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Abstract: A novel generalized grey target decision method for mixed attributes based on
Kullback-Leibler (K-L) distance is proposed. The proposed approach involves the following steps:
first, all indices are converted into index binary connection number vectors; second, the two-tuple
(determinacy, uncertainty) numbers originated from index binary connection number vectors are
obtained; third, the positive and negative target centers of two-tuple (determinacy, uncertainty)
numbers are calculated; then the K-L distances of all alternatives to their positive and negative
target centers are integrated by the Technique for Order Preference by Similarity to an Ideal Solution
(TOPSIS) method; the final decision is based on the integrated value on a bigger the better basis.
A case study exemplifies the proposed approach.

Keywords: Kullback-Leibler distance; mixed attributes; generalized grey target decision method;
binary connection number; TOPSIS

1. Introduction

The grey target decision method has been studied by many scholars since it was proposed
by Deng [1]. Following the further research on decision-making, the indices of alternatives are
extended from pure real values to mixed attribute values. Thus, this mixed attribute based grey
target decision method is proposed to make it more applicable. The core of the grey target decision
method is to obtain the target center distances and the alternatives to their target center, as the
basis for decision-making. The certain number-based grey target decision method calculates the
target center distance by distance method such as Euclidean distance and Mahalanobis distance [2,3].
The reported mixed attribute grey target decision method deals with target center distance in two ways:
one is by distance including mainly Euclidean distance and other similar distances [4–9]; the other
method is by vector-based distance, such as the generalized grey target decision method [10,11].
The generalized grey target decision method is different from the conventional one in that, during the
calculation process, it obeys the principle of the conventional grey target decision method [10–13].
The tool for measuring the uncertainty of fuzzy numbers in mixed attribute based grey target decision
method is needed to make decision-making more valuable in terms of its theoretical significance and
practical application. Entropy is often used to measure uncertainty; thus, it is sure to be applied to the
generalized grey target decision method involving fuzzy numbers. However, the Kullback-Leibler
distance (K-L distance), originated from cross-entropy, has the ability to reflect the similarity of
two discrete random distributions [14]. Now, cross-entropy has been widely used in many fields:
Ioannis and George applied it to intuitionistic fuzzy information pattern recognition [15]. Li and Wu
studied the alternative preference problem based on intuitionistic fuzzy cross-entropy [16]. Xia and Xu
carried out group decision-making which comprises intuitionistic fuzzy information [17]. Smieja and
Geiger studied the cluster problem confined by information using cross-entropy [18]. Tang et al.
proposed an optimization algorithm based on cross-entropy [19].
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The principle of this proposed approach goes as follows: all indices of alternatives are first
converted into binary connection number vectors and also divided into those of deterministic terms
and uncertain terms based on the previous method. Then the deterministic terms and uncertain
terms of positive target centers and negative target centers under each attribute can be obtained.
Next, the two-tuple (determinacy, uncertainty) numbers originated from index binary connection
number vectors are deduced. Following that, the K-L distances of all alternatives to their positive and
negative target centers are integrated by using the TOPSIS method: the final decision is based on the
integrated value for which the bigger is the better.

2. Basic Theory

2.1. Fuzzy Number

Definition 1. Let R be a real domain; if x̃ denotes a fuzzy number, [xL, xU], [xL, xM, xU] and [xL, xM, xN, xU]
are the expressions of x̃ called the interval number, triangular fuzzy number and trapezoidal fuzzy number,
respectively, where xL, xM, xN and xU satisfy 0 < xL < xM < xN < xU ∈ R [20,21].

2.2. Binary Connection Number

Definition 2. Let R be a real domain; A + Bi is called a binary connection number, where A represents the
deterministic term, B is the uncertain term and i is a variable term unifying the determinacy and uncertainty of
a fuzzy number and A, B ∈ R, i ∈ [−1, 1].

