866995 0.0640229919586 0.0003986252704 0.1369058721276 0.0028308978284 0.0635011332973
5 0.1486026004951 0.0022156584248 0.7946416111326 0.0787337170042 0.7768884555186 0.1468925975170 0.0003254638212 0.1167269703543 0.0115654002029 0.1141191632121
6 0.0417212486653 0.0115951444765 2.1603434367941 0.0560494950996 0.2134611795537 0.0413515667922 0.0004794773913 0.0893335859206 0.0023177344403 0.0088269542238
7 0.1227693500767 0.0064167472255 0.1593792034596 0.0770042412753 0.0239948965688 0.1207019216039 0.0007745137206 0.0192373761213 0.0092945598936 0.0028962301245
8 0.0213087870239 0.0038946321018 0.0335917624138 0.0025050231128 0.0218059421417 0.0209321985655 0.0000815232125 0.0007031494410 0.0000524356412 0.0004564463108
9 0.0016270350309 0.0134366496720 0.7223258415919 0.1031743167040 0.1708086119388 0.0016041800354 0.0000215548051 0.0011587406941 0.0001655101790 0.0002740077651
10 0.0021307432306 0.0008734024997 2.6132706480239 0.0022130957042 0.0932727495955 0.0021136824783 0.0000018460956 0.0055236243798 0.0000046777816 0.0001971489765
11 0.0000917810305 0.0108844870333 24.4065005309508 0.1928690729187 1.0014414881636 0.0000995608488 0.0000010836688 0.0024299319085 0.0000192022086 0.0000997043646
12 0.0000229831930 0.0305288385881 25.8494898790919 0.0588393075672 4.0996590670858 0.0000254194834 0.0000007760273 0.0006570806789 0.0000014956648 0.0001042112156
13 0.0000034782551 0.0184206758492 10.4748859551860 0.3556852336181 0.1045382819199 0.0000035608768 0.0000000655938 0.0000372997780 0.0000012665513 0.0000003722479
14 0.0000001126367 1.9556944123756 57.6425128090423 1.7486777932718 29.0578470200348 0.0000001699095 0.0000003322911 0.0000097940117 0.0000002971170 0.0000049372049
15 0.0000002344634 0.2874467036782 1.0419187660436 1.8885719459373 13.7002699311125 0.0000002477114 0.0000000712038 0.0000002580951 0.0000004678207 0.0000033937126
16 0.0000000038064 1.5356775373006 53.5513911183565 97.7361071036055 6.6483533942909 0.0000000128093 0.0000000196710 0.0000006859566 0.0000012519326 0.0000000851609
17 0.0000000173126 0.7574272230786 7.6910401287961 6.0072238022229 18.7742085574180 0.0000000197267 0.0000000149415 0.0000001517188 0.0000001185027 0.0000003703530
18 0.0000000281366 0.0074377713757 6.7681727478028 4.0574761982724 5.2779281096742 0.0000000295911 0.0000000002201 0.0000002002775 0.0000001200651 0.0000001561795
19 0.0000000042589 0.0004574024029 28.1394115659509 35.1553173521778 9.0540032759730 0.0000000060755 0.0000000000028 0.0000001709606 0.0000002135856 0.0000000550075
20 0.0000000024453 0.0847561330613 1.6486494033625 31.9676317062480 2.5158440811075 0.0000000029023 0.0000000002460 0.0000000047849 0.0000000927811 0.0000000073018
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4. Validations and A Three-Phase Equilibrium Calculation

After proving the robustness of the developed SS-RR and NSS-RR, in this section, we first compare
our solutions of three-phase Rachford-Rice equations to those that are available in the literature.
Then, we combine the developed solver with equation of state and Henry’s law to solve a complete
oil-gas-water three-phase equilibrium.

4.1. Validations of Three-Phase Solutions

Three cases of three-phase equilibria from Nichita et al. [38] are used here to validate our solutions
of three-phase Rachford-Rice equations. The first case is a ternary mixture containing CO2, CH4, and
normal-hexadecane (nC16). The second case is a sour gas system with six components, the details of
which can be found in Robinson et al. [39]. The third case is a quaternary mixture, the phase behavior
of which was studied by Kohse and Heidemann [40]. Tables 4–6 list the compositions of the mixtures
and the equilibrium compositions of the three phases.

Table 4. Composition of CO2–CH4–nC16 ternary mixture [38] and equilibrium compositions of the
three phases (g: gas; l1 and l2: liquids).

Component zi xg
i xl1

i xl2
i

C1 0.05 0.078112 0.036181 0.038707
nC16 0.05 0.000069 0.340224 0.004609
CO2 0.90 0.921819 0.623595 0.956683

Table 5. Composition of the sour gas system mixture [38,39], and equilibrium compositions of the three
phases (g: gas; l1 and l2: liquids).

