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Abstract: One natural way to measure model adequacy is by using statistical distances as loss
functions. A related fundamental question is how to construct loss functions that are scientifically
and statistically meaningful. In this paper, we investigate non-quadratic distances and their role in
assessing the adequacy of a model and/or ability to perform model selection. We first present the
definition of a statistical distance and its associated properties. Three popular distances, total variation,
the mixture index of fit and the Kullback-Leibler distance, are studied in detail, with the aim
of understanding their properties and potential interpretations that can offer insight into their
performance as measures of model misspecification. A small simulation study exemplifies the
performance of these measures and their application to different scientific fields is briefly discussed.

Keywords: model assessment; statistical distance; non-quadratic distance; total variation; mixture
index of fit; Kullback-Leibler distance; divergence measure

1. Introduction

Model assessment, that is assessing the adequacy of a model and/or ability to perform model
selection, is one of the fundamental components of statistical analyses. For example, in the model
adequacy problem one usually begins with a fixed model and interest centers on measuring the
model misspecification cost. A natural way to create a framework within which we can assess model
misspecification is by using statistical distances as loss functions. These constructs measure the
distance between the unknown distribution that generated the data and an estimate from the data
model. By identifying statistical distances as loss functions, we can begin to understand the role
distances play in model fitting and selection, as they become measures of the overall cost of model
misspecification. This strategy will allow us to investigate the construction of a loss function as the
maximum error in a list of model fit questions. Therefore, our fundamental question is the following.
How can one design a loss function ρ that is scientifically and statistically meaningful? We would like
to be able to attach a specific scientific meaning to the numerical values of the loss, so that a value of the
distance equal to 4, for example, has an explicit interpretation in terms of our statistical goals. When
we select between models, we would like to measure the quality of the approximation via the model’s
ability to provide answers to important scientific questions. This presupposes that the meaning of
“best fitting model” should depend on the “statistical questions” being asked of the model.

Lindsay [1] discusses a distance-based framework for assessing model adequacy. A fundamental
tenet of the framework for model adequacy put forward by Lindsay [1] is that it is possible and
reasonable to carry out a model-based scientific inquiry without believing that the model is true,
and without assuming that the truth is included in the model. All this of course, assuming that
we have a way to measure the quality of the approximation to the “truth”, is offered by the model.
This point of view never assumes the correctness of the model. Of course, it is rather presumptuous
to label any distribution as the truth as any basic modeling assumption generated by the sampling
scheme that provided the data is never exactly true. An example of a basic modeling assumption
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might be “X1, X2, · · · , Xn are independent, identically distributed from an unknown distribution τ”.
This, as any other statistical assumption, is subject to question even in the most idealized of data
collection frameworks. However, we believe that well designed experiments can generate data that
is similar to data from idealized models, therefore we operate as if the basic assumption is true.
This means that we assume that there is a true distribution τ that generates the data, which is
“knowable” if we can collect an infinite amount of data. Furthermore, we note that the basic modeling
assumption will be the global framework for assessment of all more restrictive assumptions about the
data generation mechanism. In a sense, it is the “nonparametric” extension of the more restrictive
models that might be considered.

We let P be the class of all distributions consistent with the basic assumptions. Hence τ ∈P, and sets
H ∈P are called models. We assume that τ /∈H ; hence, there is a permanent model misspecification
error. Statistical distances will then provide a measure for the model misspecification error.

One natural way to measure model adequacy is to define a loss function ρ(τ, M) that describes
the loss incurred when the model element M is used instead of the true distribution τ. Such a loss
function should, in principle, indicate, in an inferential sense, how far apart the two distributions τ,
M are. In the next section, we offer a formal definition of the concept of a statistical distance.

If the statistical questions of interest can be expressed as a list of functionals T(M) of the model
M that we wish to be uniformly close to the same functionals T(τ) of the true distribution, then we
can turn the set of model fit questions into a distance via

ρ(τ, M) = sup
T(·)
|T(τ)− T(M)|,

where the supremum is taken over the class of functionals of interest. Using the supremum of the
individual errors is one way of assessing overall error, but using this measure has the nice feature that
its value gives a bound on all individual errors. The statistical questions of interest may be global,
such as: is the normal model correct in every aspect? Or we may be interested to have answers on
a few key characteristics, such as the mean.

Lindsay et al. [2] introduced a class of statistical distances, called quadratic distances, and studied
their use in the context of goodness-of-fit testing. Furthermore, Markatou et al. [3] discuss extensively
the chi-squared distance, a special case of quadratic distance, and its role in robustness. In this
paper, we study non-quadratic distances and their role in model assessment. The paper is organized
as follows. Section 2 presents the definition of a statistical distance and its associated properties.
Sections 3–5 discuss in detail three popular distances, total variation, the mixture index of fit and the
Kullback-Leibler distance, with the aim of understanding their role in model assessment problems.
The likelihood distance is also briefly discussed in Section 5. Section 6 illustrates computation and
applications of total variation, mixture index of fit and Kullback-Leibler distances. Finally, Section 7
presents discussion and conclusions pertaining to the use of total variation and mixture index of
fit distances.

2. Statistical Distances and Their Properties

If we adopt the usual convention that loss functions are nonnegative in their arguments, and zero
if the correct model is used, and have larger value if the two distributions are not very similar, then the
loss ρ(τ, M) can also be viewed as a distance between τ, M. In fact, we will always assume that for
any two distributions F, G

ρ(F, G) ≥ 0 with ρ(F, F) = 0.

If this holds, we will say that ρ is a statistical distance. Unlike the requirements for a metric,
we do not require symmetry. In fact, there is no reason that the loss should be symmetric, as the roles
of τ, M are different. We also do not require ρ to be nonzero when the arguments differ. This zero
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property will allow us to specify that two distributions are equivalent as far as our statistical purposes
are concerned by giving them zero distance.

Furthermore, it is important to note that if τ is in H and τ = Mθ0 , and M ∈H , say Mθ , then the
distance ρ(τ, M) induces a loss function on the parameter space via

Lρ(θ0, θ)
def
= ρ(Mθ0 , Mθ).

Therefore, if τ is in the model, the losses defined by ρ are parametric losses.
We begin within the discrete distribution framework. Let T = {0, 1, 2, · · · , T}, where T is possibly

infinite, be a discrete sample space. On this sample space we define a true probability density τ(t),
as well as a family of densities M = {mθ(t) : θ ∈ Θ}, where Θ is the parameter space. Assume we have
independent and identically distributed random variables X1, X2, · · · , Xn producing the realizations
x1, x2, · · · , xn from τ(·). We record the data as d(t) = n(t)/n, where n(t) is the number of observations
in the sample with value equal to t. We note here that we use the word “density” in a generic fashion
that incorporates both, probability mass functions as well as probability density functions. A rather
formal definition of the concept of statistical distance is as follows.

