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Abstract: Quantum information geometry studies families of quantum states by means of differential
geometry. A new approach is followed with the intention to facilitate the introduction of a more
general theory in subsequent work. To this purpose, the emphasis is shifted from a manifold of strictly
positive density matrices to a manifold of faithful quantum states on the C*-algebra of bounded linear
operators. In addition, ideas from the parameter-free approach to information geometry are adopted.
The underlying Hilbert space is assumed to be finite-dimensional. In this way, technicalities are
avoided so that strong results are obtained, which one can hope to prove later on in a more general
context. Two different atlases are introduced, one in which it is straightforward to show that the
quantum states form a Banach manifold, the other which is compatible with the inner product of
Bogoliubov and which yields affine coordinates for the exponential connection.

Keywords: quantum states; exponential connection; parameter-free information geometry; Banach
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1. Introduction

The basic example of a quantum statistical system starts with a self-adjoint operator H on
a finite-dimensional or separable Hilbert spaceH, with the property that the operator exp(−βH) is
trace-class for all β in an open interval D of the real line R. Then, for β ∈ D, the quantum expectation
value 〈A〉β of any bounded operator A inH is given by

〈A〉β =
1

Z(β)
Tr e−βH A, with Z(β) = Tr e−βH . (1)

Note that the quantum expectation is well-defined because the product of a trace-class operator
with a bounded operator is again a trace-class operator. The operator H is the Hamiltonian . It defines
a one parameter family of quantum states via Equation (1).

The quantum state (1) is a simple example of a model belonging to the quantum exponential family.
In this case, the quantum states form a one-dimensional manifold. The goal of the present work is to
search for a quantum exponential family formulated in a parameter-free way, similar to the formulation
of Pistone and coworkers [1–4] in the non-quantum case, and to investigate a further generalization
involving deformed exponential functions along the lines set out by the author in [5,6]. An alternative
approach to parameter-free quantum information geometry is described in [7]. Which approach
eventually will lead to a fully developed theory is hard to predict. Such a theory is expected to affect
several domains of research, including Quantum Information Theory, Statistical Physics, in particular
the study of phase transitions, and Complexity Theory. For a recent review of Information Geometry
applied to complexity, see [8].

Early efforts to use geometric methods in the study of non-commutative information theory
include the work by Ingarden and coworkers. See, for instance, [9,10]. The relation with Amari’s
Information Geometry [11,12] was studied by Hasegawa [13–15]. He introduced an alpha-family of
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divergences Dα(ρ, σ) where ρ and σ are any pair of density operators on a finite-dimensional Hilbert
spaceH. The approach relies strongly on the properties of the trace.

The metric on the manifold of density matrices is the scalar product introduced by Bogoliubov
and used by Kubo and Mori in the context of linear response theory. The generalization to an inner
product for vector states on a von Neumann algebra is given in [16]. See also [17].

A more recent account on quantum information geometry is found in Chapter 7 of [12]. See
also [18,19] and Example 3.8 of [20].

The parameter-free approach of Pistone and coworkers was generalized to the quantum context
by Grasselli and Streater [21–24]. See also [25]. Both the classical case and the quantum case need
a regularizing condition on the allowed density functions, respectively density operators. Under
this condition, they form a Banach manifold. Recently, Newton [26,27] proposed an alternative
regularization based on a specific choice of a deformed logarithmic function. Part of the arguments
in [27] can be transposed to the quantum setting [28].

The structure of the paper is as follows. In the next section, quantum states are labeled with
operators belonging to the commutant of the GNS-representation rather than with density matrices.
Section 3 describes the plane tangent at the reference state. Next, an atlas is introduced which contains
a multitude of charts, one for each element of the manifold. Theorem 4 proves that the manifold
is a Banach manifold and that the cross-over maps are continuous. Section 5 introduces the inner
product of Bogoliubov. The metric tensor is calculated. Next, alternative charts are introduced and
their relation with the metric tensor is investigated. Sections 8 and 9 discuss the mixture and the
exponential connections. Proposition 4 proves that the alternative charts provide affine coordinates
for the exponential connection. Section 10 contains a short presentation of the additional structure
provided in quantum information geometry by the existence of modular automorphism groups.
The final section discusses the results obtained so far. An Appendix about the GNS-representation and
the modular operator is added for convenience of the reader.

2. Representation Theorems

In the present paper, the Hilbert space H is assumed to be finite dimensional. This solves
the question of choosing an appropriate topology on the manifold of quantum states. In addition,
all operators under consideration are bounded continuous. In fact, they are finite-dimensional matrices.
In this way, the technical difficulties of working with unbounded operators are avoided.