Definition 3. x and v are the mean value and deviation value of the n (n≥ 2) parameters of x̃ respectively, then:

u(x, v) = A + Bi = x + vi(i ∈ [−1, 1]) (1)

is called a mean value-deviation value connection number. Where x, S, ms, and v are calculated by use of
Equations (2)–(5):

x =
1
n

n

∑
j=1

xj (2)

S =

√√√√ 1
(n− 1)

n

∑
j=1

(xj − x)2 (3)

ms = max
{∣∣∣xL − x

∣∣∣, ∣∣∣xU − x
∣∣∣} (4)

v = min{S, ms} (5)

where xj(j = 1, · · · , n) is the jth parameter of the fuzzy number x̃, x is the mean value of the parameters,
S denotes the standard deviation of the parameters, ms is the maximum deviation of the parameters, v is the
minimum of S and ms, xL and xU are the fuzzy number’s lower limits and upper limits, respectively [10,22].

Definition 4. The mutual interaction of the mean value x and the deviation value v (standard deviation or
maximum deviation) of the binary connection number u(x, v) can be mapped to the determinacy-uncertainty
space (D-U space). If u(x, v) = x + vi represents the vector in D-U space, then i only denotes the signal of the
uncertain term without representing the changeable value [20,21].

Figure 1 shows a D-U space. The U-axis represents the relative uncertainty measure, while the
D-axis denotes the relative deterministic measure. As seen from Figure 1, x and S interact with each
other and the space reflection is the vector OE from O to E and the degree of interaction represents the
modulus of vector OE, denoted by r.
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2.3. Kullback-Leibler Distance

Definition 5. Kullback-Leibler distance [14,15]. Let X = (x1, x2, · · · , xm)
T and Y = (y1, y2, · · · , ym)

T be

two vectors, where xj, yj ≥ 0, j = 1, 2, . . . , m, 1 =
m
∑

j=1
xj ≥ yj, then the K-L distance of X and Y is given by

Equation (6).

H(X, Y) =
m

∑
j=1

xj ln
xj

yj
(6)

H(X, Y) exhibits the following characteristics:

(1) H(X, Y) =
m
∑

j=1
xj ln

xj
yj
≥ 0;

(2) H(X, Y) =
m
∑

j=1
xj ln

xj
yj

= 0, when and only, when xj = yj, ∀j.

If xj 6= 0, yj = 0 then H(X, Y)→ ∞ . So, the original K-L distance needs to be improved. The revised
version of the K-L distance is as follows:

K(X, Y) = H(X,
X + Y

2
) =

n

∑
j=1

xj ln
xj

1
2 (xj + yj)

(7)

Definition 6. Comprehensive weighted K-L distance. Let the symbols S = ((x1, y1), (x2, y2), . . . , (xm, ym))
T

and E = ((p1, q1), (p2, q2), . . . , (pm, qm))
T, refer to the vectors of two-tuple (determinacy, uncertainty)

numbers, where xj, yj, pj, qj ≥ 0, j = 1, 2, . . . , m, are two-tuple (determinacy, uncertainty) numbers under the
same attributes in S and E respectively. Denote the weight vector W by W = (w1, w2, · · · , wm)

T, wj > 0,
j = 1, 2, . . . , m and assume that for the two-tuples S and E the following normalization condition is satisfied:

m

∑
j=1

wj(xj+yj) ≥
m

∑
j=1

wj(pj+qj) (8)

The comprehensive weighted K-L distance HW(S, E) can be calculated using the
following equation:

HW(S, E) =
m

∑
j=1

wj

(
xj ln

xj

pj
+ yj ln

yj

qj

)
(9)
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Then the function HW(S, E) has the following properties:

(1) HW(S, E) ≥ 0;
(2) HW(S, E) = 0, when and only, when S = E, or what amounts to the same, xj = pj and yj = qj,

j = 1, 2, . . . , m;
(3) when xj = pj = 0 or yj = qj = 0, then, by definition, xj ln

xj
pj

= yj ln
yj
qj
= 0.

The assertions in (1) and (2) can be proved as follows. We assume that pj > 0 and qj > 0 for
j = 1, 2, . . . , m. In the following sequence of (in-) equalities we apply the convexity of the function
u 7→ u ln u, u > 0 , or what amounts to the same the log-sum inequality, also called Gibb’s inequality:

HW(S, E) =
m
∑

j=1
wj

(
xj ln

xj
pj
+ yj ln

yj
qj

)
=

(
m
∑

k=1
wk pk

)
m
∑

j=1

wj pj

∑m
k=1 wk pk

xj
pj

ln
xj
pj

+

(
m
∑

k=1
wkqk

)
m
∑

j=1

wjqj

∑m
k=1 wkqk

yj
qj

ln
yj
qj

(the function u 7→ u ln u, u > 0 , is convex)