Definition 1. (Markatou et al. [3]) Let τ, m be two probability density functions. Then ρ(τ, m) is a statistical
distance between the corresponding probability distributions if ρ(τ, m) ≥ 0, with equality if and only if τ and m
are the same for all statistical purposes.

We would require ρ(τ, m) to indicate the worst mistake that we can make if we use m instead of τ.
The precise meaning of this statement is obvious in the case of total variation that we discuss in detail
in Section 3 of the paper.

We would also like our statistical distances to be convex in their arguments.

Definition 2. Let τ, m be a pair of probability density functions, with m being represented as m = αm1 + (1−
α)m2, 0 ≤ α ≤ 1. We say that the statistical distance ρ(τ, m) is convex in the right argument if

ρ(τ, αm1 + (1− α)m2) ≤ αρ(τ, m1) + (1− α)ρ(τ, m2),

where m1, m2 are two probability density functions.

Definition 3. Let τ, m be a pair of probability density functions, and assume τ = γτ1 + (1− γ)τ2, 0 ≤ γ ≤ 1.
Then, we say that ρ(τ, m) is convex in the left argument if

ρ(γτ1 + (1− γ)τ2, m) ≤ γρ(τ1, m) + (1− γ)ρ(τ2, m),

where τ1, τ2 are two densities.

Lindsay et al. [2] define and study quadratic distances as measures of goodness of fit, a form of
model assessment. In the next sections, we study non-quadratic distances and their role in the problem
of model assessment. We begin with the total variation distance.

3. Total Variation

In this section, we study the properties of the total variation distance. We offer a loss function
interpretation of this distance and discuss sensitivity issues associated with its use. We will begin
with the case of discrete probability measures and then move to the case of continuous probability
measures. The results presented here are novel and are useful in selecting the distances to be used in
any given problem.

The total variation distance is defined as follows.
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Definition 4. Let τ, m be two probability distributions. We define the total variation distance between the
probability mass functions τ, m to be

V(τ, m) =
1
2 ∑

t
|τ(t)−m(t)| .

This measure is also known as the L1-distance (without the factor 1/2) or index of dissimilarity.

Corollary 1. The total variation distance takes values in the interval [0, 1].

Proof. By definition V(τ, m) ≥ 0 with equality if and only if τ = m, ∀t. Moreover, |τ(t)−m(t)| ≤
|τ(t)|+ |m(t)|. But τ, m are probability mass functions (or densities), therefore

|τ(t)−m(t)| ≤ τ(t) + m(t)

and hence
1
2 ∑

t
|τ(t)−m(t)| ≤ 1

2
(
∑

t
τ(t) + ∑

t
m(t)

)
or, equivalently

1
2 ∑

t
|τ(t)−m(t)| ≤ 1

2
(1 + 1) = 1.

Therefore 0 ≤ V(τ, m) ≤ 1.

Proposition 1. The total variation distance is a metric.

Proof. By definition, the total variation distance is non-negative. Moreover, it is symmetric because
V(τ, m) = V(m, τ) and it satisfies the triangle inequality since

V(τ, m) =
1
2 ∑ |τ(t)−m(t)|

=
1
2 ∑ |τ(t)− g(t) + g(t)−m(t)|

≤ 1
2
(
∑ |τ(t)− g(t)|+ ∑ |g(t)−m(t)|

)
= V(τ, g) + V(g, m).

Thus, it is a metric.

The following proposition states that the total variation distance is convex in both, left and
right arguments.

Proposition 2. Let τ, m be a pair of densities with τ represented as τ = ατ1 + (1− α)τ2, 0 ≤ α ≤ 1. Then

V(ατ1 + (1− α)τ2, m) ≤ αV(τ1, m) + (1− α)V(τ2, m).

Moreover, if m is represented as m = γm1 + (1− γ)m2, 0 ≤ γ ≤ 1, then

V(τ, γm1 + (1− γ)m2) ≤ γV(τ, m1) + (1− γ)V(τ, m2).

Proof. It is a straightforward application of the definition of the total variation distance.

The total variation measure has major implications for prediction probabilities. A statistically
useful interpretation of the total variation distance is that it can be thought of as the worst error we can
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commit in probability when we use the model m instead of the truth τ. The maximum value of this
error equals 1 and it occurs when τ, m are mutually singular.

Denote by Pτ the probability of a set under the measure τ and by Pm the probability of a set under
the measure m.

Proposition 3. Let τ, m be two probability mass functions. Then

V(τ, m) = sup
A⊂B

|Pτ(A)−Pm(A)| ,

where A is a subset of the Borel set B.

Proof. Define the sets B1 = {t : τ(t) > m(t)}, B2 = {t : τ(t) < m(t)}, B3 = {t : τ(t) = m(t)}.
Notice that

Pτ(B1) +Pτ(B2) +Pτ(B3) = Pm(B1) +Pm(B2) +Pm(B3) = 1.

Because on the set B3 the two probability mass functions are equal Pτ(B3) = Pm(B3), and hence

Pτ(B1)−Pm(B1) = Pm(B2)−Pτ(B2).

Note that, because of the nature of the sets B1 and B2, both terms in the last expression are
positive. Therefore

V(τ, m) =
1
2 ∑ |τ(t)−m(t)|

=
1
2
(

∑
t∈B1

|τ(t)−m(t)|+ ∑
t∈B2

|τ(t)−m(t)|+ ∑
t∈B3

|τ(t)−m(t)|
)

=
1
2
{(
Pτ(B1)−Pm(B1)

)
+
(
Pm(B2)−Pτ(B2)

)}
= Pτ(B1)−Pm(B1).

Furthermore

sup
A⊂B

|Pτ(A)−Pm(A)| = max

{
sup
A⊂B

(
Pτ(A)−Pm(A)

)
, sup

A⊂B

(
Pm(A)−Pτ(A)

)}
.

But
sup
A⊂B

(
Pτ(A)−Pm(A)

)
= Pτ(B1)−Pm(B1)

and
sup
A⊂B

(
Pm(A)−Pτ(A)

)
= Pm(B2)−Pτ(B2) = Pτ(B1)−Pm(B1).

Therefore
sup
A⊂B

|Pτ(A)−Pm(A)| = Pτ(B1)−Pm(B1),

and hence
V(τ, m) = sup

A⊂B
|Pτ(A)−Pm(A)| .
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Remark 1. The model misspecification measure V(τ, m) has a “minimax ”expression

V(τ, M ) = inf
m∈M

sup
A
{|Pτ(A)−Pm(A)| : A ⊂ B} .