A density matrix ρ is a self-adjoint operator with discrete spectrum consisting of non-negative
eigenvalues which add up to one. This implies that the trace satisfies Tr ρ = 1. The operator
e−βH/Z(β), mentioned in the Introduction, is a density matrix of the kind we have in mind.

Introduce the notation A = B(H) for the C∗-algebra of bounded linear operators on the Hilbert
space H. The notion of a quantum state coincides with the notion of a (mathematical) state ω on A.
The latter is defined as a linear functional ω : A 7→ C, which satisfies the conditions of positivity and
of normalization

ω(A∗A) ≥ 0 for all A ∈ A, (2)

ω(I) = 1,

where I is the identity operator and A∗ is the adjoint of A. In particular, any state ω belongs to the
dual space of A as a Banach space.

The state ω is said to be faithful if ω(A∗A) = 0 implies A = 0.
The Gelfand–Naimark–Segal (GNS) construction shows that given a state ω on a C∗-algebra A

there exists a *-representation π ofA as bounded linear operators on a Hilbert spaceHω , together with
an element Ω ofHω such that

ω(A) = (π(A)Ω, Ω) for all A ∈ A (3)
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and π(A) is dense inHω . This representation is unique up to unitary equivalence. This representation
is used here to make the transition from a situation where quantum states are described by a density
matrix to the more general context of an arbitrary von Neumann algebra A of bounded operators on
a separable Hilbert spaceH, together with a cyclic and separating vector Ω ∈ H of norm one.

In the case of the algebra of all N-by-N matrices a simple and explicit realization of the
GNS-representation is possible. See the Appendix.

The relation between a density matrix ρ and the corresponding quantum state ωρ, defined by

ωρ(A) = Tr ρA for all A ∈ A (4)

is a one-to-one relation. Indeed, if two density matrices ρ1 and ρ2 produce the same quantum
expectations, then they coincide. Conversely, because the Hilbert space H is finite-dimensional,
any quantum state ω determines a density matrix ρ such that ω = ωρ. The state ωρ is faithful if and
only if the density matrix ρ is strictly positive.

For the sake of completeness, the proof of the following result is reproduced.

Theorem 1. Let ρ and σ be two strictly positive density matrices operating in a finite-dimensional Hilbert space
H. Let A denote the von Neumann algebra of linear operators onH. Let πρ,Hρ, Ωρ be the GNS-representation
induced by ρ. Then, there exists a unique strictly positive operator X in the commutant π(A)′ such that

Tr σA = (πρ(A)X1/2Ωρ, X1/2Ωρ) for all A ∈ A. (5)

Proof. Because Hρ is finite-dimensional and Ωρ is cyclic and separating one has πρ(A)Ωρ =

πρ(A)′Ωρ = Hρ. Hence, there exists X in πρ(A)′ such that

XΩρ = πρ(σρ−1)Ωρ.

Then, one has for all A ∈ A

(πρ(A)Ωρ, XΩρ) = (πρ(A)Ωρ, πρ(σρ−1)Ωρ)

= (πρ(ρ
−1σA)Ωρ, Ωρ)

= Tr ρρ−1σA
= Tr σA. (6)

In particular, take A = B∗B to obtain

(Xπρ(B)Ωρ, πρ(B)Ωρ) = Tr σB∗B
≥ 0, (7)

with equality if and only if B = 0. This implies that X is a strictly positive operator.
XΩρ is the unique element ofHρ for which Equation (6) holds. Because Ωρ is cyclic for πρ, it is

separating for the commutant. Hence, X is unique as well.

Introduce the notation Bρ for the real Banach space formed by the self-adjoint elements K of
πρ(A)′ satisfying (KΩρ, Ωρ) = 0.

Theorem 2. LetH, A and ρ be as in the previous Theorem. Let πρ,Hρ, Ωρ the GNS-representation induced
by ρ. There is a one-to-one correspondence ξρ between faithful states ω on A and elements of Bρ. It satisfies

ω(A) = e−αρ(K)(πρ(A)e
1
2 KΩρ, e

1
2 KΩρ) for all A ∈ A, (8)
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with K = ξρ(ω) and the function αρ given by

αρ(K) = log(eKΩρ, Ωρ).

Proof. Let ω = ωσ. The previous theorem guarantees the existence of a unique strictly positive
operator X in the commutant πρ(A)′. This operator X can be exponentiated. Let

K = log X− (log XΩρ, Ωρ).

Then, (KΩρ, Ωρ) = 0 holds by construction and (8) is satisfied with αρ(K) = −(log XΩρ, Ωρ)

(remember that (XΩρ, Ωρ) = 1).
Conversely, given K, the r.h.s. of (8) defines a faithful state ω of A.

