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Abstract: We show that a noiseless linear amplifier (NLA) can be placed properly at the receiver’s
end to improve the performance of self-referenced (SR) continuous variable quantum key distribution
(CV-QKD) when the reference pulses are weak. In SR CV-QKD, the imperfections of the amplitude
modulator limit the maximal amplitude of the reference pulses, while the performance of SR CV-QKD
is positively related to the amplitude of the reference pulses. An NLA can compensate the impacts of
large phase noise introduced by the weak reference pulses. Simulation results derived from collective
attacks show that this scheme can improve the performance of SR CV-QKD with weak reference
pulses, in terms of extending maximum transmission distance. An NLA with a gain of g can increase
the maximum transmission distance by the equivalent of 20 log10 g dB of losses.

Keywords: continuous variable; quantum key distribution; noiseless linear amplifier (NLA)

1. Introduction

Quantum key distribution (QKD) is the state-of-the-art application of quantum technologies,
which is able to establish a secret key between two distant legal communicators, usually called
Alice and Bob, through an insecure classical channel or quantum channel [1–4]. QKD has three
major branches, the first is the discrete variable (DV) QKD based on manipulating and detecting
the single photon state (polarization or phase), the second is the continuous variable (CV) QKD
based on preparing and measuring coherent state or EPR state [5–8], and the last one is the
differential phase reference (DPR) QKD [9–11]. With the depth of research in recent years, CV-QKD
has fully demonstrated its major merits, such as high detection efficiency and low experimental cost.
Most importantly, it can be implemented by using the existing commercial fibre communication
networks, so it has attracted much attention and given many meaningful research results [12–16].

Generally, the most studied CV-QKD protocol is the GG02 protocol [5] and its unconditional
security has been conducted in theory [17–19]. However, recent studies show that the imperfections
in the Gaussian CV-QKD experimental system setups will cause a series of new severe security
loopholes [20–22]. Furthermore, in Gaussian CV-QKD protocols, a high-brightness classical beam
called local oscillator (LO) is co-transmitted with the weak quantum signal. The LO is indispensable
because it can provide phase reference when Bob performs coherent detection on the received quantum
signals. Some side-channel attacks aiming at LO have been confirmed , which can greatly reduce
the overall security of the Gaussian CV-QKD protocol [23,24]. Fortunately, a novel scheme named
self-referenced (SR) CV-QKD that could generate real “local” LO at Bob’s end has been proposed very
recently [25–27] and shows its robustness in allusion to these attacks. However, due to the limited
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dynamic modulation range of the amplitude modulator, the amplitude of the reference pulses cannot
be too large in practical. Besides, the imperfections in Alice’s modulator will create an extra excess
noise proportional to the amplitude of reference pulses. This further limits the maximum amplitude
of the reference pulses [28]. Since the secret key rate and the maximum transmission distance of SR
CV-QKD scheme is positively correlated with the amplitude of the reference pulses, the weak reference
pulses can degrade the performance of SR CV-QKD greatly.

Recently, some works have shown that a noiseless linear amplifier (NLA) [29–36] could be
properly embedded in CV-QKD to fight against channel loss and improve maximum transmission
distance [37–41]. In our paper, we consider the use of an NLA inserted before the detection stage in an
SR CV-QKD scheme to improve the transmission distance when the reference pulses are weak. Usually,
an NLA can amplify the amplitude of input coherent probabilistically while retaining the original level
of channel noise [29]. This is very important for the SR CV-QKD because it is very sensitive to the
phase noise. When we only take the successful runs of an NLA into account, it can compensate the
adverse effects of high phase noise introduced by weak self-referenced pulse and attain a much longer
transmission distance. Besides, the impact of the probability that the NLA successfully amplified the
quantum signal may be inconspicuous because it is the gain of NLA g that influences the maximum
transmission distance primarily rather than the success rate, which is always lower than 1/g2 [37].

This article is organized as follows. In Section 2, we review the SR CV-QKD scheme, and then we
introduce the NLA SR CV-QKD schme. In Section 3, we analyze the secret key rate of our proposed
scheme and demonstrate the maximum transmission distance improvement. Finally, we summarize
our paper in Section 4.