This indicates the sense in which the measure assesses the overall risk of using m instead of τ, then chooses
m that minimizes the aforementioned risk.

We now offer a testing interpretation of the total variation distance. We establish that the total
variation distance can be obtained as a solution to a suitably defined optimization problem. It is
obtained as that test function which maximizes the difference between the power and level of a suitably
defined test problem.

Definition 5. A randomized test function for testing a statistical hypothesis H0 versus the alternative H1 is
a (measurable) function φ defined onRn and taking values in the interval [0, 1] with the following interpretation.
If x is the observed value of X and φ(x) = y, then a coin whose probability of falling heads is y is tossed and H0

is rejected when head appears. In the case where y is either 0 or 1, ∀x, the test is called non-randomized.

Proposition 4. Let H0 : τ(x) = f (x) versus H1 : τ(x) = g(x) and φ(x) is a test function, f , g are
probability mass functions. Then

V( f , g) = max
φ

{
EH1

(
φ(X)

)
−EH0

(
φ(X)

)}
.

Proof. We have
EH1

(
φ(X)

)
−EH0

(
φ(X)

)
= ∑ φ(x)

(
g(x)− f (x)

)
.

Then
φ(x) = 1 if x ∈ B1 = {x : g(x) > f (x)} ,

So
max

φ
∑ φ(x)

(
g(x)− f (x)

)
= Pg(B1)−P f (B1) = V( f , g).

An advantage of the total variation distance is that it is not sensitive to small changes in the density.
That is, if τ(t) is replaced by τ(t) + e(t) where ∑t e(t) = 0 and ∑t |e(t)| is small then

V(τ + e, m) =
1
2 ∑ |τ(t) + e(t)−m(t)|

≤ 1
2 ∑ |τ(t)−m(t)|+ 1

2 ∑ |e(t)|

= V(τ, m) +
1
2 ∑ |e(t)| .

Therefore, when the changes in the density are small V(τ + e, m) ≈ V(τ, m). When describing
a population, it is natural to describe it via the proportion of individuals in various subgroups.
Having V(τ, m) small would ensure uniform accuracy for all such descriptions. On the other hand,
populations are also described in terms of a variety of other variables, such as means. Having the total
variation measure small does not imply that means are close on the scale of standard deviation.

Remark 2. The total variation distance is not differentiable in the arguments. Using V(d, mθ) as an inference
function, where d denotes the data estimate of τ (i.e., τ̂), yields estimators of θ that have the feature of not
generating smooth, asymptotically normal estimators when the model is true [4]. This feature is related to the
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pathologies of the variation distance described by Donoho and Liu [5]. However, if parameter estimation is of
interest, one can use alternative divergences that are free of these pathologies.

We now study the total variation distance in continuous probability models.

Definition 6. The total variation distance between two probability density functions τ, m is defined as

V(τ, m) =
1
2

∫
|τ(x)−m(x)| dx.

The total variation distance has the same interpretation as in the discrete probability model case.
That is

V(τ, m) = sup
A⊂B

|Pτ(A)−Pm(A)| .

One of the important issues in the construction of distances in continuous spaces is the issue of
invariance, because the behavior of distance measures under transformations of the data is of interest.
Suppose we take a monotone transformation of the observed variable X and use the corresponding
model distribution; how does this transformation affect the distance between X and the model?

Invariance seems to be desirable from an inferential point of view, but difficult to achieve without
forcing one of the distributions to be continuous and appealing to the probability integral transform
for a common scale. In multivariate continuous spaces, the problem of transformation invariance is
even more difficult, as there is no longer a natural probability integral transformation to bring data
and model on a common scale.

Proposition 5. Let V(τX, mX) be the total variation distance between the densities τX, mX for a random
variable X. If Y = a(X) is a one-to-one transformation of the random variable X, then

V(τX , mX) = V(τY, mY).

Proof. Write

V(τY, mY) =
1
2

∫
|τY(y)−mY(y)| dy

=
1
2

∫ ∣∣∣∣τX
(
b(y)

)
· | d

dy
b(y)| −mX

(
b(y)

)
· | d

dy
b(y)|

∣∣∣∣ dy

=
1
2

∫ ∣∣τX
(
b(y)

)
−mX

(
b(y)

)∣∣ · ∣∣∣∣ d
dy

b(y)
∣∣∣∣ dy,

where b(y) is the inverse transformation. Next, we do a change of variable in the integral. Set x = b(y)
from where we obtain y = a(x) and dy = a′(x)dx; the prime denotes derivative with respect to the
corresponding argument. Then

V(τY, mY) =
1
2

∫
|τX(x)−mX(x)| ·

∣∣b′(a(x)
)∣∣ · a′(x)dx.

But

b
(
a(x)

)
= x =⇒ d

dx
b
(
a(x)

)
= 1

=⇒ b′
(
a(x)

)
a′(x) = 1

=⇒ b′
(
a(x)

)
=

1
a′(x)

,
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hence

V(τY, mY) =
1
2

∫
|τX(x)−mX(x)| · a′(x)

|a′(x)|dx

=
1
2

∫
|τX(x)−mX(x)| · sign

(
a′(x)

)
dx.

Now since a(·) is a one-to-one transformation, a(x) is either increasing or decreasing on different
segments of R. Thus

V(τY, mY) = V(τX , mX),

where Y = a(X).

A fundamental problem with the total variation distance is that it cannot be used to compute
the distance between a discrete distribution and a continuous distribution because the total variation
distance between a continuous measure and a discrete measure is always the maximum possible,
that is 1. This inability of the total variation distance to discriminate between discrete and continuous
measures can be interpreted as asking “too many questions”at once, without any prioritization.
This limits its use despite its invariant characteristics.

We now discuss the relationship between the total variation distance and Fisher information.
Denote by m(n) the joint density of n independent and identically distributed random variables.
Then we have the following proposition.

Proposition 6. The total variation distance is locally equivalent to the Fisher information number, that is

1
n

V(m(n)
θ , m(n)

θ0
)→ |θ − θ0|

√
I(θ0)

2π
, as n→ ∞,

where mθ , mθ0 are two discrete probability models.

Proof. By definition

V(m(n)
θ , m(n)

θ0
) =

1
2 ∑ |m(n)

θ (t)−m(n)
θ0

(t)|.

