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Abstract: We review an argument that bipartite “PR-box” correlations, though designed to respect
relativistic causality, in fact violate relativistic causality in the classical limit. As a test of this argument,
we consider Greenberger–Horne–Zeilinger (GHZ) correlations as a tripartite version of PR-box
correlations, and ask whether the argument extends to GHZ correlations. If it does—i.e., if it shows
that GHZ correlations violate relativistic causality in the classical limit—then the argument must
be incorrect (since GHZ correlations do respect relativistic causality in the classical limit.) However,
we find that the argument does not extend to GHZ correlations. We also show that both PR-box
correlations and GHZ correlations can be retrocausal, but the retrocausality of PR-box correlations
leads to self-contradictory causal loops, while the retrocausality of GHZ correlations does not.
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Quantum mechanics might make more sense to us if we could derive it from simple axioms
with clear physical content, instead of opaque axioms about Hilbert space. Aharonov [1,2] and,
independently, Shimony [3,4] conjectured that quantum mechanics might follow from the two
axioms of nonlocality and relativistic causality (no superluminal signalling). For example, quantum
correlations respect relativistic causality, but they are nonlocal: they violate the Bell-CHSH [5–7]
inequality. Could quantum mechanics be unique in reconciling these axioms, just as the special theory
of relativity is unique in reconciling the axioms of relativistic causality and the equivalence of inertial
frames? So-called “PR-box” [8] correlations disprove this conjecture. Like quantum correlations, they
respect relativistic causality; but unlike quantum correlations, they violate the Bell-CHSH inequality
maximally. Nevertheless, Ref. [9] argues that the addition of one minimal axiom of clear physical
content—namely, the existence of a classical limit—suffices for ruling out PR-box correlations.

The additional axiom is minimal in the following sense: Quantum mechanics has a classical limit
in which there are no uncertainty relations; there are only jointly measurable macroscopic observables.
This classical limit—our direct experience—is an inherent constraint, a boundary condition, on
quantum mechanics and on any generalization of quantum mechanics. Thus PR-box correlations, too,
must have a classical limit. Reference [9] argues that in this classical limit, PR-box correlations (and, by
extension [10,11], all stronger-than-quantum bipartite correlations) allow observers “Alice” and “Bob”
to exchange superluminal signals. (A similar statement appears in Ref. [12] with “macroscopic locality”
taking the place of “classical limit”. Yet Ref. [12] assumes that Alice and Bob can detect fluctuations
of order

√
N in their measurements, an assumption we do not make.) The argument [9,10] relies on

measurement sequences that are observable but exponentially improbable. It is therefore of interest
to test the argument by applying it to a different problem. In particular, GHZ correlations [13] are
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a tripartite version of PR-box correlations in the sense of being all-or-nothing correlations (perfect
correlations and anticorrelations). Could Alice, Bob and an additional observer, “Jim”, use GHZ
correlations, in the classical limit, to exchange superluminal signals? Does the argument of Ref. [9] lead
to this conclusion? If so, it is clearly an incorrect argument: quantum mechanics and its classical limit
do not violate relativistic causality! The first section of this paper reviews the arguments of Ref. [9] and
attempts to extend them to show how Alice, Bob and Jim could exchange superluminal signals in the
classical limit; but this attempt fails. The second section compares PR-box and GHZ correlations to
show how retrocausality is self-contradictory in the first case but not in the second.