≥
(

m
∑

k=1
wk pk

)
m
∑

j=1

wj pj

∑m
k=1 wk pk

xj
pj

ln
∑m

j=1 wjxj

∑m
k=1 wk pk

+

(
m
∑

k=1
wkqk

)
m
∑

j=1

wjqj

∑m
k=1 wkqk

yj
qj

ln
∑m

j=1 wjyj

∑m
k=1 wkqk

=

(
m
∑

j=1
wjxj

)
ln

∑m
j=1 wjxj

∑m
k=1 wk pk

+

(
m
∑

j=1
wjyj

)
ln

∑m
j=1 wjyj

∑m
k=1 wkqk

.

Put x = ∑m
j=1 wjxj, y = ∑m

j=1 wjyj, p = ∑m
k=1 wk pk and q = ∑m

k=1 wkqk.
Then the inequality in property (1) implies

HW(S, E) ≥ x ln x
p + y ln y

q

= (p + q)
{

p
p+q

x
p ln x

p + q
p+q

y
q ln y

q

}
(apply once more the convexity of the function u 7→ u ln u, u > 0)

≥ (p + q)
x + y
p + q

ln
x + y
p + q

= (x + y) ln
x + y
p + q

.

The following inequality is true for u > 0 : ln u ≤ u− 1. Hence, we infer:

(x + y) ln x+y
p+q = −(x + y) ln p+q

x+y

≥ −(x + y)
{

p+q
x+y − 1

}
= x + y− (p + q) ≥ 0.

The final inequality follows from the normalization conditions on S and E. This shows the
inequality in property (1). If HW(S < E) = 0, then all the previous inequalities are in fact equalities.
This can only be true provided xj = pj and yj = qj for j = 1, 2, . . . , m. This is kind of a converse to the
Jensen inequality, or as it is presented here the log-sum inequality or Gibb’s inequality. Observe that
the proofs of properties (1) and (2) can also be adapted to the situation where some of pj’s or some of
the qj’s are zero. Essentially speaking the same proof works by summing over those 1 ≤ j ≤ m for
which pj 6= 0 or for which qj 6= 0.
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However, if the condition for S and E in Equation (8) is not satisfied, then HW(S, E) < 0 may
occur, thus an improved version of which is given as follows.

KW(S, E) =
m

∑
j=1

wj

(
xj

∣∣∣∣∣ln xj

pj

∣∣∣∣∣+ yj

∣∣∣∣∣ln yj

qj

∣∣∣∣∣
)

(10)

In Equation (10), KW(S, E) has the same characteristics as HW(S, E) but it can solve the special
problem that the condition in Equation (8) is not satisfied.

3. Generalized Grey Target Decision Method for Mixed Attributes Based on the K-L Distance

Let C = {C1, C2, · · · , Cn}, A = {A1, A2, · · · , Am} and W = (w1, w2, · · · , wm)
T be an alternative

set, attribute set and weight vector of index attributes respectively, then the index of alternative Cs

under attribute At is vst(s = 1, 2, · · · , n; t = 1, 2, · · · , m).

3.1. Transformation of Index Values into Binary Connection Numbers

Different types of index values can be converted into binary A + Bi connection numbers regarded
as vectors in D-U space using Equations (1)–(5). It is noteworthy that the converted binary connection
number for real number is of the form A + 0i, which means that the deterministic term is the
real number itself and the uncertain term is 0i. The transformed index vector can be expressed
as Ust = Ast + Bsti(s = 1, 2, · · · , n; t = 1, 2, · · · , m).

3.2. Determination of the Target Centre Index Vectors

Having achieved the binary connection numbers converted from all index values,
Ust = Ast + Bsti(s = 1, 2, · · · , n; t = 1, 2, · · · , m), which can also be denoted by the two-tuple number
Ust = (Ast, Bst), (s = 1, 2, · · · , n; t = 1, 2, · · · , m). The benefit type index set and cost type index
set, are denoted by J+ and J−, respectively. Then the positive and negative target center index
vectors of two-tuple (determinacy, uncertainty) denoted by C+

t and C−t can be obtained using
Equations (11) and (12).