Now, expand m(n)
θ (t) using Taylor series in the neighborhood of θ0 to obtain

m(n)
θ (t) ' m(n)

θ0
(t) + (θ − θ0)

(
m(n)

θ0
(t)
)′,

where the prime denotes derivative with respect to the parameter θ. Further, write

(
m(n)

θ0
(t)
)′

= m(n)
θ0

(t)
( d

dθ
log m(n)

θ (t)
∣∣
θ0

)
to obtain

1
n

V(m(n)
θ , m(n)

θ0
) ' 1

2
|θ − θ0|E

{ 1
n
∣∣ d
dθ

log m(n)
θ (t)

∣∣
θ0

∣∣}
=

1
2
|θ − θ0|E

{∣∣ 1
n

n

∑
i=1

uθ0(ti)
∣∣},

where
uθ0(ti) =

d
dθ

log mθ(ti)
∣∣
θ0

.
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Therefore, assuming that 1
n ∑ uθ0(ti) converges to a normal random variable in absolute mean, then

1
n

V(m(n)
θ , m(n)

θ0
)→ 1

2
|θ − θ0|

√
I(θ0)

√
2
π

= |θ − θ0|
√

I(θ0)

2π
, as n→ ∞,

because E
(
uθ0(ti)

)
= 0, Var

(
uθ0(ti)

)
= I(θ0) and E(|Z|) =

√
2
π when Z ∼ N(0, 1).

The total variation is a non-quadratic distance. It is however related to a quadratic distance,
the Hellinger distance, defined as H2(τ, m) = 1

2 ∑
(√

τ(t)−
√

m(t)
)2 by the following inequality.

Proposition 7. Let τ, m be two probability mass functions. Then

0 ≤ H2(τ, m) ≤ V(τ, m) ≤
[
H2(τ, m)

(
2− H2(τ, m)

)] 1
2 .

Proof. Straightforward using the definitions of the distances involved and Cauchy-Swartz inequality.
Holder’s inequality provides 1−∑

√
τ(t)m(t) ≥ 0.

Note that 2H2(τ, m) = ∑[
√

τ(t)−
√

m(t)]2; the square root of this quantity, that is
{

∑[
√

τ(t)−√
m(t)]2

}1/2, is known as Matusita’s distance [6,7]. Further, define the affinity between two probability
densities by

ρ(τ, m) = ∑
t

τ1/2(t)m1/2(t).

Then, it is easy to prove that

∑
t
[
√

τ(t)−
√

m(t)]2 = 2
(
1− ρ(τ, m)

)
≤ V(τ, m) ≤ 2

{
∑

t
[
√

τ(t)−
√

m(t)]2
}1/2.

The above inequality indicates the relationship between total variation and Matusita’s distance.

4. Mixture Index of Fit

Rudas, Clogg, and Lindsay [8] proposed a new index of fit approach to evaluate the goodness
of fit analysis of contingency tables based on the mixture model framework. The approach focuses
attention on the discrepancy between the model and the data, and allows comparisons across studies.
Suppose M is the baseline model. The family of models which are proposed for evaluating goodness
of fit is a two-point mixture model given by

Mπ = {τ : τ(t) = (1− π)mθ(t) + πe(t), mθ(t) ∈M , e(t) arbitrary, θ ∈ Θ}.

Here π denotes the mixing proportion, which is interpreted as the proportion of the population
outside the model M . In the robustness literature the mixing proportion corresponds to the
contamination proportion, as explained below. In the contingency table framework mθ(t), e(t) describe
the tables of probabilities for each latent class. The family of models Mπ defines a class of nested
models as π varies from zero to one. Thus, if the model M does not fit well the data, then by
increasing π, the model Mπ will be an adequate fit for π sufficiently large.

We can motivate the index of fit by thinking of the population as being composed of two classes
with proportions 1− π and π respectively. The first class is perfectly described by M , whereas the
second class contains the “outliers”. The index of fit can then be interpreted as the fraction of the
population intrinsically outside M , that is, the proportion of outliers in the sample.

We note here that these ideas can be extended beyond the contingency table framework.
In our setting, the probability distribution describing the true data generating mechanism may be
written as τ(t) = (1− π)mθ(t) + πe(t), where mθ(t) ∈ M and e(t) is arbitrary. This representation
of τ(t) is arbitrary such that we can construct another representation τ(t) = (1− π − δ)mθ(t) + (π +
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δ)e∗(t). However, there always exists the smallest unique π such that there exists a representation of
τ(t) that puts the maximum proportion in one of the population classes. Next, we define formally the
mixture index of fit.

Definition 7. (Rudas, Clogg, and Lindsay [8]) The mixture index of fit π* is defined by

π∗(τ) = inf{π : τ(t) = (1− π)mθ(t) + πe(t), mθ(t) ∈M , e(t) arbitrary}.

Notice that π∗(τ) is a distance. This is because if we set π∗(τ, mθ) = inf{π : τ(t) = (1 −
π)mθ(t) + πe(t), e(t) arbitrary} for a fixed mθ(t), we have π∗(τ, mθ) > 0 and π∗(τ, mθ) = 0 if τ = mθ .

Definition 8. Define the statistical distance π∗(τ, M ) as follows:

π∗(τ, M ) = inf
m∈M

π∗(τ, m).

Remark 3. Note that, to be able to present Proposition 8 below, we have turned arbitrary discrete distributions
into vectors. As an example, if the sample space T = {0, 1, 2} and P(X = 0) = P(X = 1) = P(X =

2) = 1/3, we write this discrete distribution as the vector (1/3, 1/3, 1/3)T . If, furthermore, we consider the
vectors ~δ0 = (1, 0, 0)T , ~δ1 = (0, 1, 0)T , and ~δ2 = (0, 0, 1)T as degenerate distributions assigning mass 1 at
positions 0, 1, 2 then (1/3, 1/3, 1/3)T = 1

3
~δ0 +

1
3
~δ1 +

1
3
~δ2. This representation of distributions is used in the

proof of Proposition 8.

Proposition 8. The set of vectors ~τ satisfying the relationship π∗(~τ, ~m) ≤ π0 is a simplex with extremal
points (1− π0)~m + π0~δi, where ~δi is the vector with 1 at the (i + 1)th position and 0 everywhere else.

Proof. Given ~τ with π∗ ≤ π0, there exists a representation of

~τ = (1− π0)~m + π0~e.

Write any arbitrary discrete distribution~e as follows:

~e = e0~δ0 + · · ·+ eT~δT ,

where ∑T
i=0 ei = 1 and δi takes the value 1 at the (i + 1)th position and the value 0 everywhere else.

Then
(1− π0)~m + π0~e = e0[(1− π0)~m + π0~δ0] + · · ·+ eT [(1− π0)~m + π0~δT ],

which belongs to a simplex.

Proposition 9. We have

π∗(τ, m) = sup
t

{
1− τ(t)

m(t)
}
= 1− inf

t

{ τ(t)
m(t)

}
.

Proof. Define

λ = 1− inf
t

{ τ(t)
m(t)

}
and λ̄ = 1− λ.