The map ξρ is a chart which makes the manifold M of all faithful quantum states into a Banach
manifold. The chart ξρ is said to be centered at ρ. It satisfies ξρ(ρ) = 0.

All representations πρ,Hρ, with ρ strictly positive, are unitary equivalent and can be identified.
Therefore, in what follows, the index ρ of πρ is dropped and the Hilbert space in which the
representation π works is denotedHπ .

3. The Tangent Plane at the Center

Let K = ξρ(σ) ∈ Bρ. Introduce the notation

ΨK = e
1
2 (K−α(K))Ωρ.

One has

d
dt

∣∣∣∣
t=0

αρ(tK) =
(KetKΩρ, Ωρ)

(etKΩρ, Ωρ)

∣∣∣∣
t=0

= (KΩρ, Ωρ)

= 0 (9)

and

d
dt

∣∣∣∣
t=0

ΨtK =
d
dt

∣∣∣∣
t=0

e
1
2 (tK−α(tK))Ωρ

=
1
2

KΩρ.

The density matrix σt, defined by

Tr σt A = (π(A)ΨtK, ΨtK), A ∈ A

satisfies

d
dt

∣∣∣∣
t=0

Tr σt A = (π(A)KΩρ, Ωρ).

Hence, the linear functional fρ,K defined by

A ∈ A 7→ fρ,K(A) = (π(A)Ωρ, KΩρ) (10)

is the derivative of the quantum state ωρ in the direction ωσ, where the density matrix σ = σ1 has the
property that ξρ(σ) = K.
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One concludes that the tangent plane TρM at the point ωρ ∈ M consists of all linear hermitian
functionals fρ,K : A 7→ C of the form (10), with K ∈ Bρ. The functional fρ,K belongs to the dual of A.
In addition,

|| fρ,K|| = sup
A∈A

{
fρ,K(A) : ||A|| ≤ 1

}
= sup

A∈A

{
(π(A)KΩρ, Ωρ) : ||A|| ≤ 1

}
= || |K|1/2Ωρ||2
≤ || |K|1/2||2 = ||K||.

Hence, K 7→ fρ,K is a bounded linear operator. This is a prerequisite for proving in the next
Theorem that this map is the Fréchet derivative of the inverse of the chart ξρ. This bounded operator is
denoted Fρ in what follows. One has FρK = fρ,K. The inverse operator F−1

ρ satisfies F−1
ρ fρ,K = K. It is

well-defined. Indeed, fρ,K = fρ,L implies for all B ∈ A

0 = (π(B∗B)(K− L)Ωρ, Ωρ)

= ((K− L)π(B)Ωρ, π(B)Ωρ).

Because Ωρ is a cyclic vector it follows that K = L.

Theorem 3. The inverse of the map ξρ : M 7→ Bρ, defined in Theorem 2, is Fréchet-differentiable at ω = ωρ.
The Fréchet derivative is denoted Fρ. It maps K to fρ,K, where the latter is defined by (10).

Proof. Let K = ξρ(ωσ). One calculates

||ωσ −ωρ − FρK|| = sup
A∈A

{
|ωσ(A)−ωρ(A)− FρK(A)| : ||A|| ≤ 1

}
= sup

A∈A

{
|(π(A)Ωρ, [eK−α(K) − I− K]Ωρ)| : ||A|| ≤ 1

}
≤ ||eK−α(K) − I− K||
≤ |α(K)|+ o(||K− α(K)||). (11)

Note that

|α(K)| ≤ log ||eK|| ≤ ||K||

and

||K− α(K)|| ≤ 2||K||. (12)

In addition, if ||K|| < 1 then one has

αρ(K) ≤ log(1 + ||KΩρ||2) ≤ ||KΩρ||2.

This holds because λ ≤ 1 implies exp(λ) ≤ 1 + λ + λ2. One concludes that (11) converges to 0 faster
than linearly as ||K|| tends to 0. This proves that FρK is the Fréchet derivative of ξρ(ωσ) 7→ ωσ at
σ = ρ.

4. The Atlas

Following the approach of Pistone and collaborators [1,3,4,27], we build an atlas of charts ξρ,
one for each strictly positive density matrix ρ. The compatibility of the different charts requires
the study of the cross-over map ξρ1(σ) 7→ ξρ2(σ), where ρ1, ρ2, σ are arbitrary strictly positive
density matrices.
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Simplify notations by writing ξ1 and ξ2 instead of ξρ1 , respectively ξρ2 . Similarly, write Ω1 and
Ω2 instead of Ωρ1 , respectively Ωρ2 , and F1, F2 instead of Fρ1 , respectively Fρ2 .

Continuity of the cross-over map follows from the continuity of the exponential and logarithmic
functions and from the following result.