2. The SR CV-QKD Scheme & Our Proposed Scheme

Figure 1a illustrates the steps of the conventional Gaussian CV-QKD scheme. The LO and
modulated quantum signals are co-transmitted by adapting techniques like time-division multiplexing
(TDM), wavelength-division multiplexing (WDM) and polarization encoding. After receiving the
multiplexed signals, Bob uses a demultiplexer to split the LO and quantum signals. As mentioned
above, the nature of LO would cause side-channel attacks and it is knotty to multiplex and demultiplex
two kinds of signals that differ greatly in amplitude.
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Figure 1. (a) Conventional one-way CV-QKD scheme. The quantum signal and LO are co-transmitted
from Alice to Bob. During the QKD process, complicated multiplexing and demultiplexing techniques
are employed. (b) SR CV-QKD scheme. Alice sends quantum signals and reference pulses to Bob in
the same channel. Bob measures the received pulses in his own phase reference frame defined by the
locally generated LO. Mod: Gaussian modulator; Mux: multiplexer; Dem: demultiplexer; CD: coherent
detection; QM: quantum memory.
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The SR CV-QKD scheme [25–27] described in Figure 1b has removed the demand of transporting
LO successfully. In SR CV-QKD scheme, Alice sends a Gaussian modulated coherent state to Bob just
like performed in conventional CV-QKD scheme at first, in the next time bin, she prepares another
coherent state as the reference pulse and sends to Bob. The amplitude of the reference pulse, ER, is few
times larger than the variance of the quantum signal, VA.

The reference pulse is used to estimate the deviation angle θ̂ between Alice and Bob’s reference
frame. The θ̂ = θ + φ, where θ is the actual deviation angle and φ is the measurement error mainly
caused by the quantum uncertainty. We can easily deduce the value of θ̂ from some simple geometric
calculations and find the correlations between the quadratures of sent quantum states and the
quadratures of received quantum states.

Since the system performance of SR CV-QKD is positively related to the amplitude of the reference
pulses ER, the authors choose arbitrary large ER to attain a longer transmission distances and a higher
secret key rate. However, due to the limited dynamic modulation range of the amplitude modulator
(AM), the value of ER cannot be too large in practical terms. Besides, the imperfections existing in
Alice’s AM will introduce an extra excess noise that can be approximated as [28]

εAM = E2
max10−ddB/10, (1)

where Emax is the maximal amplitude to be modulated and the ddB represents the dynamic modulation
range of the AM. Since the extra excess noise is proportional to the amplitude Emax, and ddB has a
finite value, this imperfection further limits the amplitude of reference pulses. However, the weaker
the reference pulse, the larger the measurement error for θ caused by the quantum uncertainty, and the
greater the phase noise variance, ultimately resulting in degrading the performance of SR CV-QKD.
In the case of transporting weak reference pulses (ER/VA = 20, VA = 40), the maximum transmission
distance of SR CV-QKD is less than 15 km [25]. Therefore, the range of applications of the original SR
CV-QKD scheme may be limited.

The NLA has been proven to be a useful tool to extend the maximum transmission distance of
Gaussian CV-QKD [37–39]. In this paper, an NLA is placed at Bob’s end before the coherent detection
described in Figure 2 to increase the maximum transmission distance of SR CV-QKD when reference
pulses are weak. As usual, we will use the entangle-based (EB) version to describe and analyze our
scheme and start with analysing the covariance matrix of the state ρAB shared between Alice and
Bob before any measurement. In a conventional CV-QKD scheme, the covariance matrix γAB has the
following form:

γAB(λ, T, ε) =

(
V(λ)I

√
T(V(λ)2 − 1)σz√

T(V(λ)2 − 1)σz T [V(λ) + B + ε] I

)
, (2)

where I = ( 1 0
0 1 ) and σz = ( 1 0

0 −1 ), V(λ) = 1+λ2

1−λ2 is the variance of the thermal state TrA|λ〉〈λ| related
to the modulation variance and λ is the parameter of squeezed state, the B = 1−T