Then

τ(t)− (1− λ)m(t) = τ(t)− inf
t

{ τ(t)
m(t)

}
m(t)

= m(t)
[

τ(t)
m(t)

− inf
t

{ τ(t)
m(t)

}]
≥ 0,
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with equality at some t. Let now the error term be

e∗(t) =
1
λ

[
τ(t)− λ̄m(t)

]
.

Then τ(t) = (1− λ)m(t) + λe∗(t) and λ cannot be made smaller without making e∗(t) negative
at a point t0. This concludes the proof.

Corollary 2. We have
π∗(τ, m) = 1

if there exists t0 such that τ(t0) = 0 and m(t0) > 0.

Proof. By Proposition 9 π∗ ≤ 1, but it equals 1 at t0.

One of the advantages of the mixture index of fit is that it has an intuitive interpretation that does
not depend upon the specific nature of the model being assessed. Liu and Lindsay [9] extended the
results of Rudas et al. [8] to the Kullback-Leibler distance. Computational aspects of the mixture index
of fit are discussed in Xi and Lindsay [4] as well as in Dayton [10] and Ispány and Verdes [11].

Finally, a new interpretation to the mixture index of fit was presented by Ispány and Verdes [11].
Let P be the set of probability measures and H ⊂P . If d is a distance measure on P and N(H , π) ={

Q : Q = (1− π)M + πR, M ∈H , R ∈P
}

, then π∗ = π∗(P , H ) is the least non-negative solution
of the equation d(P , N(H , π)) := minQ∈N(H ,π) d(P, Q) = 0 in π.

Next, we offer some interpretations associated with the mixture index of fit. The statistical
interpretations made with this measure are attractive, as any statement based on the model applies to
at least 1− π∗ of the population involved. However, while the “outlier”model seems interpretable
and attractive, the distance itself is not very robust.

In other words, small changes in the probability mass function do not necessarily mean small
changes in distance. This is because if m(t0) = ε, then a change of ε in τ(t0) from ε to 0 causes π∗(τ, m)

to go to 1. Moreover, assume that our framework is that of continuous probability measures, and that
our model is a normal density. If τ(t) is a lighter tailed distribution than our normal model m(t), then

lim
t→∞

{
1− τ(t)

m(t)
}
= 1,

and therefore

π∗(τ, m) = sup
t

{
1− τ(t)

m(t)
}
= 1.

That is, light tailed densities are interpreted as 100% outliers. Therefore, the mixture index of
fit measures error from the model in a “one-sided” way. This is in contrast to total variation,
which measures the size of “holes” as well as the “outliers” by allowing the distributional errors to
be neutral.

In what follows, we show that if we can find a mixture representation for the true distribution
then this implies a small total variation distance between the true probability mass function and the
assumed model m. Specifically, we have the following.

Proposition 10. Let π* be the mixture index of fit. If τ(t) = (1− π)m(t) + πe(t), then

V(τ, m) ≤ π∗.
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Proof. Write

V(τ, m) =
1
2 ∑ |(1− π)m(t) + πe(t)−m(t)|

=
1
2 ∑ |π

(
e(t)−m(t)

)
|

=
1
2 ∑ π∗|e(t)−m(t)|,

with π = π∗. This is because there always exists the smallest unique π such that τ(t) can be represented
as a mixture model.

Thus, the above relationship can be written as

V(τ, m) =
1
2

π∗∑ |e(t)−m(t)| = π∗V(e, m) ≤ π∗.

There is a mixture representation that connects total variation with the mixture index of fit. This is
presented below.

Proposition 11. Denote by

W(τ, m) = inf
π

{
π : (1− π)τ(t) + πe1(t) = (1− π)m(t) + πe2(t)

}
.

Then

W(τ, m) =
V(τ, m)

1 + V(τ, m)
.

Proof. Fix τ; for any given m let (e1, e2, π̃) be a solution to the equation

π̃τ + (1− π̃)e1i = π̃ei + (1− π̃)e2i, i = 1, 2, · · · , T. (1)

Let q1i = (1− π̃)e1i and q2i = (1− π̃)e2i and note that since

∑ e1i = ∑ e2i = 1

then

∑ q1i = ∑ q2i = 1− π̃.

Rewrite now Equation (1) as follows:

π̃τi + q1i = π̃mi + q2i

⇒ q2i − q1i = π̃(τi −mi)

⇒ q2i − q1i = π̃(τi −mi)
+ − π̃(τi −mi)

−,

where (x)+ = max(x, 0) and (x)− = −min(x, 0). Thus, ignoring the constraints, every pair (e1i, e2i)

satisfying the equation above also satisfies

q1i = π̃(τi −mi)
− + εi,

q2i = π̃(τi −mi)
+ + εi,
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for some number εi. Moreover, such pair must have εi ≥ 0 in order the constraints q1i ≥ 0, q2i ≥ 0 to
be satisfied. Hence, varying εi over εi ≥ 0 gives a class of solutions. To determine π̃,

∑
i

q1i = ∑
i
(π̃(τi −mi)

− + εi) = 1− π̃,

∑
i

q2i = ∑
i
(π̃(τi −mi)

+ + εi) = 1− π̃,

and adding these we obtain

2(1− π̃) = π̃ ∑ |τi −mi|+ 2 ∑ εi

⇒ 2 = π̃
(
2 + ∑ |τi −mi|

)
+ 2 ∑ εi

⇒ 2− 2 ∑ εi = π̃
(
2 + ∑ |τi −mi|

)
⇒ π̃ =

2− 2 ∑ εi
2 + ∑ |τi −mi|

,

and the maximum value is obtained when ∑ εi = 0⇒ εi = 0, ∀i. Therefore

π̃ =
2

2 + ∑ |τi −mi|
=

1
1 + 1

2 ∑ |τi −mi|
=

1
1 + V(τ, m)

and so

W(τ, m) =
V(τ, m)

1 + V(τ, m)
.

Therefore, for small V(τ, m) the mixture index of fit and the total variation distance are
nearly equal.

5. Kullback-Leibler Distance

The Kullback-Leibler distance [12] is extensively used in statistics and in particular in model
selection. The celebrated AIC model selection criterion [13] is based on this distance. In this section,
we present the Kullback-Leibler distance and some of its properties with particular emphasis
on interpretations.

Definition 9. The Kullback-Leibler distance between two densities τ, m is defined as

K2(τ, m) = ∑ m(t) log
(m(t)

τ(t)
)
,

or

K2(τ, m) =
∫

m(t) log
(m(t)

τ(t)
)
dt.

Proposition 12. The Kullback-Leibler distance is nonnegative, that is

K2(τ, m) ≥ 0

with equality if and only if τ(t) = m(t).