Proposition 1. Fix strictly positive density matrices ρ1 and ρ2. There exists a linear operator Y such that for
any strictly positive density matrix σ and corresponding positive operators X1, X2 in the commutant A′ one has
X2 = YX1Y∗.

Proof. Using the notations of the Appendix one has

Xi = Ji(ρ
−1/2
i σρ−1/2

i ⊗ I)J∗i , i = 1, 2.

Note that the isometry J depends on the reference state with density matrix ρ. Therefore it carries an
index i. The above expression for Xi implies that

X2 = YX1Y∗ with Y = J2(ρ
−1/2
2 ρ1/2

1 ⊗ I)J∗1 .

Theorem 4. The set M of faithful states on the algebra A of square matrices, together with the atlas of charts
ξρ, where ξρ is defined by Theorem 1, is a Banach manifold. For any pair of strictly positive density matrices ρ1

and ρ2, the cross-over map ξ2 ◦ ξ−1
1 is continuous.

Proof. The continuity of the map X1 7→ X2 follows from the previous Proposition. The continuity
of the maps K1 7→ X1 and X2 7→ K2 follows from the continuity of the exponential and logarithmic
functions and the continuity of the function α.

5. The Bogoliubov Inner Product

Umegaki’s divergence/relative entropy D(σ, τ) of a pair of strictly positive density matrices σ

and τ is defined by [29–31]

D(σ||τ) = Tr σ(log σ− log τ).

It can be used to define a metric tensor gσ,τ(ρ), as explained below.
In the commutative context, Chentsov proved the uniqueness of the Fisher information matrix

as a metric which is invariant under Markov morphisms. See, for instance, Theorem 2.1 of [32].
In the quantum case, the additional requirement of the existence of a dually-flat geometry is needed
[21]. The notion of quantum relative entropy comes from Quantum Statistical Physics. In Quantum
Information Theory, other quantities are being used as well. Alternatives include the trace distance,
the Bures distance and the related fidelity function. See, for instance, Chapter 6 of [20].

Introduce σs and τt given by

σs =
1

Z(s)
exp (log ρ + s(log σ− log ρ)) , (13)

τt =
1

W(t)
exp (log ρ + t(log τ − log ρ)) ,

with

Z(s) = Tr exp (log ρ + s(log σ− log ρ)) , (14)

W(t) = Tr exp (log ρ + t(log τ − log ρ)) .
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Both σs and τt are well-defined density matrices. The maps s 7→ ωσs and t 7→ ωτt describe two orbits
in M, intersecting at ωρ: σ0 = τ0 = ρ. For further use, note that Z(0) = W(0) = Z(1) = W(1) = 1.

The metric tensor gσ,τ(ρ) is defined by

gσ,τ(ρ) = − ∂

∂s
∂

∂t

∣∣∣∣
s=t=0

D(σs||τt). (15)

With the help of the identity

d
dt

∣∣∣∣
t=0

eH+tA =
∫ 1

0
du euH Ae(1−u)H ,

one obtains

d
dt

∣∣∣∣
t=0

log τt = log τ − log ρ− d
dt

∣∣∣∣
t=0

log W(t)

= log τ − log ρ−
∫ 1

0
du Tr ρu(log τ − log ρ)ρ1−u

= log τ − log ρ + D(ρ||τ),

so that

gσ,τ(ρ) =
∂

∂s
∂

∂t

∣∣∣∣
s=t=0

Tr σs log τt

=
d
ds

∣∣∣∣
s=0

Tr σs [log τ − log ρ + D(ρ||τ)]

=
d
ds

∣∣∣∣
s=0

Tr σs [log τ − log ρ]

=
∫ 1

0
du Tr ρu(log σ− log ρ)ρ1−u [log τ − log ρ)]

−
(

d
ds

∣∣∣∣
s=0

Z(s)
)

Tr ρ [log τ − log ρ]

=
∫ 1

0
du Tr ρu(log σ− log ρ)ρ1−u(log τ − log ρ)

−D(ρ||σ)D(ρ||τ). (16)

This is the inner product of Bogoliubov. Its positivity is shown in the next section. It is
straightforward to check that gσ,τ = gτ,σ.

6. Alternative Charts

The inner product (16) is expressed in terms of density matrices rather than tangent vectors. Let us
therefore calculate the tangent vector of the orbit ωσs defined by (13).

Lemma 1. For each A, self-adjoint element of A such that ωρ(A) = 0, there exists a unique element K of Bρ

such that ∫ 1

0
du π

(
ρu Aρ−u)Ωρ = KΩρ. (17)

Proof. An operator K in the commutant π(A)′ satisfying (17) exists because π(A)′Ωρ = Hπ . It is
unique because Ωρ is separating for π(A)′. It satisfies

(KΩρ, Ωρ) =
∫ 1

0
du (π

(
ρu Aρ−u)Ωρ, Ωρ)
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=
∫ 1

0
du Tr ρ1+u Aρ−u

= ωρ(A)

= 0.