T refer to the noise
introduced by the channel loss, the ε is the channel excess noise.
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Figure 2. Schematic of the SR CV-QKD protocol with an NLA before detection. Mod: Gaussian
modulator; CD: coherent detection; QM: quantum memory.
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When an NLA is inserted into a conventional CV-QKD, only when the NLA works on its successful
runs, the exchanged quantum signals will be used for extracting the secret key. Therefore, the scheme
of CV-QKD added an NLA is very similar to those CV-QKD schemes with postselection [42]. Since the
output of the NLA remains in the Gaussian regime, we can use an equivalent EPR scheme without NLA
to analyse the impacts of an NLA on the original scheme. It is shown in Figure 3 that the covariance
matrix γAB(λ, T, ε) is equivalent to the covariance matrix γe(AB)(ζ, η, εg, g = 1) (g = 1 indicates no
NLA). These equivalent parameters are given by [37]

ζ = λ

√
(g2 − 1)(ε− 2)T − 2

(g2 − 1)εT − 2
,

η =
g2T

(g2 − 1)T[ 1
4 (g2 − 1)(ε− 2)εT − ε + 1] + 1

εg = ε− 1
2
(g2 − 1)(ε− 2)εT.

(3)

It is clear that the parameters (ζ, η, εg) are equal to the parameters (λ, T, ε) respectively when g = 1.
These parameters must meet with the physical meaning limits of 0 6 ζ < 1, 0 6 η < 1 and εg > 0,
and the maximum value of the gain gmax is given by [37]

gmax(T, ε) =

√√√√ ε[T(ε− 4) + 2] + 4
√

T(ε−2)+2
ε − 2

√
ε[T(ε− 2) + 2] + 4T − 4

T(ε− 2)2 . (4)

NLA

T, ε n̂ｇ

detectorQuantum channelEPR source

BobAlice
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 𝜁  
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Figure 3. The CV-QKD scheme added an NLA with parameters (λ, T, ε, g) is equivalent to the scheme
without using an NLA with parameters (ζ, η, εg, g = 1).

In the SR CV-QKD scheme, the removal of LO will not change the relevant parameters of the
channel. Therefore, our proposed scheme can be regarded as an equivalent SR CV-QKD scheme
without inserting an NLA, while the equivalent parameters are consistent with the parameters in
Equation (3). When we take the phase-space rotations due to the reference frame misalignment into
account, the density matrix of the state shared by Alice and Bob in the equivalent SR CV-QKD scheme
without using NLA is [25]

ρ̄e(AB) = ρe(AB)(θ̂, θ) =
∫ π

−π
dφP(φ)

∫ π

−π

dθ

2π
ρe(AB)(θ̂, θ) (5)

with
ρe(AB)(θ̂, θ) = [UA(−θ̂)UB(θ)]ρe(AB)[U

†
A(−θ̂)U†

B(θ)], (6)
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where UA(B) represents the phase-space rotation operator, P(φ) is the probability distribution function
of random variable φ. While the state ρ̄e(AB) maintains Gaussian, the covariance matrix γ̄e(AB) can be
expressed as follows [25]

γ̄e(AB) = γe(AB)(θ̂, θ) =
∫ π

−π
dφP(φ)

∫ π

−π

dθ

2π
γe(AB)(θ̂, θ) (7)

with
γe(AB)(θ̂, θ) = [UA(−θ̂)⊕ UB(θ)]γe(AB)[U

>
A(−θ̂)⊕ U>B (θ)], (8)

the UA(B) is the symplectic representation of the rotation operator UA(B).
In our scheme, during each time of successful amplification, the NLA can be regarded as an

operator Ĉ. It can amplify a coherent state from |α〉 to Ĉ|α〉 = e
|α|2

2 (g2−1)|gα〉 probabilistically [37],
where g is the gain of NLA. In other words, the NLA can increase the variance of the original quantum
signals and improve the channel transmittance. This can offset the adverse effects of the large phase
noise incurred by the weak reference pulses and extend the maximum transmission distance of SR
CV-QKD. In the next section, we will use numerical simulations to illuminate this improvement
in detail.