Component zi xg
i xl1

i xl2
i

C1 0.70592 0.726129 0.714973 0.065262
C2 0.06860 0.006352 0.072154 0.012393
C3 0.02967 0.000466 0.031333 0.003738

H2S 0.10559 0.008596 0.097494 0.897742
CO2 0.01996 0.004933 0.020621 0.019166
N2 0.07026 0.253524 0.063425 0.001699

Table 6. Composition of the quaternary mixture [38,40] and equilibrium compositions of the three
phases (g: gas; l1 and l2: liquids).

Component zi xg
i xl1

i xl2
i

C1 0.50000 0.977599 0.308646 0.068425
nC6 0.02627 0.000001 0.227252 0.007764
H2S 0.41633 0.007900 0.363483 0.833419
CO2 0.05740 0.014499 0.100618 0.090391

Equilibrium ratios that were obtained from these tables were passed to our multiphase
Rachford-Rice equation solvers. We note here that all solvers, NM-RR, SS-RR, and hybrid NSS-RR,
converged on these cases and gave identical results. In Table 7, we compare our results to those that
were reported in Nichita et al. [38]. This comparison shows that results from our algorithm are in very
good agreement with previously reported solutions.
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Table 7. Mole fractions of the three phases (g: gas; l1 and l2: liquids) from this study and from
Nichita et al. [38].

The Ternary Mixture The Sour Gas System The Quaternary Mixture

This Study [38] Differences This Study [38] Differences This Study [38] Differences
ñg 0.2908 0.2962 1.8% 0.0417 0.0407 2.5% 0.4484 0.4482 0.0%
ñl1 0.5700 0.5645 1.0% 0.9434 0.9447 0.1% 0.1009 0.1002 0.7%
ñl2 0.1392 0.1393 0.1% 0.0149 0.0146 2.1% 0.4507 0.4516 0.2%

In a recent work by Okuno et al. [29], four three-phase examples were presented (Table 1 in
reference [29]), including flash and negative flash near critical points. We note that our solvers can
achieve convergence on all four examples. Although a quantitative comparison is not possible because
the authors did not report the final mole fractions, our converged solutions do visually agree with that
are those presented in the figures of reference [29].

4.2. Three-Phase Equilibrium of An Oil-Gas-Water System

In this section, we combine multiphase Rachford-Rice solvers with equation of state (EOS) and
Henry’s law, and use the SS-PS approach to solve an oil-gas-water equilibrium. Water exists extensively
in many hydrocarbon reservoirs. Water in reservoir may come from initial water traps, migration
from nearby aquifers, or water injection for improved/enhanced oil recovery. The presence of water
can affect the phase behavior of reservoir fluids, because some gases, in particular, CO2 and H2S, are
soluble in the aqueous phase. Three-phase equilibrium calculations are needed to correctly describe
the phase behaviors of such systems [41,42].

In this calculation, fugacities of components in the vapor and liquid phases were modeled using
Peng-Robinson EOS following standard procedures. Fugacities of components in the water-rich phase
were modeled using Henry’s law [43]. Henry’s law for a component sparingly soluble in the aqueous
phase is

f w
i = xw

i Hi, i 6= w (9)

where Hi is Henry’s law constant of component i in the aqueous phase. Details of Henry’s law can be
found in Appendix A. The fugacity of water in the aqueous phase can be obtained from the fugacity of
the solutes using the Gibbs-Duhem equation, as in Prausnitz [44].

f w
H2O = xw

H2OΦws pws
vp(

p∫
pws

vp

vm

RT
dp) (10)

Φws is the fugacity coefficient of pure water at the saturation vapor pressure pws
vp and vm is the molar

volume of pure water. The fugacity coefficient of water Φws is calculated by the Chou equation,
reported by Rowe and Chou [45], as follows:

Φws =

{
0.9958 + 9.68330× 10−5T′ − 6.175× 10−7T′2 − 3.08333× 10−10T′3 T′ > 90◦F
1 T′ < 90◦F

(11)

For a three-phase system with nc components, the following equations must be satisfied:

f v
i = f l

i i = 1, · · · n c (12)

f w
i = f l

i i = 1, · · · nc (13)

Li and Nghiem [46] defined the following sets of equilibrium ratios

Kvl
i =

xv
i

xl
i

i = 1, · · ·Nc (14)
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Kvw
i =

xv
i

xw
i

i = 1, · · ·Nc (15)

that are consistent with our equilibrium ratios, as defined in Section 2. The three-phase Rachford-Rice
equations for our vapor-liquid-water system, following Equation (1), are

NC

∑
i=1

(1− Kvl
i ) · zi

1− (1− Kvl
i ) · ñv − (1− Kwl

i ) · ñw
= 0 (16)

NC

∑
i=1

(1− Kwl
i ) · zi

1− (1− Kvl
i ) · ñv − (1− Kwl

i ) · ñw
= 0 (17)

The equilibrium calculation procedure began by passing initial guesses of equilibrium ratios to the
Rachford-Rice equations. ñl and ñw solved from the Rachford-Rice equations were used to compute
compositions of the phases: xv

i , xl
i , and xw

i , following Equations (4) and (5). These compositions
were then used to determine the fugacity coefficients Φv

i and Φl
i and the fugacity f w

i , from which
the equilibrium ratios were updated. The equilibrium ratios were again passed to the Rachford-Rice
equations, until the results converge.