Finally, for any B in A, one has

(K∗Ωρ, π(B)Ωρ) = (π(B∗)Ωρ, KΩρ)

= (π(B∗)Ωρ,
∫ 1

0
du π

(
ρu Aρ−u)Ωρ)

=
∫ 1

0
du (π(ρ−u AρuB∗)Ωρ, Ωρ)

=
∫ 1

0
du Tr ρ1−u AρuB∗

=
∫ 1

0
du Tr ρu Aρ1−uB∗

=
∫ 1

0
du (π(B∗ρu Aρ−u)Ωρ, Ωρ)

= (KΩρ, π(B)Ωρ).

This shows that K = K∗. One concludes that K belongs to Bρ.

Lemma 2. There exists a strictly positive operator Gρ onHπ , which satisfies

Gρ

∫ 1

0
du π

(
ρu Aρ−u)Ωρ = π(A)Ωρ for all A ∈ A.

Proof. First, consider the operator X defined by

Xπ(A)Ωρ =
∫ 1

0
du π

(
ρu Aρ−u)Ωρ.

It is well-defined because π(A)Ωρ = 0 implies A = 0. It is a positive operator. This follows from

(Xπ(A)Ωρ, π(A)Ωρ) =
∫ 1

0
du
(
π
(
ρu Aρ−u)Ωρ, π(A)Ωρ

)
=

∫ 1

0
du Tr ρA∗ρu Aρ−u

=
∫ 1

0
du Tr ρ(1−u)/2 A∗ρu Aρ(1−u)/2

≥ 0.

The latter expression vanishes if and only if ρ(1−u)/2 A∗ρu Aρ(1−u)/2 = 0 for almost all u in [0, 1].
Because ρ is strictly positive, this can happen only if A = 0. This shows that the operator X is invertible.
Take Gρ equal to the inverse of X to obtain the desired result.

Theorem 5. Let H, A and ρ be as in the previous theorems. Let π,Hπ , Ωρ be the GNS-representation of A
induced by ρ. Let Gρ be the positive operator defined by the previous lemma.

i) There exists a map χρ from the faithful states ω on A into the real Banach space Bρ, formed by the
self-adjoint elements K of πρ(A)′ satisfying (KΩρ, Ωρ) = 0, such that for any strictly positive density
matrix σ one has

Gρχρ(ωσ)Ωρ = π(Aρ,σ)Ωρ,
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with Aρ,σ in A given by

Aρ,σ = log σ− log ρ + D(ρ||σ).

ii) The map χρ is injective.
iii) For each strictly positive density matrix σ is

d
ds

∣∣∣∣
s=0

ωσs = fρ,K,

with K = χρ(ωσ), where σs is defined by (13) and fρ,K is defined by (10).

Proof.

i) By the previous lemma, one has π(Aρ,σ)Ωρ = GρXΩρ with X defined by

X =
∫ 1

0
du π

(
ρu Aρ,σρ−u) .

Note that Aρ,σ is self-adjoint and satisfies ωρ(Aρ,σ) = 0. Hence, by Lemma 1, there exists a unique
K in Bρ such that XΩρ = KΩρ. This shows that the map χρ which maps ωσ onto this element K
of Bρ is well-defined.

ii) Assume that χρ(ωσ) = χρ(ωτ). This implies Aρ,σ = Aρ,τ and hence

log σ + D(ρ||σ) = log τ + D(ρ||τ).

The latter implies

σ = τeD(ρ||τ)−D(ρ||σ).

Because Tr σ = Tr τ, it follows that D(ρ||τ) = D(ρ||σ) and hence σ = τ. This shows that the map
χρ is injective.

iii) One has for all B ∈ A

d
ds

∣∣∣∣
s=0

Tr σsB = D(ρ||σ)ωρ(B) +
∫ 1

0
du Tr ρ1−u(log σ− log ρ)ρuB

=
∫ 1

0
du Tr ρ1−u Aρ,σρuB

=
∫ 1

0
du Tr ρ1−uBρu Aρ,σ

=
∫ 1

0
du
(
π
(

Bρu Aρ,σρu)Ωρ, Ωρ

)
=

(
π(B)G−1

ρ π(Aρ,σ)Ωρ, Ωρ

)
=

(
π(B)χρ(ωσ)Ωρ, Ωρ

)
= fρ,K(B),

with K = χρ(ωσ).

