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Abstract: Data transformation, e.g., feature transformation and selection, is an integral part of
any machine learning procedure. In this paper, we introduce an information-theoretic model and
tools to assess the quality of data transformations in machine learning tasks. In an unsupervised
fashion, we analyze the transformation of a discrete, multivariate source of information X into a
discrete, multivariate sink of information Y related by a distribution PXY. The first contribution is a
decomposition of the maximal potential entropy of (X, Y), which we call a balance equation, into
its (a) non-transferable, (b) transferable, but not transferred, and (c) transferred parts. Such balance
equations can be represented in (de Finetti) entropy diagrams, our second set of contributions. The
most important of these, the aggregate channel multivariate entropy triangle, is a visual exploratory
tool to assess the effectiveness of multivariate data transformations in transferring information from
input to output variables. We also show how these decomposition and balance equations also apply
to the entropies of X and Y, respectively, and generate entropy triangles for them. As an example, we
present the application of these tools to the assessment of information transfer efficiency for Principal
Component Analysis and Independent Component Analysis as unsupervised feature transformation
and selection procedures in supervised classification tasks.

Keywords: entropy, entropy visualization; entropy balance equation; Shannon-type relations;
multivariate analysis; machine learning evaluation; data transformation

1. Introduction

Information-related considerations are often cursorily invoked in many machine learning
applications, sometimes to suggest why a system or procedure is seemingly better than another
at a particular task. In this paper, we set out to ground our work on measurable evidence phrases such
as “this transformation retains more information from the data” or “this learning method uses the
information from the data better than this other”.

This has become particularly relevant with the increase of complexity of machine learning
methods, such as deep neuronal architectures [1], which prevents straightforward interpretations.
Nowadays, these learning schemes almost always become black-boxes, where the researchers try to
optimize a prescribed performance metric without looking inside. However, there is a need to assess
what the deep layers are actually accomplishing. Although some answers have started to appear [2,3],
the issue is by no means settled.

In this paper, we put forward that framing the previous problem in a generic
information-theoretical model can shed light on it by exploiting the versatility of information theory.
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For instance, a classical end-to-end example of an information-based model evaluation can be observed
in Figure 1a. In this supervised scheme introduced in [4], the evaluation of the performance of the
classifier involves only the comparison of the true labels K vs. the predicted labels K̂. This means that
all the complexity enclosed in the classifier box cannot be accessed, measured or interpreted.
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(b) The end-to-end view for evaluation: a “classifier chain” is trained
to predict labels K̂ from the true emitted labels K.
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(c) Focusing on the tranformation block implementing Y = f (X). X
becomes the data source and Y the sink.

Figure 1. Different views on a supervised classification task as an information channel: (a) as
individualized blocks; (b) for end-to-end evaluation; and (c) focused on the transformation.

• Finally, the Y are the inputs to an actual classifier of choice that obtains the predicted labels K̂.30

Conventionally, the process of generalizing the performance of the classifier for eventual new data31

requires a series of good-practices in the use of the available data to train and then evaluate it [2,3]. In32

this supervised scheme, the evaluation of the performance of the classifier involves the comparison of33

the true labels K vs. the predicted labels K̂, as the abstracted diagram in Fig. 1.(b) shows.34

We argued in [4] for doing this evaluation with the relatively new framework of entropy
balance equations and their related entropy triangles [1,4,5]. The gist of this framework is that we
can information-theoretically assess the classifier that carried out the prediction and obtained the
confusion matrix PKK̂ by analyzing the entropies and informations in the related distribution PKK̂ into
the following balance equation [5],

HUK ·UK̂
= ∆HPK ·PK̂

+ 2 ∗MIPKK̂
+ VIPKK̂

(1)

0 ≤ ∆HPK ·PK̂
, MIPKK̂

, VIPKK̂
≤ HUK ·UK̂

where UK and UK̂ are the uniform distributions on the supports of PK and PK̂, respectively, and the35

information theoretic quantities are:36

a) the divergence with respect to uniformity, ∆HPK ·PK̂
, between the joint distribution where PK and PK̂37

are independent and the uniform distributions with the same cardinality of events as PK and PK̂ ,38

b) the mutual information, MIPKK̂
[6,7], quantifying the strength of the stochastic binding between PK39

and PK̂ , and40

c) the variation of information, VIPKK̂
[8], that embodies the residual entropy not used in binding the41

variables.42

The heuristic criterion for assessment is that good classifiers maximize the (transferred) mutual information43

between K and K̃. Furthermore, this assessment can be carried out visually with a ternary plot diagram44

called the Channel Bivariate Entropy Triangle (CBET) as in Exploratory Data Analysis. We will briefly45

present the theory behind this case and some typical applications in Section 2.1.46

In this paper we generalize this previous situation —single-input single-output (SISO) blocks47

(K, K̂) ∼ PKK̂—to a proper multivariate multiple-input multiple-output (MIMO) data transformation48

block described by its joint distribution (X, Y) ∼ PXY.49

(a) Conceptual representation of a supervised classification architecture as a
communication channel (modified from [5]).
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a) the divergence with respect to uniformity, ∆HPK ·PK̂
, between the joint distribution where PK and PK̂37
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b) the mutual information, MIPKK̂
[6,7], quantifying the strength of the stochastic binding between PK39

and PK̂ , and40

c) the variation of information, VIPKK̂
[8], that embodies the residual entropy not used in binding the41

variables.42

The heuristic criterion for assessment is that good classifiers maximize the (transferred) mutual information43

between K and K̃. Furthermore, this assessment can be carried out visually with a ternary plot diagram44

called the Channel Bivariate Entropy Triangle (CBET) as in Exploratory Data Analysis. We will briefly45

present the theory behind this case and some typical applications in Section 2.1.46

In this paper we generalize this previous situation —single-input single-output (SISO) blocks47

(K, K̂) ∼ PKK̂—to a proper multivariate multiple-input multiple-output (MIMO) data transformation48

block described by its joint distribution (X, Y) ∼ PXY.49

(b) The end-to-end view for the
evaluation: a “classifier chain” is trained
to predict labels K̂ from the true emitted
labels K.
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individualized blocks; (b) for end-to-end evaluation; and (c) focused on the transformation.