The positive target center index of two-tuple (determinacy, uncertainty) is as follows:

C+
t =

{
(max{Ast}, min{Bst}), Ust ∈ J+}
(min{Ast}, min{Bst}), Ust ∈ J−}

, s = 1, 2, · · · , n, t = 1, 2, · · · , m (11)

The negative target center index of two-tuple (determinacy, uncertainty) is as follows:

C−t =

{
(min{Ast}, max{Bst}), Ust ∈ J+}
(max{Ast}, max{Bst}), Ust ∈ J−}

, s = 1, 2, · · · , n, t = 1, 2, · · · , m (12)

Equation (11) indicates that the positive target center index of two-tuple (determinacy, uncertainty)
number under attribute At is such that the index vector corresponding to the maximum term and
minimum term for benefit-type indices and that of the minimum term and minimum term is used for
cost-type indices. Equation (12) represents the fact that the negative target center index the two-tuple
(determinacy, uncertainty) number under attribute At is such that the index vector corresponding to
the minimum term and maximum term is used for benefit-type indices and that of the maximum term
and maximum term is used for cost-type indices.
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3.3. Normalization of All Alternative Indices

The index vectors of all alternatives Ust = Ast + Bsti(s = 1, 2, · · · , n; t = 1, 2, · · · , m) and target
center index vectors Uct = Act + Bcti(c = n + 1; t = 1, 2, · · · , m) can be expressed as vectors of
two-tuple (deterministic degree, uncertainty degree) numbers:

ast =
Ast

Ast + Bst
, bst =

Bst

Ast + Bst
, (s = 1, 2, · · · , n + 1; t = 1, 2, · · · , m) (13)

In Equation (13), ast and bst denote respectively the deterministic degree and uncertainty
degree under the same attribute in normalized binary connection numbers. Then the
vector of two-tuple (deterministic degree, uncertainty degree) number can be given as
((as1, bs1), (as2, bs2), . . . , (asm, bsm))

T. It should be noted that a real number cannot be normalized in
this step, or an error will occur when computing the uncertain term of real numbers as they are all
zero under the same attribute.

The ast and bst in a two-tuple (deterministic degree, uncertainty degree) number (ast, bst) should
be normalized further for they are incomparable under different attributes. The normalization equation
is as follows:

a′st =
ast

n
∑

s=1
ast

, b′st =
bst

n
∑

s=1
bst

, s = 1 . . . n; t = 1 . . . m (14)

In Equation (14), a′st and b′st are the normalized deterministic term and uncertainty term
respectively in the two-tuple number.

3.4. Integration by TOPSIS Method

The closeness of comprehensive weighted K-L distance is used to judge the alternatives with
the full consideration of the effects on each alternative on its positive and negative target centers.
The TOPSIS method has been used extensively since it was proposed [23]. Let rP

i and rN
i represent,

respectively, the positive comprehensive weighted K-L distance and negative comprehensive weighted
K-L distance, then the closeness of the comprehensive weighted K-L distance can be obtained by using
Equation (15):

Ci =
rN

i
rP

i + rN
i

, i = 1 . . . n. (15)

The decision-making could be based on Ci for which, the larger the better.

3.5. Decision-Making Steps

The procedure of generalized grey target decision method based on K-L distance is shown in
Figure 2; the detailed steps therein are as follows:

(1) All indices of alternatives are converted into binary connection number vectors and comprised of
two-tuple (determinacy, uncertainty) numbers by using Equations (1)–(5).

(2) The positive and negative target center indices of two-tuple (determinacy, uncertainty) number
under all attributes are determined by using Equations (11) and (12).

(3) All two-tuple (determinacy, uncertainty) numbers are transformed into two-tuple (deterministic
degree, uncertainty degree) numbers by using Equation (13) and they can also be normalized
using the linear method given in Equation (14).

(4) The weights of all index attributes are calculated.
(5) The comprehensive weighted K-L distances of normalized two-tuple (deterministic degree,

uncertainty degree) numbers between all alternatives and the target center are calculated by
using Equation (9) or Equation (10); then the closeness of all alternatives can be obtained by use
of the TOPSIS method and Equation (15).
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(6) The decision-making is realized according to the closeness of each alternative for which, the larger
the better.
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4. Case Study

4.1. Data Resource

To evaluate tactical missiles, six indices including hit accuracy (km), warhead payload (kg),
mobility (km·h−1), price (106 g), reliability and maintainability are denoted by A1 to A6 [8]. For all data
types of attributes, A1 and A2 are real numbers, A3 and A4 are interval numbers and A5 and A6 are
triangular fuzzy numbers. Among these attributes A1 and A4 are cost type indices and the others are
benefit type indices. There are four feasible alternatives denoted by C1 to C4. The data are summarized
in Table 1.