7. The Riemannian Metric

Introduce an inner product 〈·, ·〉ρ on TρM defined by

〈 fρ,P, fρ,Q〉ρ = 〈GρPΩρ, QΩρ), (18)
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for any P, Q in Bρ. The matrix Gρ, which is introduced in Lemma 2, is strictly positive. Hence, the
inner product is positive and non-degenerate. It defines a Riemannian geometry on the manifold M.

Theorem 6. Let ρ, σ, τ be strictly positive density matrices. Let χρ be the chart defined in Theorem 5. Let
〈·, ·〉ρ be the inner product defined on the tangent plane TρM by (18). The inner product of Bogoliubov, defined
by (15), satisfies

gσ,τ(ρ) = 〈 fρ,P, fρ,Q〉ρ,

with P = χρ(σ) and Q = χρ(τ).

Proof. From (16) follows

gσ,τ(ρ) =
∫ 1

0
du
(
π
(
ρ−u(log τ − log ρ)ρu(log σ− log ρ)

)
Ωρ, Ωρ

)
−D(ρ||σ)D(ρ||τ)

=
∫ 1

0
du
(
π
(
ρ−u(Aρ,τ − D(ρ||τ))ρu(Aρ,σ − D(ρ||σ))

)
Ωρ, Ωρ

)
−D(ρ||σ)D(ρ||τ).

Use now that

(π(Aρ,σ)Ωρ, Ωρ) =
∫ 1

0
du
(
π(ρ−u Aρ,τρu)Ωρ, Ωρ

)
= 0

to obtain

gσ,τ(ρ) =
∫ 1

0
du
(
π
(
ρ−u(Aρ,τ)ρ

u(Aρ,σ)
)

Ωρ, Ωρ

)
.

This can be written as

gσ,τ(ρ) =
(

π
(

Aρ,σ
)

Ωρ, G−1
ρ π(Aρ,τ)Ωρ

)
=

(
Gρχρ(σ)Ωρ, χρ(τ)Ωρ

)
= 〈 fρ,P, fρ,Q〉ρ.

8. The Mixture Connection

Consider the situation in which the affine combinations of the form

t 7→ ρt = (1− t)ρ0 + tρ1

are the geodesics of the geometry. Introduce the abbreviation ωt = ωρt , with the latter defined by (4).
The derivative

d
dt

ωt = ω1 −ω0

is a tangent vector, which is constant. This implies a vanishing connection.

9. The Exponential Connection

On the other hand, in the case of the exponential connection, the geodesics t 7→ ρt are such that

log ρt = (1− t) log ρ0 + t log ρ1 − ζ(t)
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= log ρ0 + tH − ζ(t), (19)

where ζ(t) is a normalizing function and H is defined by H = log ρ1 − log ρ0. Note that

ωt(H) = Tr ρt H
= Tr ρt [log ρ1 − log ρ0]

= D(ρt||ρ0)− D(ρt||ρ1). (20)

One has

d
dt

ρt =
d
dε

∣∣∣∣
ε=0

exp(log ρt + εH)− dζ

dt
ρt

=
∫ 1

0
du (ρt)

u H(ρt)
1−u − dζ

dt
ρt.

Therefore, the derivative of the quantum state becomes

d
dt

ωt(A) =
∫ 1

0
du Tr (ρt)

u H(ρt)
1−u A

− dζ

dt
ωt(A). (21)

Take A = I to find that

dζ

dt
= ωt(H). (22)

Proposition 2. The function ζ(t) is convex.

Proof. Let A = ρu/2
t Hρ−u/2

t . Then, one has

Tr ρ1−u
t Hρu

t H = Tr ρt A∗A
≥ |Tr ρt A|2
= |ωt(H)|2.

Use this in

d2

dt2 ζ(t) =
d
dt

Tr ρtH

=
∫ 1

0
du
[

Tr ρ1−u
t Hρu

t H − |ωt(H)|2
]

≥ 0. (23)

Because ζ(0) = ζ(1) = 0, it follows that ζ(t) ≤ 0 on 0 < t < 1. From (20) and

d
dt

ωt(H) =
d2

dt2 ζ(t) ≥ 0,

it follows that the expectation ωt(H) increases from ω0(H) = −D(ρ0||ρ1) ≤ 0 to
ω1(H) = D(ρ1||ρ0) ≥ 0.

Proposition 3. dωt/ dt is the derivative of ωt in the direction ω, with ω such that ξt(ω) = χt(ρ1)− χt(ρ0).
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Proof. From the definitions of χρ, Gρ and Aσ,τ , it follows

(π(A)Ωt, χt(ωσ)Ωt) = (π(A)Ωt, G−1
t π(Aσt ,σ)Ωt)

=
∫ 1

0
du
(
π(A)Ωt, π(ρu

t Aσt ,σρ−u
t )Ωt

)
=

∫ 1

0
du
(
π(ρ−u

t Aσt ,σρu
t A)Ωt, Ωt

)
= D(ρt||σ)ρt(A)

+
∫ 1

0
du
(
π(A)Ωt, π

(
ρu

t (log σ− log ρt)ρ
−u
t
)

Ωt
)

.