1. GHZ and PR-Box Correlations in the Classical Limit

Let Alice and Bob make spacelike separated measurements on pairs of particles. For each
pair (indexed by i), one member of the pair is in Alice’s laboratory, and she can choose to measure
observables ai or a′i (but not both) on it; the other member is in Bob’s laboratory, and Bob can choose to
measure observables bi or b′i (but not both) on it. All four observables ai, a′i, bi and b′i take values ±1
with equal probability. The definition of PR-box correlations,

C(ai, bi) = C(ai, b′i) = C(a′i, bi) = 1 = −C(a′i, b′i) , (1)

implies that Alice can manipulate the correlations between the observables bi, b′i of Bob’s particle by
choosing whether to measure ai or a′i: indeed, bi and b′i are perfectly correlated if she measures ai
(as both of them are perfectly correlated with her outcome), and perfectly anticorrelated if she measured
a′i (as bi is correlated with her outcome and b′i is anticorrelated with it). Thus, even though Alice’s
choice of measurement does not affect Bob’s distribution of either bi or b′i , it does affect correlations
between these two observables. So can Alice exploit these correlations to signal to Bob? No, she cannot,
since, by assumption, bi and b′i are incompatible and Bob cannot measure both. But, notably, this
assumption cannot apply in the classical limit.

Following Ref. [9], we define the classical limit of PR-box correlations as follows: Macroscopic
(classical) quantities are averages over arbitrarily large ensembles of microscopic observables. To see
how this definition applies, let us consider an ensemble of N pairs shared by Alice and Bob and
obeying Equation (1). Apparently, the N pairs are just as useless for signalling as one pair, since, for
each pair, Bob is allowed to measure only bi or b′i . But the classical limit as defined means that given a
large enough ensemble, Bob can measure quantities which depend upon macroscopic averages such
as B = ∑N

i=1 bi/N and B′ = ∑N
i=1 b′i/N, obtaining some information about both of them. There is no

fundamental limit on how many times Alice and Bob can repeat their measurements, hence no matter
how large they choose N (so as to minimize the variances in B and B′), there is no limit to the strength
of the (anti-)correlations that they may observe.

Now let us imagine two possible scenarios. In one scenario, Alice measures ai consistently on all
her N particles. In the other scenario, she measures a′i consistently on all her N particles. What does
Bob obtain from his measurements? The average value of B is 〈B〉 = 0. Even typical deviations of B
are small, i.e., of order 1/

√
N, so they disappear in the classical limit. Apparently the scenarios lead

to the exact same conclusion: Bob cannot read Alice’s 1-bit message, encoded in her choice of what
to measure.

Yet it will sometimes happen (with probability 2−N) that B will take the value 1. If Alice and Bob
repeat either scenario exponentially many times, they can produce arbitrarily many cases of B = 1.
True, there will be measurement errors in Bob’s results, but in the classical limit Bob must obtain at
least some information about both B and B′. Now if Alice consistently measures ai, Bob can expect to
obtain B = 1 with probability close to 2−N . And he can also expect to obtain B = 1 = B′ with the
same probability, and not with probability 2−2N , because Alice’s choice has correlated 〈B〉 with 〈B′〉.
Conversely, if Alice consistently measures a′j, then Bob can expect to obtain B = 1 with probability

close to 2−N , and he can also expect to obtain B = 1 = −B′ with the same probability, and not with
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probability 2−2N , because Alice’s choice has anticorrelated 〈B〉 with 〈B′〉. Another way for Bob to
get Alice’s message is to observe the variance in his measurements of B± B′: if Alice measures ai
consistently, the distribution of B + B′ (over repeated trials with N pairs at a time) is binomial, while
the distribution of B− B′ has zero variance, and vice versa in the other scenario. Thus Alice can send
Bob a (superluminal) message in the classical limit.

It does not matter that the price of a one-bit message from Alice to Bob may be astronomical.
As long as it is possible, at any price, it constitutes a violation of relativistic causality, which we cannot
allow. Hence PR-box correlations violate relativistic causality in the classical limit, as claimed. (Note
that we cannot obtain the classical limit N → ∞ by setting N = ∞. Rather, we take N finite but
arbitrarily large, and for any N, there is no fundamental bound on the number of times Alice and Bob
can repeat their measurements in order to obtain the accuracy they need for B and B′, etc.)