We applied the method that is presented above to a six-component mixture, the composition of
which is shown in Table 8. Detailed description of this case can be referred to Li and Nghiem [46].
We conducted equilibrium calculation at 10 MPa and 100 ◦C. Our calculated results are in good
agreement with results in the literature, as shown in Table 9.

Table 8. Composition of the six-component mixture.

Component Composition (%)

C1 30
nC5 15
nC10 25
CO2 10
H2S
H2O

10
10

Table 9. Results for the case with three phases and six components in presence of water.

This Study Li and Nghiem (1986) Two-Phase

xl% xg% xw% xl% xg% xw% xl% xg%
C1 22.868 65.174 0.001 22.884 65.220 0.001 23.286 66.365

nC5 21.676 4.936 0 20.216 4.603 0 20.585 4.687
nC10 35.919 0.663 0 35.889 0.662 0 35.959 0.664
CO2 9.145 16.873 0.020 9.148 16.879 0.021 9.239 17.047
H2S 10.906 11.220 0.141 10.906 11.219 0.141 10.929 11.243
H2O 0.958 1.416 99.773 0.958 1.417 99.839 / /

ñl ñg ñw ñl ñg ñw ñl ñg

69.20 21.75 9.05 69.26 21.70 9.04 77.45 22.55

To illustrate the difference between a three-phase equilibrium calculation and two-phase
equilibrium calculations that discount the influence of the aqueous phase, we conducted a two-phase
equilibrium calculation where water is removed from the mixture. The mole fractions of the
non-aqueous components are reconstructed based on the relative fractions of them in the original
mixture. The results of this two-phase calculation are also shown in Table 9. Comparison shows that
although the two-phase approach neglecting the water component generated phase compositions that
are similar to those from the three-phase calculation, the ratio between liquid and gas mole fractions,
however, is noticeably higher. At equilibrium, the aqueous phase contains 14% of H2S and 2% of CO2
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by mole, and is therefore highly corrosive. This corrosive nature can only be captured by a three-phase
equilibrium calculation.

5. Conclusions

This paper presents a successive-substitution method to solve multiphase Rachford-Rice equations.
In this algorithm, Rachford-Rice equations are solved sequentially, and the solution of each individual
Rachford-Rice equation is achieved using the method of bi-section. The direction of bi-section is
determined by the monotonicity of the equation, whereas the limit of bi-section is determined by the
locations of the poles. These considerations ensure that the algorithm always reliably converges to
either a physically admissible solution or a solution in the adjacent negative flash region.

In compositional reservoir simulations, the number of phase equilibrium calculations performed
is very large. Accuracy and robustness without a significant penalty on efficiency are therefore
very important. A hybrid method was developed in order to combine the advantages of this
successive-substitution method and the Newton method. In this hybrid method, a successive
substitution step replaces a Newton step when the local Jacobian becomes poorly conditioned.
This hybrid method can effectively suppress the errors in the Newton method of Leibovici and
Neochil [26] owing to poorly conditioned Jacobian. In terms of computational time, successive
substitution steps add very little to the overall computational cost. The computational time of this
hybrid method is 1.4 times of that of the Newton method of Leibovici and Neochil [26], and this
difference is mainly due to the overhead needed to check the condition numbers.

We presented seven examples to show the characteristics and the accuracy of the algorithm.
The first example shows the convergence behavior of the successive-substitution method. The second
and the third examples present the advantages of the hybrid method over the Newton method of
Leibovici and Neochil [26]. In the rest of the examples, we verified our algorithm using results from
the literature. Lastly, we combined the developed multiphase Rachford-Rice solvers with equations of
states for the oil and gas phases and Henry’s law for the water phase and completed a three-phase flash
calculation for an oil-gas-water system with sour gases. Our result again is in very good agreement
with that previously reported. It shows specifically that a two-phase equilibrium calculation neglecting
the dissolution of sour gases in the water phase is not a good approximation of a true three-phase
flash calculation.
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visit to the Colorado School of Mines.
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Nomenclature