Table 1. Index values of every alternative.

Si A1 A2 A3 A4 A5 A6

S1 2.0 500 [55, 56] [4.7, 5.7] [0.4, 0.5, 0.6] [0.8, 0.9, 1.0]
S2 2.5 540 [30, 40] [4.2, 5.2] [0.2, 0.3, 0.4] [0.4, 0.5, 0.6]
S3 1.8 480 [50, 60] [5, 6] [0.6, 0.7, 0.8] [0.6, 0.7, 0.8]
S4 2.2 520 [35, 45] [4.5, 5.5] [0.4, 0.5, 0.6] [0.4, 0.5, 0.6]

4.2. Decision-Making Process

4.2.1. Calculation of the Parameters of Binary Connection Number of All Alternatives

The parameters of binary connection number of all alternatives can be calculated from the data in
Table 1 by using Equations (1)–(5): the results are shown in Table 2.
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Table 2. Average values, standard deviations and maximum deviations of all indices.

Si A1 A2 A3 A4 A5 A6

S1 2.0/0/0 500/0/0 55.5/0.7071/0.5 5.2/0.7071/0.5 0.5/0.1/0.1 0.9/0.1/0.1
S2 2.5/0/0 540/0/0 35/7.0711/5 4.7/0.7071/0.5 0.3/0.1/0.1 0.5/0.1/0.1
S3 1.8/0/0 480/0/0 55/7.0711/5 5.5/0.7071/0.5 0.7/0.1/0.1 0.7/0.1/0.1
S4 2.2/0/0 520/0/0 40/7.0711/5 5/0.7071/0.5 0.5/0.1/0.1 0.5/0.1/0.1

Note: “a/b/c” in Table 2 denotes “average value/standard deviation/maximum deviation”.

4.2.2. Translate All Index Values into Binary Connection Number Vectors

All index values can be transformed into index vectors using Equations (1)–(5) based on the data
listed in Table 2. Table 3 lists the binary connection numbers as converted from all indices.

Table 3. Index binary connection number vectors transformed from index values.

Si A1 A2 A3 A4 A5 A6

S1 2.0 + 0i 500 + 0i 55.5 + 0.5i 5.2 + 0.5i 0.5 + 0.1i 0.9 + 0.1i
S2 2.5 + 0i 540 + 0i 35 + 5i 4.7 + 0.5i 0.3 + 0.1i 0.5 + 0.1i
S3 1.8 + 0i 480 + 0i 55 + 5i 5.5 + 0.5i 0.7 + 0.1i 0.7 + 0.1i
S4 2.2 + 0i 520 + 0i 40 + 5i 5 + 0.5i 0.5 + 0.1i 0.5 + 0.1i

Then the two-tuple (determinacy, uncertainty) numbers shown in Table 4 are converted from
index binary connection number vectors as shown in Table 3.

Table 4. Two-tuple numbers transformed from index binary connection number vectors.

Si A1 A2 A3 A4 A5 A6

S1 (2.0, 0) (500, 0) (55.5, 0.5) (5.2, 0.5) (0.5, 0.1) (0.9, 0.1)
S2 (2.5, 0) (540, 0) (35, 5) (4.7, 0.5) (0.3, 0.1) (0.5, 0.1)
S3 (1.8, 0) (480, 0) (55, 5) (5.5, 0.5) (0.7, 0.1) (0.7, 0.1)
S4 (2.2, 0) (520, 0) (40, 5) (5, 0.5) (0.5, 0.1) (0.5, 0.1)

4.2.3. Determination of the Two-Tuple Numbers of Positive and Negative Target Centers

The vectors of two-tuple numbers of the positive target center are calculated as ((1.8, 0), (540, 0),
(55.5, 0.5), (4.7, 0.5), (0.7, 0.1), (0.9, 0.1)) by using Equation (11).

The vectors of two-tuple numbers of the negative target center are obtained as ((2.5, 0), (480, 0),
(35, 5), (5.5, 0.5), (0.3, 0.1), (0.5, 0.1)) by using Equation (12).