Before proceeding to tripartite (GHZ) correlations, let us stop to consider bipartite quantum
correlations. Does the above argument imply that they, too, allow signalling in the classical limit?
If so, it cannot be correct. Most similar to PR-box correlations are quantum correlations that saturate
Tsirelson’s bound [14] for the Bell-CHSH inequalities. Without loss of generality, we can consider
entangled pairs of spin-1/2 particles in the state [| ↑〉A| ↑〉B + | ↓〉A| ↓〉B] /

√
2. In this state, Alice and

Bob always obtain perfect correlations if they measure spin along the same axes in the xz plane.
Quantum correlations saturate Tsirelson’s bound when a = σA

z , a′ = σA
x , b = (σB

z + σB
x )/
√

2 and
b′ = (σB

z − σB
x )/
√

2, where each of the four observables takes the values ±1. (We suppress the index i.)
Their correlations are

C(a, b) = C(a, b′) = C(a′, b) =
√

2
2

= −C(a′, b′) . (2)

If Alice measures a, then b and b′ are correlated with her results. If she measures a′, then b is
correlated with her results and b′ is anticorrelated. Can Bob thus detect what Alice measures? As in
the discussion of PR-box correlations, we can compute and compare the variances of (b + b′)/

√
2 vs.

(b− b′)/
√

2. But, by definition, these observables correspond to σB
z and σB

x , respectively, i.e., to a and
a′ on Bob’s particle in the pair, which is left in the same state as Alice’s. Now if Alice measures a
consistently on her particles and Bob measures (b + b′)/

√
2, the variance in Bob’s results is maximal

just because the variance in Alice’s results is maximal. (That is, she has equal probability to obtain
±1). Conversely, if Alice measures a consistently on her particles and Bob measures (b− b′)/

√
2, the

variance in Bob’s results is maximal simply because a measurement of σB
x after Alice measures a is

equally likely to be ±1, whatever Alice obtains. We thus find that the correlations in Equation (2) are
not strong enough to induce any difference between the variances of the observables B + B′ and B− B′.
Indeed, they are the strongest correlations that do not induce such a difference and therefore do not
permit signalling in the classical limit [10,11].

Reference [9] claims that correlations that are too strong violate relativistic causality in the classical
limit, and that PR-box correlations are too strong because they provide absolute “all or nothing”
correlations. But quantum mechanics, as well, provides “all or nothing” correlations. Consider a
triplet of spin-half particles in a GHZ state |ΨGHZ〉 =

[
| ↑〉A| ↑〉B| ↑〉J − | ↓〉A| ↓〉B| ↓〉J

]
/
√

2 shared
by Alice, Bob and Jim in their respective laboratories. Suppose that these observers measure either
σx or σy on their respective particles. Let ax denote Alice’s outcome from a measurement of σA

x (the
x component of the spin of her particle) and let ay denote Alice’s outcome from a measurement of
σA

y (the y component of the spin), with analogous notations for Bob and Jim. The state |ΨGHZ〉 is an
eigenstate of the following four operators, satisfying

|ΨGHZ〉 = σA
y σB

x σJ
y |ΨGHZ〉

= σA
y σB

y σJ
x|ΨGHZ〉

= σA
x σB

y σJ
y |ΨGHZ〉

= −σA
x σB

x σJ
x|ΨGHZ〉 .

(3)
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The implication is that if all three observers measure σx on their particles, they will discover
that axbx jx = −1. Similarly, if the appropriate measurements are carried out, they will discover that
axby jy = 1 = aybx jy = ayby jx as in Equation (3). In their famous paper [13], Greenberger, Horne
and Zeilinger (GHZ) used these facts to show that there is no way to assign simultaneous values
consistently to all six variables ax, ay, bx, by, jx and jy. This fact rules out any local hidden variable
model for the GHZ state.