Proof. Write

K2(τ, m) = ∑ m(t)
[

log
(m(t)

τ(t)
)
+

τ(t)
m(t)

− 1
]
= ∑ m(t)

[
− log

( τ(t)
m(t)

)
+

τ(t)
m(t)

− 1
]
.
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Set X = τ(t)
m(t) ≥ 0, then − log X + X− 1 is a convex, non-negative function that equals 0 at X = 1.

Therefore K2(τ, m) ≥ 0.

Definition 10. We define the likelihood distance between two densities τ, m as

λ2(τ, m) = ∑ τ(t) log
( τ(t)

m(t)
)
.

The intuition behind the above expression of the likelihood distance comes from the fact that the
log-likelihood in the case of discrete random variables taking nj discrete values, ∑m

j=1 nj = n, m is the
number of groups, can be written, after appropriate algebraic manipulations, in the above form.

Alternatively, we can write the likelihood distance as

λ2(τ, m) = ∑ m(t)
[ τ(t)

m(t)
log
( τ(t)

m(t)
)
− τ(t)

m(t)
+ 1
]
,

and use this relationship to obtain insight into connections of the likelihood distance with the
chi-squared measures studied by Markatou et al. [3].

Specifically, if we write the Pearson’s chi-squared statistic as

P2(τ, m) = ∑ m(t)
[ τ(t)

m(t)
− 1
]2,

then from the functional relationship r log r − r + 1 ≤ (r − 1)2 we obtain that λ2(τ, m) ≤ P2(τ, m).
However, it is also clear from the right tails of the functions that there is no way to bound λ2(τ, m)

below by a multiple of P2(τ, m). Hence, these measures are not equivalent in the same way that
Hellinger distance and symmetric chi-squared are (see Lemma 4, Markatou et al. [3]). In particular,
knowing that λ2(τ, m) is small is no guarantee that all Pearson z-statistics are uniformly small.

On the other hand, one can show by the same mechanism that S2 ≤ 2kλ2, where k < 32/9 and S2

is the symmetric chi-squared distance given as

S2(τ, m) = ∑
(
τ(t)−m(t)

)2

1
2 τ(t) + 1

2 m(t)
.

It is therefore true that small likelihood distance λ2 implies small z-statistics with blended variance
estimators. However, the reverse is not true because the right tail in r for S2 is of magnitude r,
as opposed to r log r for the likelihood distance.

These comparisons provide some feeling for the statistical interpretation of the likelihood distance.
Its meaning as a measure of model misspecification is unclear. Furthermore, our impression is
that likelihood, like Pearson’s chi-squared is too sensitive to outliers and gross errors in the data.
Despite Kullback-Leibler’s theoretical and computational advantages, a point of inconvenience in
the context of model selection is the lack of symmetry. One can show that reversing the roles of the
arguments in the Kullback-Leibler divergence can yield substantially different results. The sum of
the Kullback-Leibler distance and the likelihood distance produces the symmetric Kullback-Leibler
distance or J divergence. This measure is symmetric in the arguments, and when used as a model
selection measure it is expected to be more sensitive than each of the individual components.

6. Computation and Applications of Total Variation, Mixture Index of Fit and Kullback-
Leibler Distances

The distances discussed in this paper are used in a number of important applications. Euán et al. [14]
use the total variation to detect changes in wave spectra, while Alvarez- Esteban et al. [15] cluster time
series data on the basis of the total variation distance. The mixture index of fit has found a number of
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applications in the area of social sciences. Rudas et al. [8] provided examples of the application of π* to
two-way contingency tables. Applications involving differential item functioning and latent class analysis
were presented in Rudas and Zwick [16] and Dayton [17] respectively. Formann [18] applied it in regression
models involving continuous variables. Finally, Revuelta [19] applied the π* goodness-of-fit statistic to
finite mixture item response models that were developed mainly in connection with Rasch models [20,21].
The Kullback-Leibler (KL) distance [12] is fundamental in information theory and its applications.
In statistics, the celebrated Akaike information Criterion (AIC) [13,22], widely used in model selection,
is based on the Kullback-Leibler distance. There are numerous additional applications of the KL
distance in fields such as fluid mechanics, neuroscience, machine learning. In economics, Smith, Naik,
and Tsai [23] use KL distance to simultaneously select the number of states and variables associated
with Markov-switching regression models that are used in marketing and other business applications.
KL distance is also used in diagnostic testing for ruling in or ruling out disease [24,25], as well as in
a variety of other fields [26].

Table 1 presents the software, written in R, that can be used to compute the aforementioned
distances. Additionally, Zhang and Dayton [27] present a SAS program to compute the two-point
mixture index of fit for the two-class latent class analysis models with dichotomous variables.
There are a number of different algorithms that can be used to compute the mixture index of fit
for contingency tables. Rudas et al. [8] propose to use a standard EM algorithm, Xi and Lindsay [4]
use sequential quadratic programming and discuss technical details and numerical issues related
to applying nonlinear programming techniques to estimate π*. Dayton [10] discusses explicitly the
practical advantages associated with the use of nonlinear programming as well as the limitations,
while Pan and Dayton [28] study a variety of additional issues associated with computing π*.
Additional algorithms associated with the computation of π* can be found in Verdes [29] and Ispány
and Verdes [11].

We now describe a simulation study that aims to illustrate the performance of the total variation,
Kullback-Leibler, and mixture index of fit as model selection measures. Data are generated from either
an asymmetric (1− ε)N(0, 1) + εN(µ, σ2) contamination model, or from a symmetric (1− ε)N(0, 1) +
εN(0, σ2) contamination model, where ε is the percentage of contamination. Specifically, we generate
500 Monte Carlo samples of sample sizes 200, 1000, and 5000 as follows. If the sample has size n and
the percentage of contamination is ε, then nε of the sample size is generated from model N(µ, σ2)

or N(0, σ2) and the remaining n(1− ε) from a N(0, 1) model. We use µ = 1, 5, 10 and σ2 = 1 in the
N(µ, σ2) model and σ2 = 4, 9, 16 in the N(0, σ2) model. The total variation distance was computed
between the simulated data and the N(0, 1) model. The Kullback-Leibler distance was calculated
between the data generated from the aforementioned contamination models and a random sample of
the same size n from N(0, 1). When computing the mixture index of fit, we specified the component
distribution as a normal distribution with initial mean 0 and variance 1. All simulations were carried
out on a laptop computer with an Intel Core i7 processor and 64 bit Windows 7 operation system.
The R packages used are presented in Table 1.