A(T)H(T) functions used to compute the specific volume v′
C cohesive energy density of water
F Rachford-Rice equations defined in Equation (4)
f j
i fugacity of component i in phase j

h enthalpy departure
Hi Henry’s law constant of component i
Kαβ

i equilibrium ratio of component i between phase α and phase β

ñj mole fraction of phase j
Nc number of components
NP total number of phases
p pressure
R universal gas constant
T temperature
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v′ specific volume
vm molar volume of pure water
wNaCl weight fraction of NaCl
xj

i mole fraction of component i in phase j
zi mole fraction of component i in the multiphase mixture
κ condition number of Jacobian
ξ

j
i defined in Equation (3) as K j1

i − 1
Φi fugacity coefficient of component i
Superscripts
g gas
j phase index
l liquid
o oil
s saturated
w water
ws water at saturation
α, β phase index
Subscripts
c critical point
i, j, k component index
vp vapor pressure
m level of iteration

Appendix A Henry’s Law

Henry’s law constant can be solved from a differential equation proposed by Smith and Van
Ness [47]

d(ln Hi) =
v∞

mi
RT

dp +
hv

i − h∞
i

RT2 dT (A1)

In this equation, v∞
mi is the partial molar volume of component i in the aqueous phase at infinite

dilution, hv
i is the enthalpy of component i in the gas phase, and h∞

i is the enthalpy of component i in
the aqueous phase at infinite dilution. For a given temperature T, integration of Equation (A1) from p0

to p gives

ln Hi = ln H0
i +

v∞
mi(p− p0

i )

RT
(A2)

where H0
i is Henry’s law constant at the reference pressure p0

i . Equation (A2) can also be written as

ln Hi = ln H∗i + v∞
mi p/(RT) (A3)

where
ln H∗i = ln H0

i − v∞
mi p

0
i /(RT) (A4)

In this study, Equation (A3) was used to correlate Henry’s law constant from solubility data. H∗i is
referred to as the reference Henry’s law constant. The molar volume at infinite dilution was calculated
using the following correlation proposed by Lyckman et al. [48]

pciv∞
mi

RTci
= 0.095 + 2.35(

Tpci
CTci

) (A5)

where C is the cohesive energy density of water given by:

C =
(hw0 − hws + pws

vp vws
m − RT)

vws
m

(A6)
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pws
vp is the saturated vapor pressure of water at temperature T, vws

m is the molar volume of water at
pws

vp and T, and hwo − hws is the enthalpy departure of liquid water at pws
vp and T. The saturated vapor

pressure of water pws
vp was calculated using the Buck equation [49]

pws
vp = 0.61121 exp((18.678− T

234.5
)(

T
257.14 + T

)) (A7)

T is in ◦C, and pws
vp is in psi. Equation (A7) is applicable to liquid water: T > 0 ◦C. When T < 0 ◦C, for

ice we used the following equation

pws
vp = 0.61115 exp((23.036− T

333.7
)(

T
279.82 + T

)) (A8)

Enthalpy departure of liquid water (hw0 − hws) were calculated from Yen-Alexander, reported in
Poling et al. [50] in the form of:

hw0 − hws = Tc
7− 4.5688(ln(

pws
vp

217.6 ))
0.333

1 + 0.004 ln(
pws

vp
217.6 )

(A9)

The molar volume vm was estimated from the specific volume v′, which, in turn, was from a correlation
by Chou reported in Rowe and Chou [45].

v′ = A(T)− p · B(T)− p2 · C(T) + wNaCl · D(T) + x2 · E(T)− xp · F(T)
− x2 p · G(T)− 1

2 xp2 · H(T)
(A10)

v′ is the specific volume in cm3/g, T is the temperature in K, p is the absolute pressure in kgf/cm2,
and wNaCl is the weight fraction of NaCl in solution. The temperature functions are,

A(T) = 5.916365− 0.01035794T + 0.9270048× 10−5T2

− 1127.522/T + 100674.1/T2 (A11)

B(T) = 0.5204914× 10−2 − 0.10482101× 10−4T + 0.8328532× 10−8T2

− 1.1702939/T + 102.2783/T2 (A12)

C(T) = 0.118547× 10−7 − 0.6599143× 10−10T (A13)

D(T) = −2.5166 + 0.0111766T − 0.170552× 10−4T2 (A14)

E(T) = 2.84851− 0.0154395T + 0.223982× 10−4T2 (A15)

F(T) = −0.0014814 + 0.82969× 10−5T − 0.12469× 10−7T2 (A16)

G(T) = 0.0027141− 0.15391× 10−4T + 0.22655× 10−7T2 (A17)

H(T) = 0.62158× 10−5 − 0.40075× 10−8T + 0.65972× 10−11T2 (A18)

Appendix B Flow Charts
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Figure A1. Flow chart of SS-RR.
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Figure A2. Flow chart of NSS-RR.
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