Can Alice, Bob and Jim use GHZ states to signal? For definiteness, let us assume that Jim tries to
send a signal to Alice and Bob via his choice of what to measure, σJ

x or σJ
y . Before going to the classical

limit, let’s ask whether Jim can send Alice and Bob a signal using just a few triplets. Note that if Jim
measures σJ

x and gets jx = −1, then ax and bx must be correlated; we write axbx = 1. In the same
notation, ayby = −1. In fact, if Jim measures σJ

x, we find axbx = −ayby whatever he gets. On the other
hand, if Jim measures σJ

y , we obtain the analogous equation axby = aybx, whatever he gets, and no
correlation between ax and bx or ay and by. Are these correlations of any use? Alice and Bob cannot
measure all their observables ax, ay, bx, by to infer Jim’s choice.

But the commutation relations

[ σA
x σB

x , σA
y σB

y ] = 0 = [ σA
x σB

y , σA
y σB

x ] , (4)

imply that Alice and Bob can obtain axbx and ayby to see if they are anticorrelated or, alternatively, can
obtain axby and aybx to see if they are correlated! In the first case, Jim must have measured σJ

x and in
the second case, he must have measured σJ

y . Right?
Wrong. This scheme fails. To see why, we first note that if Alice and Bob measure both σA

x σB
x and

σA
y σB

y , they will certainly find that axbx = −ayby simply because the product of operators σA
x σB

x σA
y σB

y
equals −σA

z σB
z , which yields −1 when applied to |ΨGHZ〉. Likewise, if Alice and Bob measure both

σA
x σB

y and σA
y σB

x , they will verify that axby = aybx, simply because the product of operators σA
x σB

y σA
y σB

x
equals σA

z σB
z , which yields 1 when applied to |ΨGHZ〉. In fact, Alice and Bob can learn nothing about

Jim’s choice from their measurements.
We are back to square one. So let us try to apply the classical-limit argument of Ref. [9]. By analogy

with Ref. [9], let Alice, Bob and Jim make collective measurements on ensembles of N triplets at a time,
with Jim measuring either σJ

x or σJ
y consistently on his particles. For large enough N, we can define

a collective variable Jx = ∑ jx/N, if Jim chooses to measure σJ
x, or alternatively Jy = ∑ jy/N, if he

chooses to measure σJ
y , where the jx and jy represent Jim’s particles in any given ensemble. (As before,

we suppress the index i.) We can then define also the collective variables Ax = ∑ ax/N, Ay = ∑ ay/N,
Bx = ∑ bx/N and By = ∑ by/N. In some (rare) cases, one or more of these collective variables may
even reach ±1. Above we noted that, for a given triplet of particles, Alice and Bob cannot measure all
their observables ax, ay, bx and by to infer Jim’s choice. But, according to the classical-limit argument,
there cannot be such complementary between Ax and Ay, or between Bx and By. Alice and Bob must
have access to at least some information about all these variables. True, their expectation values all
vanish, but if Alice, Bob and Jim repeat their measurements exponentially many times, they will
find fluctuations as large as ±1. Since Equation (3) involves products, we cannot directly sum over
it to get a relation between Ax or Ay and Bx, By, Jx and Jy. Even so, suppose Jim measures σJ

x and
obtains jx = −1 for every particle in his ensemble. Then for each of the other two particles in the
triplet, ax and bx are correlated and ay and by are anticorrelated. But Alice and Bob will not be able to
detect this correlation unless another “miracle” occurs, in addition to the “miracle” that happened in
Jim’s laboratory. For example, suppose that Ax = 1. It follows from Equation (3) that Bx = 1 (up to
fluctuations due to measurement errors). Then Alice and Bob could compare their results for Ax and
Bx to uncover a striking correlation between them and conclude that Jim had measured Jx and not Jy.