In this paper, we want to expand the previous model into the scheme of Figure 1a, which provides
a more detailed picture of the contents of the black-box where:

• A random source of classification labels K is subjected to a measurement process that returns
random observations X. The n instances of pairs (ki, xi), 1 ≤ i ≤ n is often called the (task) dataset.

• Then, a generic data transformation block may transform the available data, e.g., the observations
in the dataset X, into other data with “better” characteristics, the transformed feature vectors Y.
These characteristics may be representational power, independence among individual dimensions,
reduction of complexity offered to a classifier, etc. The process is normally called feature
transformation and selection.

• Finally, the Y are the inputs to an actual classifier of choice that obtains the predicted labels K̂.

This would allow us to better understand the flow of information in the classification process
with a view toward assessing and improving it.

Note the similarity between the classical setting of Figure 1b and the transformation block
of Figure 1a reproduced in Figure 1c for convenience. Despite this, the former represents a
Single-Input Single-Output (SISO) block with (K, K̂) ∼ PKK̂, whereas the latter represents a multivariate
Multiple-Input Multiple-Output (MIMO) block described by the joint distribution of random vectors
(X, Y) ∼ PXY.

This MIMO kind of block may represent an unsupervised transformation method—for instance, a
Principal Component Analysis (PCA) or Independent Component Analysis (ICA)—in which case, the
“effectiveness” of the transformation is supplied by a heuristic principle, e.g., least reconstruction error
on some test data, maximum mutual information, etc. However, it may also represent a supervised
transformation method—for instance, X are the feature instances, and Y are the (multi-)labels or classes
in a classification task, or Y may be the activation signals of a convolutional neural network trained
using an implicit target signal— in which case, the “effectiveness” should measure the conformance to
the supervisory signal.

In [4], we argued for carrying out the evaluation of classification tasks that can be
modeled by Figure 1b with the new framework of entropy balance equations and their related
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entropy triangles [4–6]. This has provided a means of quantifying and visualizing the end-to-end
information transfer for SISO architectures. The gist of this framework is explained in Section 2.1:
if a classifier working on a certain dataset obtained a confusion matrix PKK̂, then we can
information-theoretically assess the classifier by analyzing the entropies and information in the related
distribution PKK̂ with the help of a balance equation [6]. However, looking inside the black-box poses a
challenge since X and Y are random vectors and most information-theoretic quantities are not readily
available in their multivariate version.

If we want to extend the same framework of evaluation to random vectors in general, we need the
multivariate generalizations of the information-theoretic measures involved in the balance equations,
an issue that is not free of contention. With this purpose in mind, we review the best-known
multivariate generalizations of mutual information in Section 2.2.

We present our contributions finally in Section 3. As a first result, we develop a balance equation
for the joint distribution PXY and related representation in Sections 3.1 and 3.2, respectively. However
we are also able to obtain split equations for the input and output multivariate sources only tied by
one multivariate extension of mutual information, much as in the SISO case. As an instance of use,
in Section 3.3, we analyze the transfer of information in PCA and ICA transformations applied to
some well-known UCI datasets. We conclude with a discussion of the tools in light of this application
in Section 3.4.

2. Methods

In Section 3, we will build a solution to our problem by finding the minimum common multiple,
so to speak, of our previous solutions to the SISO block we describe in Section 2.1 and the multivariate
source cases, to be described in Section 2.2.

2.1. The Channel Bivariate Entropy Balance Equation and Triangle

A solution to conceptualizing and visualizing the transmission of information through a channel
where input and output are reduced to a single variable, that is with |X| = 1 and |Y| = 1, was
presented in [6] and later extended in [4]. For this case, we use simply X and Y to describe the random
variables. Notice that in the Introduction, and later in the example application, these are called K and
K̂, but here, we want to present this case as a simpler version of the one we set out to solve in this paper.
Figure 2a, then, depicts a classical information-diagram (i-diagram) [7,8] of an entropy decomposition
around PXY in which we have included the exterior boundaries arising from the entropy balance
equation, as we will show later. Three crucial regions can be observed:

• The (normalized) redundancy ([9], Section 2.4), or divergence with respect to uniformity (yellow
area), ∆HPX ·PY , between the joint distribution where PX and PY are independent and the uniform
distributions with the same cardinality of events as PX and PY,

∆HPX ·PY = HUX ·UY − HPX ·PY . (1)

• The mutual information, MIPXY [10] (each of the green areas), quantifies the force of the stochastic
binding between PX and PY, “towards the outside” in Figure 2a,

MIPXY = HPX ·PY − HPXY (2)

but also “towards the inside”,

MIPXY = HPX − HPX|Y = HPY − HPY|X . (3)
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• The variation of information (the sum of the red areas), VIPXY [11], embodies the residual entropy,
not used in binding the variables,

VIPXY = HPX|Y + HPY|X . (4)
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Figure 2. Extended entropy diagram related to a bivariate distribution, from [5].

Then, we may write the following entropy balance equation between the entropies of X and Y:

HUX ·UY = ∆HPX ·PY + 2 ∗MIPXY + VIPXY (1, revisited)

0 ≤ ∆HPX ·PY , MIPXY , VIPXY ≤ HUX ·UY

where the bounds are easily obtained from distributional considerations [5]. If we normalize (1) by the
overall entropy HUX ·UY we obtain

1 = ∆′HPX ·PY + 2 ∗MI′PXY
+ VI′PXY

0 ≤ ∆′HPX ·PY , MI′PXY
, VI′PXY

≤ 1 (6)

Equation (6) is the 2-simplex in normalized ∆H′PX ·PY × 2MI ′PXY × VI ′PXY space. Each joint90

distribution PXY can be characterized by its joint entropy fractions, F(PXY) = [∆H′PXY
, 2×MI ′PXY

, VI ′PXY
] ,91

whose projection onto the plane with director vector (1, 1, 1) is its de Finetti or Compositional diagram [15].92

This diagram of the 2-simplex is an equilateral triangle whose coordinates are F(PXY) so every93

bivariate distribution shows as a point in the triangle, and each zone in the triangle is indicative94

of the characteristics of distributions whose coordinates fall in it. This is what we call the Channel95

Bivariate Entropy Triangle, CBET, one of whose instances is shown below in Fig. 3.96
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Figure 2. Extended entropy diagram related to a bivariate distribution, from [4].