3. Performance Analysis

In SR CV-QKD, the modulation process for the quantum signal and reference pulse is time
independent. When the AM only modulates the reference pulses, the large ER and the finite dynamic
modulation range ddB would introduce a large εAM. So, we need to set a reasonable and realistic value
for reference pulse amplitude to eliminate the effect of εAM on its measurement result. When the
AM only modulates the quantum signals, the extra excess noise εAM in Equation (1) is independent
of ER, but is related to the amplitude of quantum signals. Considering that the intensity E2

max of
modulated quantum signal is just few times larger than VA [43], the value of resulting excess εAM is
tiny (εAM ∼ 10−3 for VA = 4, E2

max = 10VA, and ddB = 40). Compared to the noise introduced by
the Gaussian channel (B + ε), the influence of εAM introduced by the quantum signals on the system
performance could be ignored.

The secret key rate of SR CV-QKD scheme under collective attacks with reverse reconciliation
is [3,25,44]

K = βIAB − χBE, (9)

where IAB is the mutual information between Alice’s and Bob’s measurements and it can be
expressed as

IAB =
1
2

log2

(
VA

VA|B

)
=

1
2

log2

(
V + B + ε

B + ε + 1 + (V − 1)ξ

)
, (10)

where ξ = 1− (cos φ)2. Presuming that the distribution interval of P(φ) is symmetrical and very
narrow, namely |φ| ∼ 0, then we get ξ ≈ φ2. When the rate of pulse generation is much greater
than the fluctuation frequency of phase difference θ, the value of θ can be treated as a specific
constant. Therefore, the variance of estimated phase difference θ̂ is Vθ̂ = Vφ = φ2. If P(φ) is rapidly
monotonically decreasing in the interval [0, |φ|max], the variance Vθ̂ can be regarded as a tight up
bound of ξ, which means ξ . Vθ̂ . The expression of Vθ̂ is as follows [25]

Vθ̂ =
B + ε + 1

ER
+

1
TER

. (11)

So, the lower bound of IAB is

IAB &
1
2

log2

(
V + B + ε

B + ε + 1 + (V − 1)Vθ̂

)
. (12)
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The χBE is the Holevo bound denotes for Eve’s maximum accessible information, which can be derived
from the following formula:

χBE = G
(

λ1 − 1
2

)
+ G

(
λ2 − 1

2

)
− G

(
λ3 − 1

2

)
, (13)

where G(x) = (x + 1) log2(x + 1) − x log2(x) is the Von Neumann entropy of a thermal state.
The eigenvalues λ1 and λ2 are obtained from

λ2
1,2 =

1
2

(
∆±

√
∆2 − 4D2

)
, (14)

where we have used the notations

∆ = V2 + T2(V + B + ε)2 + 2T(V2 − 1)(ξ − 1),

D = T[V(B + ε) + 1 + (V2 − 1)ξ].
(15)

The square of symplectic eigenvalue λ3 reads

λ2
3 = V

V(B + ε) + 1 + (V2 − 1)ξ
V + B + ε

. (16)

We can notice that the χBE is monotonically increasing with increasing ξ. When we replace the ξ in
Equations (15) and (16) with Vθ̂ , the lower bound of K is acquired.

As mentioned earlier, our scheme of SR CV-QKD with an NLA has parameters (λ, T, ε, g) and can
be treated as one-way SR CV-QKD without NLA having parameters (ζ, η, εg, g = 1). When our scheme
works on the successful runs, the secret information in Equation (9) could be acquired by adopting the
equivalent parameters

∆Kg
SR(λ, T, ε, β) = ∆KSR(ζ, η, εg, β). (17)

Since the NLA could retain the original level of channel noise, the random variables θ and φ will not
be affected, so that we could use the method stated in [25] to handle them. Finally, we can use the
covariance matrix γ̄e(AB) to figure out ∆KSR(ζ, η, εg, β).