But this conclusion can be valid only if the statistics support it. In this scenario, we have assumed
rare fluctuations: Jx = −1 and Ax = 1. Since the two fluctuations are independent, their combined
probability is the product of their individual probabilities, namely 2−N × 2−N = 2−2N . For this rare
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scenario, we don’t need to assume also that Bx = 1; Equation (3) requires it. Thus, with probability
2−2N , Alice and Bob will obtain Ax = 1 = Bx. Does this result imply that Jim consistently measured σJ

x
on his particles? How likely is it that Alice and Bob would have obtained Ax = 1 and Bx = 1 if Jim
had chosen to measure σJ

y on all his particles, making ax and bx uncorrelated? The probability would
have been 2−2N , exactly the same. So, once again, Alice and Bob have no way of reading Jim’s one-bit
message (his choice of what to measure). Likewise, Alice and Bob can try to signal to Jim by, say,
measuring σA

x = σB
x . If they get Ax = 1 = Bx, Jim will certainly obtain Jx = −1. But the probability

that Jim will obtain Jx = −1 by chance is 2−N , at least as large as the probability 2−2N that Alice and
Bob will obtain Ax = 1 = Bx or even the probability 2−N that Alice and Bob will obtain σA

x σB
x = 1 for

all the N pairs in their ensemble.
The statistics don’t work out in the case of GHZ triplets as they do in the case of PR-box pairs.

We therefore conclude that despite the similarity between Equations (1) and (3), GHZ correlations do
not allow Jim to signal to Alice and Bob by choosing which observable to measure (at least via the
above attempts), even if we assume a classical limit in which they can measure the ensemble averages
of incompatible observables. The argument of Ref. [9] passes the test we prepared for it.

2. Retrocausality in PR-Box and GHZ Correlations

Instantaneous signalling directly violates relativity theory, opening the door to causal loops and
contradictions. In particular, consider the classical limit of a PR-box ensemble, with Alice sending one
bit of information iA ∈ {0, 1} to distant Bob. In an “unprimed” reference frame, Bob receives Alice’s
message instantaneously (at time tB = tA); but in an appropriate “primed” reference frame, Alice’s
bit could be a message into the past, e.g., Bob receives her bit (at time t′B) before she sends it (at time
t′A > t′B). Applying the principle of relativity, we infer that in the primed reference frame, Bob could
send a bit iB ∈ {0, 1} at time t′B that Alice would receive instantaneously (at time t′B) before sending
iA. Then if Alice’s device is set to echo whatever message she receives from Bob (so that iA = iB), and
Bob’s device is set to yield the inverse of the message he receives from Alice (so that iB = 1− iA),
together they create a self-contradictory causal loop, as in Figure 1.

From this example it may seem obvious that PR-box correlations and GHZ correlations are
distinguished, in that PR-box correlations in the classical limit can be retrocausal, and create
self-contradictory causal loops, whereas GHZ correlations cannot be retrocausal. It is therefore of
interest to note that this distinction is not valid. GHZ correlations can be understood as retrocausal,
as well! Yet the predictions implied by Equation (3) do not create causal loops. How can quantum
correlations affect distant or past events without creating causal loops?

 

 

Alice Bob 

tA=tB 

t'B 

t'A 

Figure 1. The horizontal dotted line represents an equal-time surface in the unprimed frame, while the
tilted dotted lines represent two equal-time surfaces in the primed frame. The arrows, each representing
a cause and an effect, form a closed causal loop.
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Reference [15] imagines an action called “jamming” in which Jim “the Jammer” can, by pushing a
button on a device he holds, decide at any moment whether to turn an ensemble of entangled pairs of
particles shared by Alice and Bob into a product state. Although jamming is action at a distance, it is
consistent with relativistic causality if two conditions are met. The first condition, the unary condition,
states that Alice and Bob cannot infer Jim’s decision from the results of their separate measurements.
For example, if—regardless of Jim’s decision—Alice measures either a or a′, and obtains results ±1
with equal probability, and likewise Bob measures either b or b′, and obtains results ±1 with equal
probability, then the unary condition is fulfilled. The binary condition states that if â is the spacetime
event of Alice’s measurements on her ensemble, b̂ is the spacetime event of Bob’s measurements on his
ensemble, and ĵ is the spacetime of event of Jim pushing the button on his device, then the overlap
of the forward light cones of â and b̂ lies entirely within the forward light cone of ĵ. (See Figure 2).
As shown in Ref. [15], if jamming obeys the unary and binary conditions, then it is consistent with
relativistic causality even though â and b̂ may be earlier in time than ĵ. While jamming is natural in the
context of quantum information theory, in Ref. [15] it provides an example of how a nonlocal equation
of motion can be consistent with the no-signalling constraint.

a 
b j 

b 
j â 

 

(a) (b) 

â 

Figure 2. The overlap of the future light cones of â and b̂ either (a) lies or (b) does not lie entirely within
the future light cone of ĵ.