Tables 2 and 3 present means and standard deviations of the total variation and Kullback-Leibler
distances as a function of the contamination model and the sample size. To compute the total variation
distance we use the R function “TotalVarDist” of the R package “distrEx”. It smooths the empirical
distribution of the provided data using a normal kernel and computes the distance between the
smoothed empirical distribution and the provided continuous distribution (in our case this distribution
is N(0, 1)). We note here that the package “distrEx” provides an alternative option to compute
the total variation which relies on discretizing the continuous distribution and then computes the
distance between the discretized continuous distribution and the data. We think that smoothing
the data to obtain an empirical estimator of the density and then calculating its distance from the
continuous density is a more natural way to handle the difference in scale between the discrete
data and the continuous model. Lindsay [1] and Markatou et al. [3] discuss this phenomenon and
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call it discretization robustness. The Kullback-Leibler distance was computed using the function
“KLD.matrix” of the R package “bioDist”.

Table 1. Computer packages for calculating total variation, mixture index of fit, and Kullback-
Leibler distances.

Information Total Variation Kullback-Leibler Mixture Index of Fit

R package distrEx bioDist pistar
R function TotalVarDist KLD.matrix pistar.uv
Dimension Univariate Univariate Univariate

Website https://cran.r-project.org http://bioconductor.org/packages https://rdrr.io/github/
/web/packages/distrEx/ /release/bioc/html/bioDist.html jmedzihorsky/pistar/man/

Table 2. Means and standard deviations (SD) of the total variation (TV) and Kullback-Leibler (KLD)
distances. Data are generated from the model (1− ε)N(0, 1) + εN(µ, 1) with µ = 1, 5, 10. The sample
size n is 200, 1000, 5000. The number of Monte Carlo replications is 500.

Contaminating Percentage of Summary n = 200 n = 1000 n = 5000
Model Contamination (ε) TV KLD TV KLD TV KLD

N(1, 1)

0.01 Mean 0.144 0.224 0.065 0.048 0.029 0.008
SD 0.017 0.244 0.007 0.051 0.004 0.009

0.05 Mean 0.146 0.255 0.069 0.065 0.034 0.017
SD 0.017 0.267 0.009 0.059 0.004 0.015

0.1 Mean 0.149 0.323 0.076 0.088 0.047 0.026
SD 0.017 0.343 0.009 0.073 0.005 0.018

0.2 Mean 0.162 0.482 0.097 0.147 0.081 0.059
SD 0.020 0.462 0.011 0.123 0.006 0.030

0.3 Mean 0.181 0.616 0.128 0.215 0.117 0.102
SD 0.022 0.528 0.013 0.150 0.007 0.044

0.4 Mean 0.201 0.733 0.162 0.293 0.155 0.153
SD 0.024 0.616 0.014 0.176 0.007 0.058

0.5 Mean 0.232 0.937 0.198 0.392 0.192 0.207
SD 0.026 0.735 0.014 0.203 0.007 0.067

N(5, 1)

0.01 Mean 0.149 0.577 0.070 0.338 0.034 0.231
SD 0.017 0.373 0.008 0.131 0.004 0.063

0.05 Mean 0.167 1.416 0.092 1.041 0.060 0.838
SD 0.020 0.499 0.009 0.248 0.004 0.138

0.1 Mean 0.196 2.392 0.126 2.002 0.103 1.731
SD 0.020 0.609 0.010 0.335 0.004 0.219

0.2 Mean 0.259 4.841 0.210 4.404 0.199 3.947
SD 0.023 0.941 0.012 0.512 0.006 0.383

0.3 Mean 0.336 7.924 0.302 7.305 0.297 6.652
SD 0.028 1.182 0.014 0.730 0.007 0.569

0.4 Mean 0.419 11.317 0.398 10.655 0.396 9.843
SD 0.031 1.388 0.016 0.863 0.006 0.792

0.5 Mean 0.506 15.045 0.495 14.443 0.494 13.573
SD 0.035 1.768 0.016 1.027 0.007 0.999

N(10, 1)

0.01 Mean 0.149 0.352 0.070 0.129 0.034 0.082
SD 0.017 0.275 0.008 0.071 0.004 0.024

0.05 Mean 0.169 0.862 0.094 0.713 0.061 0.705
SD 0.018 0.408 0.009 0.178 0.004 0.093

0.1 Mean 0.197 1.898 0.128 1.850 0.105 1.854
SD 0.020 0.593 0.010 0.261 0.004 0.132

0.2 Mean 0.259 4.685 0.211 4.640 0.202 4.638
SD 0.026 0.968 0.013 0.423 0.006 0.253

0.3 Mean 0.340 8.393 0.305 8.055 0.300 7.909
SD 0.029 1.391 0.014 0.631 0.007 0.388

0.4 Mean 0.420 12.209 0.402 11.846 0.401 11.653
SD 0.031 1.433 0.014 0.657 0.007 0.448

0.5 Mean 0.515 16.544 0.503 16.041 0.501 15.841
SD 0.032 1.499 0.016 0.730 0.007 0.432

https://cran.r-project.org
http://bioconductor.org/packages
https://rdrr.io/github/
/web/packages/distrEx/
/release/bioc/html/bioDist.html
jmedzihorsky/pistar/man/
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Table 3. Means and standard deviations (SD) of the total variation (TV) and Kullback-Leibler (KLD)
distances. Data are generated from the model (1− ε)N(0, 1) + εN(0, σ2) with σ2 = 4, 9, 16. The sample
size n is 200, 1000, 5000. The number of Monte Carlo replications is 500.

Contaminating Percentage of Summary n = 200 n = 1000 n = 5000
Model Contamination (ε) TV KLD TV KLD TV KLD

N(0, 4)

0.01 Mean 0.145 0.263 0.066 0.068 0.030 0.021
SD 0.017 0.250 0.008 0.058 0.003 0.014

0.05 Mean 0.147 0.497 0.069 0.204 0.034 0.079
SD 0.017 0.391 0.008 0.130 0.004 0.036

0.1 Mean 0.154 0.778 0.076 0.368 0.044 0.181
SD 0.018 0.527 0.008 0.168 0.004 0.062

0.2 Mean 0.166 1.275 0.094 0.712 0.071 0.426
SD 0.020 0.639 0.010 0.255 0.005 0.108

0.3 Mean 0.182 1.797 0.118 1.067 0.101 0.671
SD 0.021 0.738 0.012 0.324 0.006 0.158

0.4 Mean 0.201 2.320 0.144 1.407 0.133 0.924
SD 0.021 0.875 0.012 0.403 0.006 0.198

0.5 Mean 0.220 2.766 0.173 1.755 0.164 1.164
SD 0.025 0.932 0.013 0.450 0.006 0.219

N(0, 9)