Then, we may write the following entropy balance equation between the entropies of X and Y:

HUX ·UY = ∆HPX ·PY + 2 ·MIPXY + VIPXY (5)

0 ≤ ∆HPX ·PY , MIPXY , VIPXY ≤ HUX ·UY

where the bounds are easily obtained from distributional considerations [6]. If we normalize (5) by the
overall entropy HUX ·UY , we obtain:

1 = ∆′HPX ·PY + 2 ·MI′PXY
+ VI′PXY

0 ≤ ∆′HPX ·PY , MI′PXY
, VI′PXY

≤ 1 (6)

Equation (6) is the 2-simplex in normalized ∆H′PX ·PY × 2MI ′PXY × VI ′PXY space. Each
joint distribution PXY can be characterized by its joint entropy fractions, F(PXY) = [∆H′PXY

, 2 ·
MI ′PXY

, VI ′PXY
], whose projection onto the plane with director vector (1, 1, 1) is its de Finetti or

compositional diagram [12]. This diagram of the 2-simplex is an equilateral triangle, the coordinates of
which are F(PXY), so every bivariate distribution is shown as a point in the triangle, and each zone in
the triangle is indicative of the characteristics of distributions, the coordinates of which fall in it. This
is what we call the Channel Bivariate Entropy Triangle (CBET) whose schematic is shown in Figure 3.

We can actually decompose (5) and the quantities in it into two split balance equations,

HUX = ∆HPX + MIPXY + HPX|Y HUY = ∆HPY + MIPXY + HPY|X . (7)

with the obvious limits. These can be each normalized by HUX , respectively HUY , leading to the
2-simplex equations:

1 = ∆′HPX + MI′PXY + H′PX|Y 1 = ∆′HPY + MI′PXY
+ H′PY|X . (8)

Since these are also equations on a 2-simplex, we can actually represent the coordinates FX(PXY) =

[∆H′PX
, MI ′PXY

, H′PX|Y
] and FY(PXY) = [∆H′PY

, MI ′PXY
, H′PY|X

] in the same triangle side by side the

original F(PXY), whereby the representation seems to split in two.
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dots for each classifier (or its split coordinates see Figure 6 for example) and none of the callouts for
specific types of classifiers (from [4]). The callouts situated in the center of the sides of the triangle
apply to the whole side.

2.1.1. Application: The Evaluation of Multiclass Classification

The CBET can be used to visualize the performance of supervised classifiers in a straightforward
manner as announced in the Introduction: Consider the confusion matrix NKK̂ of a classifier chain
on a supervised classification task given the random variable of true class labels K ∼ PK and that of
predicted labels K̂ ∼ PK̂ as depicted in Figure 1a, which now play the role of PX and PY. From this
confusion matrix, we can estimate the joint distribution PKK̂ between the random variables, so that
the entropy triangle for PKK̂ produces valuable information about the actual classifier used to solve
the task [6,13] and even the theoretical limits of the task; for instance, whether it can be solved in a
trustworthy manner by classification technology and with what effectiveness.

The CBET acts, in this case, as an exploratory data analysis tool for visual assessment, as shown
in Figure 3.

The success of this approach in the bivariate, supervised classification case is a strong hint that the
multivariate extension will likewise be useful for other machine learning tasks. See [4] for a thorough
explanation of this procedure.

2.2. Quantities around the Multivariate Mutual Information

The main hurdle for a multivariate extension of the balance Equation (5) and the CBET is the
multivariate generalization of binary mutual information, since it quantifies the information transport
from input to output in the bivariate case and is also crucial for the decoupling of (5) into the split
balance Equation (7). For this reason, we next review the different “flavors” of information measures
describing sets of more than two variables looking for these two properties. We start from very basic
definitions both in the interest of self-containment and to provide a script of the process of developing
future analogues for other information measures.

To fix notation, let X = {Xi | 1 ≤ i ≤ m} be a set of discrete random variables with joint
multivariate distribution PX = PX1 ...Xm and the corresponding marginals PXi (xi) = ∑j 6=i PX(x) where
x = x1 . . . xm is a tuple of m elements; likewise for Y = {Yj | 1 ≤ j ≤ l}, with PY = PY1 ...Yl and the
marginals PYj . Furthermore, let PXY be the joint distribution of the (m + l)-length tuples XY. Note that
two different situations can be clearly distinguished:

Situation 1: All the random variables form part of the same set X, and we are looking at information
transfer within this set, or
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Situation 2: They are partitioned into two different sets X and Y, and we are looking at information
transfer between these sets.

An up-to-date review of multivariate information measures in both situations is [14], which
follows the interesting methodological point from [15] of calling information those measures that
involve amounts of entropy shared by multiple variables and entropies those that do not—although,
this poses a conundrum for the entropy written as the self-information HPX = MIPXX .

Since i-diagrams are a powerful tool to visualize the interaction of distributions in the bivariate
case, we will also try to use them for sets of random variables. For multivariate generalizations of
mutual information as seen in the i-diagrams, the following caveats apply:

• Their multivariate generalization is only warranted when signed measures of probability are
considered, since it is well known that some of these “areas” can be negative, contrary to the
geometric intuitions in this respect.

• We should retain the bounding rectangles that appear when considering the most entropic
distributions with similar support to the ones being graphed [6]. This is the sense of the bounding
rectangles in Figure 4a,b.
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Figure 4. (Color online) Extended entropy diagram of multivariate distributions for (a) a trivariate
distribution (from [5]) as an instance of Situation 1; and (b) a joint distribution where a partitioning of
the variables is made evident (Situation 2). The color scheme follows that of Figure 2, to be explained
in the text.