We return now to the GHZ correlations of Equation (3) and show that they permit jamming [16].
Suppose Alice, Bob and Jim share an ensemble of particle triplets in the GHZ state. If Jim consistently
measures σJ

z , he disentangles Alice’s particles from Bob’s, regardless of the outcomes he gets. If he
measures σJ

x, Alice’s particles remain entangled with Bob’s particles, and their spins are correlated.
For example, σA

x and σB
x are perfectly correlated or perfectly anticorrelated, depending on Jim’s

outcome. If the information regarding Jim’s outcomes is delivered to Alice and Bob, they can bin their
σx measurements in two ensembles corresponding to Jim’s outcomes ±1. They will find that their
results, within each ensemble, are perfectly (anti-)correlated in the case that Jim had chosen to measure
σJ

x, or uncorrelated in case he had measured σJ
z .

This realization of jamming satisfies the unary condition because, regardless of Jim’s decision,
Alice’s measurements of σA

x average to zero, and likewise for Bob’s measurements of σB
x . It fulfills the

binary condition because Jim must report to Alice and Bob the results of his measurements of σJ
z or σJ

x
for them to determine, from the results of their measurements, whether their pairs were entangled or
not. Now, Alice and Bob can make their determination only in the overlap of the future light cones of â
and b̂, which must lie in the future light cone of ĵ for them to receive Jim’s input. Thus jamming via
GHZ triplets is consistent with relativistic causality. Nevertheless, Jim’s decision, whether to leave the
pairs shared by Alice and Bob in entangled or product states, can take place even later than â and b̂,
and even at a timelike separation from both measurements â and b̂. (See Figure 3). Even then, it is only
in the forward light cone of ĵ that Alice and Bob can combine their data and determine whether Jim
jammed their measurements.
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(a) (b) 

â 

â 

x 

t 

x 

t 

Figure 3. Configurations in which Jim can (a) causally and (b) retrocausally put pairs of particles
shared by Alice and Bob in product or entangled states, as he chooses. The dashed arrows connect
cause with effect.

So what makes PR-box correlations different from GHZ correlations, such that the former violate
relativistic causality (in the classical limit) while the latter do not? We might have replied, “PR-box
correlations are retrocausal whereas GHZ correlations are not”. But we have just seen that this
distinction fails. So let us return to our comparison, in the first section, of PR-box correlations and
bipartite quantum correlations. We noted that even quantum correlations that violate the Bell-CHSH
inequality maximally are not strong enough to permit signalling. Are GHZ correlations, which like
PR-box correlations can be 0 or 1, strong enough? No! They are indeed stronger, but their strength
dissipates over the two stages Alice and Bob require in attempting to receive Jim’s signal. Relativistic
causality in the classical limit is a subtle, but effective, constraint on quantum mechanics.

We introduced this work by stating that three axioms with clear physical meaning, namely
nonlocality, relativistic causality, and the existence of a classical limit, might be sufficient for deriving
quantum mechanics, or at least an important part of the theory. We can consider reducing these three
axioms to two simply by eliminating nonlocality as an axiom. Indeed, axioms in physical theories are,
in general, constraints. The constraint of locality could be an axiom, but absence of this constraint
need not be an axiom. And it seems from our work that quantum mechanics is just as nonlocal as it
can be without violating relativistic causality. The retrocausality we have seen in jamming via GHZ
correlations suggests that also retrocausality, like nonlocality, can appear wherever it is not forbidden
by relativistic causality.
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