0.01 Mean 0.146 0.369 0.067 0.122 0.031 0.046
SD 0.018 0.348 0.007 0.089 0.003 0.022

0.05 Mean 0.154 0.839 0.074 0.490 0.040 0.321
SD 0.017 0.477 0.008 0.187 0.004 0.081

0.1 Mean 0.164 1.414 0.087 0.945 0.058 0.661
SD 0.018 0.602 0.009 0.256 0.005 0.120

0.2 Mean 0.189 2.529 0.120 1.748 0.101 1.300
SD 0.021 0.801 0.011 0.366 0.005 0.188

0.3 Mean 0.216 3.529 0.161 2.526 0.149 1.954
SD 0.023 0.957 0.012 0.466 0.006 0.276

0.4 Mean 0.252 4.608 0.205 3.444 0.196 2.660
SD 0.026 1.071 0.014 0.549 0.006 0.339

0.5 Mean 0.286 5.630 0.250 4.289 0.244 3.423
SD 0.026 1.123 0.014 0.657 0.007 0.406

N(0, 16)

0.01 Mean 0.146 0.429 0.067 0.166 0.031 0.078
SD 0.016 0.374 0.007 0.100 0.003 0.032

0.05 Mean 0.156 1.073 0.078 0.716 0.044 0.511
SD 0.017 0.514 0.008 0.203 0.004 0.088

0.1 Mean 0.169 1.774 0.094 1.281 0.066 0.981
SD 0.019 0.606 0.008 0.277 0.005 0.142

0.2 Mean 0.200 3.160 0.137 2.383 0.120 1.927
SD 0.021 0.800 0.011 0.408 0.005 0.218

0.3 Mean 0.239 4.471 0.187 3.532 0.177 2.937
SD 0.025 1.045 0.013 0.485 0.006 0.278

0.4 Mean 0.280 5.812 0.242 4.822 0.235 4.044
SD 0.026 1.125 0.014 0.589 0.007 0.355

0.5 Mean 0.331 7.537 0.298 6.145 0.293 5.218
SD 0.029 1.274 0.015 0.693 0.007 0.433

We observe from the results of Tables 2 and 3 that the total variation distance for small percentages
of contamination is small and generally smaller than the Kullback-Leibler distance for both asymmetric
and symmetric contamination models with a considerably smaller standard deviation. The above
behavior of the total variation distance in comparison to the Kullback-Leibler manifests itself across all
sample sizes used.

Table 4 presents the mixture index of fit computed using the R function “pistar.uv” from the
R package “pistar” (https://rdrr.io/github/jmedzihorsky/pistar/man/; accessed on 5 June 2018).
Since the fundamental assumption in the definition of the mixture index of fit is that the population on

https://rdrr.io/github/jmedzihorsky/pistar/man/
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which the index is applied is heterogeneous and expressed via the two-point model, we only used the
asymmetric contamination model for various values of the contamination distribution.

Table 4. Means and standard deviations (SD) for the mixture index of fit. Data are generated
from an asymmetric contamination model of the form (1− ε)N(0, 1) + εN(µ, 1), µ = 1, 5, 10 with
sample sizes, n, of 1000, 5000. The number of Monte Carlo replications is 500.

Percentage of Summary N(1, 1) N(5, 1) N(10, 1)
Contamination ε n = 1000 n = 5000 n = 1000 n = 5000 n = 1000 n = 5000

0.1 Mean 0.180 0.160 0.223 0.213 0.837 0.934
SD 0.045 0.044 0.041 0.040 0.279 0.198

0.2 Mean 0.184 0.172 0.288 0.287 0.433 0.521
SD 0.044 0.042 0.036 0.036 0.144 0.240

0.3 Mean 0.189 0.179 0.344 0.346 0.314 0.317
SD 0.047 0.039 0.028 0.024 0.016 0.012

0.4 Mean 0.194 0.186 0.436 0.436 0.410 0.413
SD 0.044 0.034 0.026 0.021 0.017 0.011

0.5 Mean 0.194 0.185 0.529 0.533 0.511 0.512
SD 0.047 0.035 0.024 0.020 0.017 0.010

We observe that the mixture index of fit generally estimates well the mixing proportion ε.
We observe (see Table 4) that when the second population is N(1, 1) the bias associated with estimating
the mixing (or contamination) population can be as high as 30.6%. This is expected because the
population N(1, 1) is very close to N(0, 1) creating essentially a unimodal sample. As the means of the
two normal components get more separated, the mixture index of fit provides better estimates of the
mixing quantity and the percentage of observations that need to be removed so that N(0, 1) provides
a good fit to the remaining data points.

7. Discussion and Conclusions

Divergence measures are widely used in scientific work, and popular examples of these measures
include the Kullback-Leibler divergence, Bregman Divergence [30], the power divergence family of
Cressie and Read [31], the density power divergence family [32] and many others. Two relatively
recent books that discuss various families of divergences are Pardo [33] and Basu et al. [34].

In this paper we discuss specific divergences that do not belong to the family of quadratic
divergences, and examine their role in assessing model adequacy. The total variation distance might
be preferable as it seems closest to a robust measure, in that if the two probability measures differ only
on a set of small probability, such as a few outliers, then the distance must be small. This was clearly
exemplified in Tables 2 and 3 of Section 6. Outliers influence chi-squared measures more. For example,
the Pearson’s chi-squared distance can be made dramatically larger by increasing the amount of data in
a cell with small model probability mθ(t). In fact, if there is data in a cell with model probability zero,
the distance is infinite. Note that if data occur in a cell with probability, under the model, equal to zero,
then it is possible that the model is not true. Still, even in this case, we might wish to use it on the
premise that mθ provides a good approximation.

There is a pressing need for the further development of well-tested software for computing the
mixture index of fit. This measure is intuitive and has found many applications in the social sciences.
Reiczigel et al. [35] discuss bias-corrected point estimates of π*, as well as a bootstrap test and new
confidence limits, in the context of contingency tables. Well-developed and tested software will further
popularize the dissemination and use of this method.

The mixture index of fit ideas were extended in the context of testing general model adequacy
problems by Liu and Lindsay [9]. Recent work by Ghosh and Basu [36] presents a systematic procedure
of generating new divergences. Ghosh and Basu [36], building upon the work of Liu and Lindsay [9],
generate new divergences through suitable model adequacy tests using existing divergences. Additionally,
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Dimova et al. [37] use the quadratic divergences introduced in Lindsay et al. [2] and construct a model
selection criterion from which we can obtain AIC and BIC as special cases.

In this paper, we discuss non-quadratic distances that are used in many scientific fields where the
problem of assessing the fitted models is of importance. In particular, our interest centered around
the properties and potential interpretations of these distances, as we think this offers insight into their
performance as measures of model misspecification. One important aspect for the dissemination and
use of these distances is the existence of well-tested software that facilitates computation. This is
an area where further development is required.
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