With great insight, the authors of [15] point out that some of the multivariate information measures
stem from focusing on a particular property of the bivariate mutual information and generalizing it to
the multivariate setting. The properties in question—including already stated (2) and (3)—are: The
properties in question are:

MIPXY = HPX + HPY − HPXY

MIPXY = HPX − HPX|Y = HPY − HPY|X

MIPXY = ∑
x,y

PXY(x, y) log
PXY(x, y)

PX(x)PY(y)
(9)

Regarding the first situation of a vector of random variables X ∼ PX, let ΠX = ∏n
i=1 PXi be the

(jointly) independent distribution with similar marginals to PX . To picture this (virtual) distribution
consider Figure 4a depicting an i-diagram for X = [X1, X2, X3]. Then, ΠX = PX1 · PX2 · PX3 is the inner
rectangle containing both green areas. The different extensions of mutual information that concentrate
on different properties are:
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• the total correlation [16], integration [17] or multi-information [18], which is a generalization of (2),
represented by the green area outside HPX

.

CPX
= HΠX

− HPX
(10)

• the dual total correlation [19,20] or interaction complexity [21] is a generalization of (3),
represented by the green area inside HPX

:

DPX
= HPX

−VIPX
(11)

• the interaction information [22], multivariate mutual information [23] or co-information [24] is
the generalization of (9), the total amount of information to which all variables contribute.

MIPX
= ∑ PX(x) log

PX(x)
ΠX(x)

(12)

It is represented by the inner convex green area (within the dual total correlation), but note that it
may in fact be negative for n > 2 [25].

• the local exogenous information [15] or the bound information [26] is the addition of the total
correlation and the dual total correlation:

MPX
= CPX

+ DPX
. (13)

Some of these generalizations of the multivariate case were used in [5,26] to develop a similar
technique as the CBET, but applied to analyzing the information content of data sources. For this
purpose, it was necessary to define for every random variable a residual entropy HPXi |Xc

i
, where

Xc
i = X \ {Xi}, which is not explained by the information provided by the other variables. We call

residual information [15] or (multivariate) variation of information [11,26] the generalization of the
same quantity in the bivariate case, i.e., the sum of these quantities across the set of random variables:

VIPX
=

n

∑
i=1

HPXi |Xc
i
. (14)

Then, the variation of information can easily be seen to consist of the sum of the red areas in
Figure 4a and amounts to information particular to each variable.

The main question regarding this issue is which, if any, of these generalizations of bivariate
mutual information are adequate for an analogue of the entropy balance equations and triangles.
Note that all of these generalizations consider X as a homogeneous set of variables, that is Situation 1
described at the beginning of this section, and none consider the partitioning of the variables in X into
two subsets (Situation 2), for instance to distinguish between input and output ones, so the answer
cannot be straightforward. This issue is clarified in Section 3.1.

3. Results

Our goal is now to find a decomposition of the entropies around characterizing a joint distribution
PXY between random vectors X and Y in ways analogous to those of (5) but considering multivariate
input and output.

Note that it provides no advantage trying to do this on continuous distributions, as the entropic
measures used are basic. Rather, what we actually capitalize on is in the outstanding existence of a
balance equation between these apparently simple entropic concepts, and what their intuitive meanings
afford to the problem of measuring the transfer of information in data processing tasks. As we set out
to demonstrate in this section, our main results are in complete analogy to those of the binary case,
but with the flavour of the multivariate case.
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3.1. The Aggregate and Split Channel Multivariate Balance Equation

Consider the modified information diagram of Figure 4b highlighting entropies for some
distributions around PXY. When we distinguish two random vectors in the set of variables X and Y,
a proper multivariate generalization of the variation of information in (4) is

VIPXY
= HPX|Y + HPY|X . (15)

and we will also call it the variation of information. It represents the addition of the information in X not
shared with Y and vice-versa, as captured by the red area in Figure 4b. Note that this is a non-negative
quantity, since its is the addition of two entropies.

Next, consider

• UXY , the uniform distribution over the supports of X and Y, and
• PX × PY , the distribution created with the marginals of PXY considered independent.

Then, we may define a multivariate divergence with respect to uniformity—in analogy to (1)—as

∆HPX×PY
= HUXY

− HPX×PY
. (16)

This is the yellow area in Figure 4b representing the divergence of the virtual distribution PX × PY
with respect to uniformity. The virtuality comes from the fact that this distribution does not properly
exist in the context being studied. Rather, it only appears in the extreme situation that the marginals of
PXY are independent.

Furthermore, recall that both the total entropy of the uniform distribution and the divergence from
uniformity factor into individual equalities HUXUY

= HUX
+ HUY

—since uniform joint distributions
always have independent marginals—and HPX×PY

= HPX
+ HPY

. Therefore (16) admits splitting as
∆HPX×PY

= ∆HPX
+ ∆HPY

where

∆HPX
= HUX

− HPX
∆HPY

= HUY
− HPY

. (17)

Now, both UX and UY are the most entropic distributions definable in the support of X and
Y whence both ∆HPX

and ∆HPY
are non-negative, as is their addition. These generalizations are

straightforward and intuitively mean that we expect them to agree with the intuitions developed in the CBET,
which is an important usability concern.

The problem is finding a quantity that fulfills the same role as the (bivariate) mutual information.
The first property that we would like to have is for this quantity to be a “transmitted information” after
conditioning away any of the entropy of either partition, so we propose the following as a definition:

IPXY
= HPXY

−VIPXY
(18)

represented by the inner green area in the i-diagram of Figure 4b. This can easily be “refocused” on
each of the subsets of the partition:

Lemma 1. Let PXY be a discrete joint distribution. Then

HPX
− HPX|Y = HPY

− HPY|X = IPXY
(19)

Proof. Recalling that the conditional entropies are easily related to the joint entropy by the chain rule
HPXY

= HPX
+ HPY|X = HPY

+ HPX|Y , simply subtract VIPXY
.