Before starting the simulation, we need to take the successful amplification probability PSS of
the NLA into account. The actual value of PSS is related to the experimental setups and it is not
important to our study because on the one hand we mainly focus on the maximum distance, and on
the other hand, it is only a proportional coefficient and cannot transform a negative secret key into
a positive one. Besides, The PSS could be treated as constant if the NLA has sufficient dynamics to
neglect distortions [37]. Then we can get the secret key rate with NLA by multiplying ∆KSR by the PSS

∆KNLA = PSS∆KSR(ζ, η, εg, β), (18)

the PSS for an NLA with a gain of g is upper bounded to 1/g2, which will be used in the later analysis.
As mentioned above, the amplitude of the reference pulses ER is critical to the performance of the

SR CV-QKD scheme. The larger the value of ER, the smaller the variance of the measurement error
for θ and the higher the secret key rate. Figure 4a shows the relationship between variance Vθ̂ and
transmission distance and the secret key rate at different values of ER. In contrast to an ideal value
like 500VA, when ER is given a more reasonable value such as 20VA, the value of Vθ̂ is approximately
doubled. Figure 4b illustrates the secret key rate and the maximum transmission distance of SR
CV-QKD when ER takes ideal and reasonable values, respectively. When the reference pulses are weak
(ER/VA = 20), the maximum transmission distance is limited to about 10 km, which is less than half
of the transmission distance in the LO scheme . At this point, the SR CV-QKD scheme is only suitable
for short-range communications and cannot even be used in urban communication networks.
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Figure 4. (Color online) (a) The variance of estimated phase difference θ̂ as a function of transmission
distance at different values of ER. (b) Secret key rate of SR CV-QKD scheme when ER takes ideal value
(ER = 500VA) and reasonable value (ER = 20VA). The parameters involved above: VA = 4, ε = 0.01
(all in shot-noise units), β = 0.95.

Another important point in our scheme is the gain of NLA. The value of gmax in Equation (4) only
depends on the channel parameters (T, ε). In Figure 5a, we display the correlation between the gmax

and transmission distance, while the excess noise ε is 0.01. The simulations of ∆KNLA with the same
channel parameters are shown Figure 5b. In this figure, we set the value of g to 3, which is lower than
the gmax in Figure 5a. We can see that the NLA with a gain of g can help increase the distance by the
equivalent 20 log10 g dB of losses (100 log10 g km when the fibre attenuation coefficient α = 0.2 dB/km).
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Figure 5. (Color online) (a) Maximum value of the gain as a function of transmission distance where
excess noise ε = 0.01. (b) Maximum transmission distance of the SR CV-QKD scheme using an NLA
with different gain (g = 1, 2, 3). Other parameters involved above: V = 4, ε = 0.01(all in shot-noise
units), β = 0.95, ER/VA = 20.

However, increasing the value of g will increase the transmission distance intuitively but the secret
key rate may become negative. There are two reasons for this, one is the possibility PSS, and the other
is the excess noise εg will increase as well. In Figure 6a, we can see that when the transmission distance
is determined, the secret key rate will increase as the gain increases to a certain value. As the gain
continues to increase, the secret key rate drops rapidly and eventually becomes negative. In addition,
the maximum tolerable excess noise of SR CV-QKD against transmission distance with different gain g
is shown in Figure 6b. It has clearly demonstrated that our scheme can tolerate a much higher excess
noise while the secret key rate remains positive.
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Figure 6. (Color online) (a) Maximized secret key rate as the function of the gain g when the
transmission distance is 50 km. (b) Maximized excess noise as a function of transmission distance
while the secret key rate remains positive. Other parameters involved in the above two figures: VA = 4,
ε = 0.01 (all in shot-noise units), β = 0.95, ER/VA = 20.

We should note that the simulation results displayed above may not correspond to the results
of the practical experiment, because the possibility of PSS being a tunable parameter depends on the
facilities configuration. However, they have clearly illustrated the effects of an NLA on the maximum
transmission distance and secret key rate.

4. Conclusions

In SR CV-QKD, when the reference pulses are weak, the large phase noise shows a conspicuous
adverse effect on its performance, which means a shorter transmission distance and a lower key rate.
We show that an NLA can help to improve the performance of SR CV-QKD with weak reference pulses.
The NLA can compensate the impacts of extra phase noise by enhancing the original quantum signals
and increasing the channel transmittance. Our proposed scheme demonstrates that the NLA can help
increase the distance by the equivalent 20 log10 g dB of losses (g = 3 for 47 km) and the secret key rate
is still acceptable. However, it should be mentioned here that we have only conducted theoretical
analysis; the gap between practical implementations and theoretical models should also be considered.
Any imperfection that exists in the actual experiment would introduce more complex parameters.
This issue is not within the scope of our current consideration, and deserves further investigation.
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