Use this for σ = ρ1 and for σ = ρ0 and subtract. This gives

(π(A)Ωt, [χt(ρ1)− χt(ρ0)]Ωt) = [D(ρt||ρ1)− D(ρt||ρ0)] ρt(A)

+
∫ 1

0
du
(
π(A)Ωt, π

(
ρu

t (log ρ1 − log ρ0)ρ
−u
t
)

Ωt
)

= −ωt(H)ρt(A)

+
∫ 1

0
du
(
π(A)Ωt, π

(
ρu

t Hρ−u
t
)

Ωt
)

= −ωt(H)ρt(A)

+
∫ 1

0
du Tr ρ1−u

t Hρu
t A

=
d
dt

ωt(A)

= ft,K,

with K = χt(ρ1)− χt(ρ0).

The following result shows that χρ(ω) is an affine coordinate in the case of the
exponential connection.

Proposition 4. Let us be given a strictly positive density matrix ρ and a geodesic t 7→ ρt of the form (19). Then,

χρ(ωt) = (1− t)χρ(ω0) + tχρ(ω1). (24)

Proof. From (iii) of Theorem 5, it follows that for all A ∈ A

(π(A)Ωρ, χρ(ωt)Ωρ) =
d
ds

∣∣∣∣
s=0

Tr σs A,

with σ = ρt. The latter implies

σs =
1

Zt(s)
exp (log ρ + s(log ρt − log ρ)) ,

where

Zt(s) = Tr exp (log ρ + s(log ρt − log ρ)) .

Use (19) to obtain

σs =
1

Zt(s)
exp ((1− s) log ρ + s((1− t) log ρ0 + t log ρ1 − ζ(t))) .

There follows

(π(A)Ωρ, χρ(ωt)Ωρ) =
∫ 1

0
du Tr ρu [− log ρ + (1− t) log ρ0 + t log ρ1 − ζ(t)] ρ1−u A
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− d
ds

∣∣∣∣
s=0

Zt(s)ωρ(A)

= (1− t)
∫ 1

0
du Tr ρu [− log ρ + log ρ0 − ζ(t)] ρ1−u A

+t
∫ 1

0
du Tr ρu [− log ρ + log ρ1 − ζ(t)] ρ1−u A

− d
ds

∣∣∣∣
s=0

Zt(s)ωρ(A)

= (1− t)(π(A)Ωρ, χρ(ω0)Ωρ) + t(π(A)Ωρ, χρ(ω1)Ωρ)
d
ds

∣∣∣∣
s=0

Z0(s)ωρ(A) +
d
ds

∣∣∣∣
s=0

Z1(s)ωρ(A)

− d
ds

∣∣∣∣
s=0

Zt(s)ωρ(A)

=
(
π(A)Ωρ, [(1− t)χρ(ω0) + tχρ(ω1)]Ωρ

)
.

Because A ∈ A is arbitrary and Ωρ is cyclic and separating one concludes that Equation (24) holds.

10. Modular Automorphisms

The quantum manifold M carries an additional structure, which is induced by the modular
automorphism groups, one for each ρ ∈ M. In the commutative case, the automorphisms
become trivial.

The Tomita–Takesaki theory [33] associates with each state ωρ in M a self-adjoint operator ∆ρ on
Hπ , which is called the modular operator. The one-parameter group of unitary operators ∆it

ρ defines a
group of inner automorphisms of the algebra A. Indeed, for any A in A, the operator ∆it

ρ π(A)∆−it
ρ

belongs again to π(A). In particular, it induces a group of transformations of the manifold M by
mapping any state ωσ onto the state ωσ,t defined by

ωσ,t(A) =
(

∆it
ρ π(A)∆−it

ρ Ωσ, Ωσ

)
.

This group of transformations has ωρ as a fixpoint because ∆Ωρ = Ωρ.
A useful property of the group of modular automorphims is the so-called KMS condition,

named after Kubo, Martin and Schwinger. Given two elements A and B of A, the function F(t),
defined by

F(t) =
(

π(A)∆it
ρ π(B)Ωρ, Ωρ

)
,

has an analytic continuation in the complex plane such that

F(t + i) =
(

π(B)∆it
ρ π(A)Ωρ, Ωρ

)
.

This property captures the essence of cyclic permutation under the trace and is helpful in the more
general context when manipulating non-commuting pairs of operators.