This property introduces the notion that this information is within each of X and Y independently
but mutually induced. It is easy to see that this quantity appears once again in the i-diagram:
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Lemma 2. Let PXY be a discrete joint distribution. Then

IPXY
= HPX×PY

− HPXY
. (20)

Proof. Considering the entropy decomposition of PX × PY:

HPX×PY
− HPXY

= HPX
+ HPY

−
(

HPY
+ HPX|Y

)
= HPX

− HPX|Y = IPXY

In other words, this is the quantity of information required to bind PX and PY; equivalently, it is
the amount of information lost from PX × PY to achieve the binding in PXY. Pictorially, this is the
outermost green area in Figure 4b, and it must be non-negative, since PX × PY is more entropic than
PXY. Notice that (18) and (19) are the analogues of (10) and (11), respectively, but with the flavor
of (2) and (3). Therefore, this quantity must be the multivariate mutual information of PXY as per the
Kullback-Leibler divergence definition:

Lemma 3. Let PXY be a discrete joint distribution. Then

IPXY
= ∑

i,j
PXY(xi, yj) log

PXY(xi, yj)

PX(xi)PY(yj)
(21)

Proof. This is an easy manipulation.

∑
i,j

PXY(xi, yj) log
PXY(xi, yj)

PX(xi)PY(yj)
= ∑

i,j
PXY(xi, yj) log

PX|Y=yj
(xi|yj)

PX(xi)
= ∑

i
PX(xi) log

1
PX(xi)

−

−∑
j

PY(yj)∑
i

PX|Y=yj
(xi|yj) log

1
PX|Y=yj

(xi|yj)
=

= HPX
− HPX|Y = IPXY

,

after a step of marginalization and considering (3).

With these relations we can state our first theorem:

Theorem 1. Let PXY be a discrete joint distribution. Then the following decomposition holds:

HUX×UY
= ∆HPX×PY

+ 2 · IPXY
+ VIPXY

(22)

0 ≤ ∆HPX×PY
, IPXY

, VIPXY
≤ HUX×UY

Proof. From (16) we have HUX×UY
= ∆HPX×PY

+ HPX×PY
whence by introducing (18) and (20)

we obtain:

HUX×UY
= ∆HPX×PY

+ IPXY
+ HPXY

= ∆HPX×PY
+ IPXY

+ IPXY
+ VIPXY

. (23)

Recall that each quantity is non-negative by (15), (16) and (21), so the only things left to be
proven are the limits for each quantity in the decomposition. For that purpose, consider the following
clarifying conditions,

1. X marginal uniformity when HPX
= HUX

, Y marginal uniformity when HPY
= HUY

and
marginal uniformity when both conditions coocur.

2. Marginal independence, when PXY = PX × PY.
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3. Y determines X when HPX|Y = 0, X determines Y when HPY|X = 0 and mutual determination,
when both conditions hold.

Notice that these conditions are independent of each other and that each fixes the value of one of the
quantities in the balance:

• For instance, in case HPX
= HUX

then ∆HPX
= 0 after (17). Similarly, if HPY

= HUY
then ∆HPY

= 0.
Hence when marginal uniformity holds, we have ∆HPXY

= 0.
• Similarly, when marginal independence holds, we see that IPX|Y = 0 from (20). Otherwise stated,

HPX|Y = HPX
and HPY|X = HPY

.
• Finally, if mutual determination holds—that is to say the variables in either set are deterministic

functions of those of the other set—by the definition of the multivariate variation of information,
we have VIPX|Y = 0.

Therefore, these three conditions fix the lower bounds for their respectively related quantities.
Likewise, the upper bounds hold when two of the conditions hold at the same time. This is easily seen
invoking the previously found balance equation (23):

• For instance, if marginal uniformity holds, then ∆HPXY
= 0 . But if marginal independence also

holds, then IPX|Y = 0 whence by (23) VIPXY
= HUX×UY

.
• But if both marginal uniformity and mutual determination hold, then we have ∆HPXY

= 0 and
VIPXY

= 0 so that IPXY
= HUX×UY

.
• Finally, if both mutual determination and marginal indepence holds, then a fortiori ∆HPXY

=

HUX×UY
.

This concludes the proof.

Notice how the bounds also allow an interpretation similar to that of (5). In particular, the
interpretation of the conditions for actual joint distributions will be taken again in Section 3.2.

The next question is whether the balance equation also admits splitting.

Theorem 2. Let PXY be a discrete joint distribution. Then the Channel Multivariate Entropy Balance equation
can be split as:

HUX
= ∆HPX

+ IPXY
+ HPX|Y 0 ≤ ∆HPX

, IPXY
, HPX|Y ≤ HUX

(24)

HUY
= ∆HPY

+ IPXY
+ HPY|X 0 ≤ ∆HPY

, IPXY
, HPY|X ≤ HUY

(25)

Proof. We prove (24): the proof of (25) is similar mutatis mutandis.
In a similar way as for (22), we have that HUX

= ∆HPX
+ HPX

. By introducing the value of HPX
from (19) we obtain the decomposition of HUX

of (24).
These quantities are non-negative, as mentioned. Next consider the X marginal uniformity

condition applied to the input vector introduced in the proof of Theorem 1. Clearly, ∆HX = 0.
Marginal independence, again, is the condition so that IXY = 0. Finally, if Y determines X then
HPX|Y = 0. These conditions individually provide the lower bounds on each quantity.

On the other hand, when we put together any two of these conditions, we obtain the upper bound
for the unspecified variable: so, if ∆HPX

= 0 and IPXY
= 0 then HPX|Y = HPX

= HUX
. Also, if IPXY

= 0
and HPX|Y = 0, then HPX

= HPX|Y = 0 and ∆HPX
= HUX

− 0 . Finally, if HPX|Y = 0 and ∆HPX
= 0, then

IPXY
= HPX

− HPX|Y = HUX
− 0 .

3.2. Visualizations: From i-Diagrams to Entropy Triangles

3.2.1. The Channel Multivariate Entropy Triangle

Our next goal is to develop an exploratory analysis tool similar to the CBET introduced in
Section 2.1. As in that case, we need the equation of a simplex to represent the information balance of
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a multivariate transformation. For that purpose, as in (6) we may normalize by the overall entropy
HUX×UY

to obtain the equation of the 2-simplex in multivariate entropic space,

1 = ∆′HPX×PY
+ 2 · I′PXY

+ VI′PXY
(26)

0 ≤ ∆′HPX×PY
, I′PXY

, VI′PXY
≤ 1 .

The de Finetti diagram of this equation then provides the aggregated Channel Multivariate Entropy
Triangle, CMET.

A formal graphical assessment of multivariate joint distribution with the CMET is fairly simple
using the schematic in Figure 5a and the conditions of Theorem 1:
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extreme cases using formal conditions. The annotations on the center of each side are meant to hold for
that whole side, those for the vertices are meant to hold in their immediate neighborhood too.

• The lower side of the triangle with I′PXY
= 0, affected of marginal independence PXY = PX × PY, is

the locus of partitioned joint distributions who do not share information between the two blocks
X and Y.
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• The right side of the triangle with VI′PXY
= 0, described with mutual determination H′PX|Y

= 0 =

H′PY|X
, is the locus of partitioned joint distributions whose groups do not carry supplementary

information to that provided by the other group.
• The left sidewith ∆H′PXY

= 0, describing distributions with uniform marginals PX = UX and
PY = UY, is the locus of partitioned joint distributions that offer as much potential information
for transformations as possible.

Based on these characterizations we can attach interpretations to other regions of the CMET:

• If we want a transformation from X to Y to be faithful, then we want to maximize the information
used for mutual determination I′PXY

→ 1, equivalently, minimize at the same time the divergence
from uniformity ∆H′PXY

→ 0 and the information that only pertains to each of the blocks in the
partition VI′PXY

→ 0. So the coordinates of a faithful partitioned joint distribution will lay close to
the apex of the triangle.

• However, if the coordinates of a distribution lay close to the left vertex VI′PXY
→ 1, then it shows

marginal uniformity ∆H′PXY
→ 0 but shares little or no information between the blocks I′PXY

→ 0,
hence it must be a randomizing transformation.

• Distributions whose coordinates lay close to the right vertex ∆H′PXY
→ 1 are essentially

deterministic and in that sense carry no information I′PXY
→ 0, VI′PXY

→ 0. Indeed in this
instance there does not seem to exist a transformation, whence we call them rigid.

These qualities are annotated on the vertices of the schematic CMET of Figure 5a. Note that
different applications may call for partitioned distributions with different qualities and the one used
above is pertinent when the partitioned joint distributions models a transformation of X into Y
or vice-versa.

3.2.2. Normalized Split Channel Multivariate Balance Equations

With a normalization similar to that from (7) to (8), (24) and (25) naturally lead to 2-simplex
equations normalizing by HUX

and HUY
, respectively

1 = ∆′HPX
+ I′PXY

+ H′PX|Y
0 ≤ ∆′HPX

, I′PXY
, H′PX|Y

≤ 1 (27)

1 = ∆′HPY
+ I′PXY

+ H′PY|X
0 ≤ ∆′HPY

, I′PXY
, H′PY|X

≤ 1 (28)

Note that the quantities ∆H′PX
and ∆H′PY

have been independently motivated and named
redundancies ([9], Section 2.4).

These are actually two different representations for each of the two blocks in the partitioned joint
distribution. Using the fact that they share one coordinate—I′PXY

—and the rest are analogues—∆′HPX

and ∆′HPY
on one side, and H′PX|Y

and H′PY|X
on the other—we can represent both equations at the same

time in a single de Finetti diagram. We call this representation the split Channel Multivariate Entropy
Triangle, an schema of which can be seen in Figure 5b. The qualifying “split” then refers to the fact that
each partitioned joint distribution appears as two points in the diagram. Note the double annotation in
the left and bottom coordinates implying that there are two different diagrams overlapping.

Conventionally, the point referring to the X block described by (27) is represented with a cross,
while the point referring to the Y block described by (28) is represented with a circle as will be noted
in Figure 6.
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(a) PCA on Iris (b) ICA on Iris

(c) PCA on Glass (d) ICA on Glass

(e) PCA on Arthritis (f) ICA on Arthritis

Figure 6. (Color online) Split CMET exploration of feature transformation and selection with PCA (left)
and ICA (right) on Iris, Glass and Arthritis when selecting the first n ranked features as obtained for
each method. The colors of the axes have been selected to match those of Figure 4.

The formal interpretation of this split diagram with the conditions of Theorem 1 follows that of
the aggregated CMET but considering only one block at a time, for instance, for X:
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• The lower side of the triangle is interpreted as before.
• The right side of the triangle is the locus of the partitioned joint distribution whose X block is

completely determined by the Y block, that is, H′PX|Y
= 0.

• The left side of the triangle ∆H′PX
= 0 is the locus of those partitioned joint distributions whose X

marginal is uniform PX = UX .

The interpretation is analogue for Y mutatis mutandis.
The purpose of this representation is to investigate the formal conditions separately on each block.

However, for this split representation we have to take into consideration that the normalizations may
not be the same, that is HPX

and HPY
are, in general, different.

A full example of the interpretation of both types of diagrams, the CMET and the split CMET is
provided in the next Section in the context of feature transformation and selection.

3.3. Example Application: The Analysis of Feature Transformation and Selection with Entropy Triangles

In this Section we present an application of the results obtained above to a machine learning
subtask: the transformation and selection of features for supervised classification.

The task. An extended practice in supervised classification is to explore different transformations
of the observations and then evaluate such different approaches on different classifiers for a particular
task [27]. Instead of this “in the loop” evaluation—that conflates the evaluation of the transformation
and the classification—we will use the CMET to evaluate only the transformation block using the
information transferred from the original to the transformed features as heuristic. As specific instances
of transformations, we will evaluate the use of Principal Component Analysis (PCA) [28] and
Independent Component Analysis (ICA) [29] which are often employed for dimensionality reduction.

Note that we may evaluate feature transformation and dimensionality reduction at the same time
with the techniques developed above: the transformation procedure in the case of PCA and ICA may
provide the Y as a ranking of features, so that we may carry out feature selection afterwards by selecting
subsets Y j spanning from the first-ranked to the j-th feature.