11. Discussion

This paper reviews known and less known results of quantum information geometry. The Hilbert
space is assumed to be finite-dimensional to avoid the technicalities coming with unbounded operators.
They give rise to domain problems and require a specific choice of operator norm—see [23,28].

The present point of view differs from the usual one, which starts from the Hilbert space generated
by the density matrices. Instead, the GNS-representation is used because it is more suited for later
generalizations. The main goal of the present work is precisely to present those results for which one
would like to find generalizations in the infinitely-dimensional case.
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The manifold M of faithful quantum states can be parameterized in many ways. It is tradition to
label each quantum state ω by a corresponding density matrix ρ. Here, the parameter-free approach of
Pistone and coworkers [1,3,4,27] is followed. In particular, with each element ωρ of M is associated
a chart centered at ωρ. Two atlases are introduced. The atlas with the charts ξρ, introduced in
Section 4, is technically less complicated. It turns M into a Banach manifold. However, it is not linked
in a straightforward manner with the Riemannian metric induced by Bogoliubov’s inner product.
Therefore, another set of charts, denoted χρ, is introduced in Section 6. A link between the charts ξρ

and χρ is found in Proposition 3.
The dually affine connections are shortly mentioned in Sections 8 and 9. In the case of the

exponential connection, the charts χρ provide affine coordinates.

Conflicts of Interest: The author declares no conflict of interest.

Appendix. The GNS-Representation of a Matrix Algebra

This appendix is added for convenience of the reader. Its content is well-known.
Choose an orthonormal basis of eigenvectors ψn, n = 1, 2, · · · , N, of the strictly positive density

matrix ρ. It can be written as

ρ =
N

∑
n=1

pnEn where En is the orthogonal projection onto Cψn.

Introduce now the vector Ωρ inH⊗H defined by

Ωρ =
N

∑
n=1

√
pnψn ⊗ ψn.

It satisfies ||Ωρ||2 = ∑N
n=1 pn = 1. A short calculation shows that

Tr ρA = ((A⊗ I)Ωρ, Ωρ) for all A ∈ A.

By assumption, all eigenvalues pn are strictly positive. Therefore, ||AΩρ|| = 0 implies A = 0.
This shows that Ωρ is separating. Let En,m be the orthogonal matrix which maps ψm onto ψn. It belongs
to A and satisfies

En,mΩρ =
√

pmψn ⊗ ψm.

This shows that AΩρ equals all of H⊗H. Hence, Ωρ is a cyclic vector for A⊗ I. Because the
GNS-representation is unique up to unitary equivalence, one concludes that A 7→ A⊗ I, together with
the Hilbert spaceH⊗H and the vector Ωρ is equivalent.

Note that the commutant of A⊗ I equals I⊗A.
Introduce now an anti-linear operator J defined by

J(A⊗ I)Ωρ = (I⊗ A′)Ωρ

with A′ given by

A′ψn = ∑
m
(A∗ψm, ψn)ψm.

From ||A′ψn|| = ||Aψn||, it then follows that J is an isometry. A short calculation shows that for all
A, B

(J(A⊗ I)Ωρ, J(B⊗ I)Ωρ) = ((B⊗ I)Ωρ, (A⊗ I)Ωρ).
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Next, define an anti-linear operator S by S(A ⊗ I)Ωρ = (A∗ ⊗ I)Ωρ. This is the modular
conjugation operator. One verifies immediately that the conjugate F of S satisfies F(I⊗ A)Ωρ =

(I⊗ A∗)Ωρ for all A.
The modular operator ∆ by definition equals S∗S = FF∗. Let us verify that ∆ = ρ⊗ ρ−1. It suffices

to show that ρ−1/2 ⊗ ρ1/2 J = S. One calculates

(ρ−1/2 ⊗ ρ1/2)J(A⊗ I)Ωρ = (ρ−1/2 ⊗ ρ1/2)(I⊗ A′)Ωρ

= ∑
n

√
pn(ρ

−1/2 ⊗ ρ1/2)ψn ⊗ A′ψn

= ∑
n

ψn ⊗ ρ1/2 A′ψn

= ∑
m,n

(A∗ψm, ψn)ψn ⊗ ρ1/2ψm

= ∑
m,n

√
pm(A∗ψm, ψn)ψn ⊗ ψm

= ∑
m

√
pm A∗ψm ⊗ ψm

= (A∗ ⊗ I)Ωρ

= S(A⊗ I)Ωρ.

From (ρA)′ = ρA′, it follows that J(ρ⊗ I) = (I⊗ ρ)J and hence

S = (ρ−1/2 ⊗ ρ1/2)J = J(ρ1/2 ⊗ ρ−1/2).

This implies that ∆ = ρ⊗ ρ−1.
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