The tools. PCA is a staple technique in statistical data analysis and machine learning based in
the Singular Value Decomposition of the data matrix to obtain projections along the singular vectors
that account for its variance in decreasing amount, so PCA ranks the transformed features by this
order. The implementation used in our examples are those of the publicly available R packages stats
(v. 3.3.3) (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html, accessed on
11 June 2018).

While PCA aims at the orthogonalization of the projections, ICA finds the projections, also known
as factors, by maximimizing their statistical independence, in our example by minimizing a cost term
related to their mutual information [30]. However, this does not result in a ranking of the transformed
features, hence we have created a pseudo-ranking by carrying an ICA transformation obtaining j
transformed features for all sensible values of 1 ≤ j ≤ l using independent runs of the ICA algorithm.
The implementation used in our examples is that of fastICA [30] as implemented in the R package
fastICA (v. 1.2-1) (https://cran.r-project.org/package=fastICA, accessed on 11 June 2018, with
standard parameter values ( alg.typ=“parallel”, fun=“logcosh”, alpha=1, method=“C”, row.norm=
FALSE, maxit=200, tol=0.0001).

The entropy diagrams and calculations were carried out with the open-source entropies
experimental R package that provides an implementation of the present framework (available at
https://github.com/FJValverde/entropies.git, accessed on 11 June 2018). The analysis carried out in
this section is part of an illustrative vignette for the package and will remain so in future releases.

Analysis of results. We analyzed in this way some UCI classification datasets [31], whose number
of classes k, features m, and observations n are listed in Table 1.

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
https://cran.r-project.org/package=fastICA
https://github.com/FJValverde/entropies.git
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Table 1. Datasets analyzed.

Name k m n

1 Ionosphere 2 34 351
2 Iris 3 4 150
3 Glass 7 9 214
4 Arthritis 3 3 84
5 BreastCancer 2 9 699
6 Sonar 2 60 208
7 Wine 3 13 178

For simplicity issues, we decided to illustrate our new techniques on three datasets: Iris, Glass and
Arthritis. Ionosphere, BreastCancer, Sonar and Wine have a similar pattern to Glass, but less interesting,
as commented below. Besides, both Ionosphere and Wine have too many features for the kind of neat
visualization we are trying to use in this paper. We have also used a slightly modified entropy triangles
in which the colors of the axes are related to those of the information diagrams of Figure 4b.

For instance, Figure 6a presents the results of the PCA transformation on the logarithm of the
features of Anderson’s Iris. Crosses represent the information decomposition of the input features X
using (27) while circles represent the information decomposition of transformed features Y j using (28)
and filled circles the aggregate decomposition of (26). We represent several possible features sets
Y j as output where each is obtained selecting the first j features in the ranking provided by PCA.
For example, since Iris has four features we can make four different feature sets of 1 to j features,
named in the Figure as “1_j”, that is, “1_1” to “1_4”. The figure then explores how the information
in the whole database X is transported to different, nested candidate feature sets Y j as per the PCA
recipe: choose as many ranked features as required to increase the transmitted information.

We first notice that all the points for X lie on a line parallel to the left side of the triangle and their
average transmitted information is increasing, parallel to a decrease in remanent information. Indeed,
the redundancy ∆H′

X
=

∆HX
HUX

is the same regardless of the choice of Y j. The monotonic increase with

the number of features selected j in average transmitted information I′PXYj
=

IPXYj
HUX

in (27) corresponds to

the monotonic increase in absolute transmitted information IPXYj
: for a given input set of features X,

the more output features are selected, the higher the mutual information between input and output.
This is the basis of the effectiveness of the feature-selection procedure.

Regarding the points for Y j, note that the absolute transmitted information also appears in the

average transmitted information (with respect to Y j) as I′PXYj
=

IPXYj
HUYj

in (28). While IPXYj
increases

with j, as mentioned, we actually see a monotonic decrease in I′PXYj
. The reason for this is the rapidly

increasing value of the denominator HUYj
as we select more and more features.

Finally, notice how these two tendencies are conflated in the aggregate plot for the XY j in Figure 6a
that shows a lopsided, inverted U pattern, peaking before j reaches its maximum. This suggests that if
we balance aggregated transmitted information against number of features selected—the complexity
of the representation—in the search for a faithful representation, the average transmitted information is
the quantity to optimize, that is, the mutual determination between the two feature sets.

Figure 6b presents similar results on the ICA transformation on the logarithm of the features of
Anderson’s Iris with the same glyph convention as before, but with a ranking resulting from carrying
the ICA method in full for each value of j. That is, we first work out Y1 which is a single component,
then we calculate Y2 which the two best ICA components, and so on. The reason for this is that ICA
does not rank the features it produces, so we have to create this ranking by carrying the ICA algorithm
for all values of j to obtain each Y j. Note that the transformed features produce by PCA and ICA are,
in principle, very different, but the phenomena described for PCA are also apparent here: an increase
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in aggregate transmitted information, checked by the increase of the denominator represented by HUYj

which implies a decreasing transmitted information per feature for Y j.
With the present framework the question of which transformation is “better” for this dataset can

be given content and rephrased as which transformation transmits more information on average on this
dataset, and also, importantly, whether the aggregate information available in the dataset is being transmitted
by either of these methods. This is explored in Figure 7 for Iris, Glass and Arthritis, where, for reference,
we have included a point for the (deterministic) transformation of the logarithm, the cross, giving an
idea of what a lossless information transformation can achieve.

(a) Comparing the transformations on Iris (b) Comparing the transformations on Glass

(c) Comparing the transformations on Arthritis

Figure 7. (Color online) Comparison of PCA and ICA as data transformations using the CMET on
Iris, Glass and Arthritis. Note that these are the same positions represented as inverted triangles in
Figure 6a,b.

Consider Figure 7a for Iris. The first interesting observation is that neither technique is transmitting
all of the information in the database, which can be gleaned from the fact that both feature sets
“1_4”—when all the features available have been selected—are below the cross. This clearly follows
the data processing inequality, but is still surprising since transformations like ICA and PCA are
extensively used and considered to work well in practice. In this instance it can only be explained
by the advantages of the achieved dimensionality reduction. Actually, the observation in the CMET
suggests that we can improve on the average transmitted information per feature by retaining the three first
features for each PCA and ICA.

The analysis of Iris turns out to be an intermediate case between that of Arthritis and Glass, the
latter being the most typical in our analysis. This is the case with a lot of original features X which
transmit very little private, distinctive information per feature. The typical behavior, both for PCA and
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ICA is to select at first, features that carry very little average information Y1. As we select more and
more transformed features, information accumulates but at a very slow pace as shown in Figure 6c,d.
Typically, the transformed features chosen last are very redundant. In the case of Glass, specifically,
there is no point in retaining features beyond the sixth (out of 9) for either PCA or ICA as shown in
Figure 7b. As to comparing the techniques, in some similarly-behaving datasets PCA is better, while
in others ICA is. In the case of Glass, it is better to use ICA when retaining up to two transformed
features, but it is better to use PCA when retaining between 2 and 6.

The case of Arthritis is quite different, perhaps due to the small number of original features n = 3.
Our analyses show that just choosing the first ICA component Y1—perhaps the first two—provides
an excellent characterization of the dataset, being extremely efficient in what regards information
transmission. This phenomenon is also seen in the first PCA component, but is lost as we aggregate
more PCA components. Crucially, taking the 3 ICA components amounts to taking all of the original
information in the dataset, while taking the 3 components in the case of PCA is rather inefficient, as
confirmed by Figure 7c.

All in all, our analyses show that the unsupervised transformation and selection of features in
datasets can be assessed using an information-theoretical heuristic: maximize the average mutual
information accumulated by the transformed features. And we have also shown how to carry out this
assessment with entropic balance equations and entropy triangles.

3.4. Discussion

The development of the multivariate case is quite parallel to the bivariate case. An important
point to realize is that the multivariate transmitted information between two different random vectors
IPXY

is the proper generalization for the usual mutual information MIPXY in the bivariate case, rather
than the more complex alternatives used in multivariate sources (see Section 2.2 and [5,14]). Indeed
properties (18) and (20) are crucial in transporting the structure and intuitions built from the bivariate
channel entropy triangle to the multivariate one, of which the former is a proper instance. This was
not the case with balance equations and entropy triangles for stochastic sources of information [5].

The crucial quantities in the balance equation and the triangle have been independently motivated
in other works. First, multivariate mutual information is fundamental in Information Theory, and we
have already mentioned the redundancy ∆HPX [9]. We also mentioned the input-entropy normalized
I′PXY

used as a standalone assessment measure in intrusion detection [32]. Perhaps the least known
quantity in the paper was the variation of information. Despite being inspired by the concept proposed
by Meila [11], to the best of our knowledge it is completely new in the multivariate setting. However,
the underlying concepts of conditional or remanent entropies have proven their usefulness time and
again. All of the above is indirect proof that the quantities studied in this paper are significant, and the
existence of a balance equation binding them together important.

The paragraph above notwithstanding, there are researchers who claim that Shannon-type
relations cannot capture all the dependencies inside multivariate random vectors [33]. Due to the
novelty of that work, it is not clear how much the “standard” theory of Shannon measures would have
to change to accommodate the objections raised to it in that respect. But this question seems to be off
the mark for our purposes: the framework of channel balance equations and entropy triangles has not
been developed to look into the question of dependency, but of aggregate information transfer, wherever
that information comes from. It may be relevant to source balance equations and triangles [5]—which
have a different purpose—but that still has to be researched into.

The normalizations involved in (6) and (26)—respectively, (8), (27) and (28)—are similar
conceptually: to divide by the logarithm of the total size of the domains involved whether it is
the size of X × Y or that of X × Y . Notice, first, that this is the same as taking the logarithm base
these sizes in the non-normalized equations. The resulting units would not be bits for the multivariate
case proper, since the size of X or Y is at least 2× 2 = 4. But since the entropy triangles represent
compositions [12], which are inherently dimensionless, this allows us to represent many different, and
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otherwise incomparable systems, e.g., univariate and multivariate ones with the same kind of diagram.
Second, this type of normalization allows for an interpretation of the extension of these measures to the
continuous case as a limit in the process of equipartitioning a compact support, as done, for instance,
for the Rényi entropy in ([34], Section 3) which is known to be a generalization of Shannon’s. There are
hopes, then for a continuous version of the balance equations for Renyi’s entropy.

Finally, note that the application presented in Section 3.3 above, although principled in the
framework presented here, is not conclusive on the quality of the analyzed transformations in general
but only as applied to the particular dataset. For that, a wider selection of data transformation
approaches, and many more datasets should be assessed. Furthermore, the feature selection process
used the “filter” approach which for supervised tasks seems suboptimal. Future work will address
this issue as well as how the technique developed here relates to the end-to-end assessment presented
in [4] and the source characterization technique of [5].

4. Conclusions

In this paper, we have introduced a new way to assess quantitatively and visually the transfer of
information from a multivariate source X to a multivariate sink of information Y, using a heretofore
unknown decomposition of the entropies around the joint distribution PXY. For that purpose, we have
generalized a similar previous theory and visualization tools for bivariate sources, greatly extending
the applicability of the results:

• We have been able to decompose the information of a random multivariate source into three
components: (a) the non-transferable divergence from uniformity ∆HPXY

, which is an entropy
“missing” from PXY; (b) a transferable, but not transferred part, the variation of information VIPXY

;
and (c) the transferable and transferred information IPXY

, which is a known, but never considered
in this context, generalization of bivariate mutual information.

• Using the same principles as in previous developments, we have been able to obtain a new type of
visualization diagram for this balance of information using de Finetti’s ternary diagrams, which
is actually an exploratory data analysis tool.

We have also shown how to apply these new theoretical developments and the visualization
tools to the analysis of information transfer in unsupervised feature transformation and selection, a
ubiquitous step in data analysis, and specifically, to apply it to the analysis of PCA and ICA. We believe
this is a fruitful approach, e.g., for the assessment of learning systems, and foresee a bevy of applications
to come. Further conclusions on this issue are left for a more thorough later investigation.
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