4.2.4. Normalization of the Two-Tuple (Deterministic Degree, Uncertainty Degree) Numbers

Two-tuple (deterministic degree, uncertainty degree) numbers of alternative indices and target
center indices can be normalized by using Equation (14), the results are as summarized in Table 5.

In Table 5, ast and bst in (ast, bst) represent, respectively, the deterministic term and uncertain
term of the same index. If an index is a real number, then bst is zero, for example, the indices under
attribute A1 and A2 are all real numbers. The symbols NCP and NCN denote the normalized two-tuple
(deterministic degree, uncertainty degree) number of the positive target center and that of a negative
target center respectively.
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Table 5. Normalized two-tuple numbers of all alternatives and target center indices.

NSi A1 A2 A3 A4 A5 A6

NS1 (0.2353, 0) (0.2451, 0) (0.2699, 0.0272) (0.2505, 0.2449) (0.2532, 0.2353) (0.2615, 0.1791)
NS2 (0.2941, 0) (0.2647, 0) (0.2383, 0.3807) (0.2482, 0.2685) (0.2278, 0.3529) (0.2421, 0.2985)
NS3 (0.2118, 0) (0.2353, 0) (0.2497, 0.2538) (0.2517, 0.2327) (0.2658, 0.1765) (0.2542, 0.2239)
NS4 (0.2588, 0) (0.2549, 0) (0.2421, 0.3384) (0.2496, 0.2539) (0.2532, 0.2353) (0.2421, 0.2985)
NCP (0.2118, 0) (0.2647, 0) (0.2699, 0.0272) (0.2482, 0.2685) (0.2658, 0.1765) (0.2615, 0.1791)
NCN (0.2941, 0) (0.2353, 0) (0.2383, 0.3807) (0.2517, 0.2327) (0.2278, 0.3529) (0.2421, 0.2985)

4.2.5. Determination of the Closeness of Comprehensive Weighted K-L Distances of Positive and
Negative Centers

Given that the weight vector W = (0.1818, 0.2017, 0.1004, 0.2124, 0.1618, 0.1419), the comprehensive
weighted K-L distances of all alternatives to their positive target center indices are KL+ = (0.0265, 0.1910,
0.0804, 0.1402) from Equation (10). The comprehensive weighted K-L distances of all alternatives
to their negative target center indices are calculated as KL− = (0.0607, 0.0152, 0.0615, 0.0394) by use
of Equation (10). Here, Equation (10) is used to calculated the KL+ and KL−, because the condition
in Equation (8) is not satisfied provided the given data for KL−. Then the closeness of positive K-L
distance and negative K-L distance is calculated as TS = (0.6961, 0.0737, 0.4334, 0.2194) by the TOPSIS
method using Equation (15). The final decision-making can be made in accordance with the closeness
with the larger value being the better alternative as follows: S1 > S3 > S4 > S2.

4.3. Analysis and Discussion

For comparison, W = (0.1818, 0.2017, 0.1004, 0.2124, 0.1618, 0.1419) is given; using the approach
in [10] the comprehensive weighted proximity (CWP) is: ICWP = (0.2023, 0.2928, 0.2354, 0.2695).
According to the rule stating that the smaller the proximity the better the alternative, the ranking of
the alternatives is as follows: S1 > S3 > S4 > S2. Table 6 summarizes the comparison of the proximity
based method and the proposed method.

Table 6. Comparison of the results of two decision methods.

Comprehensive Weighted K-L Distance Method Comprehensive Weighted Proximity Method

KL+ Rank TS Rank ICWP Rank
S1 0.0265 1 0.6961 1 0.2023 1
S2 0.1910 4 0.0737 4 0.2928 4
S3 0.0804 2 0.4334 2 0.2354 2
S4 0.1402 3 0.2194 3 0.2695 3

Table 6 lists the results calculated by two kinds of approaches: the K-L distance-based method
and a vector-based method. The K-L distance-based method offers two ways in which to fulfil the
decision-making task: one is to obtain the comprehensive weighted K-L distance based on the positive
target center. The decision is made on the basis of the smaller the value the better. The other depends
on the closeness of the two kinds of comprehensive weighted K-L distances such that all alternatives
to their positive and negative target centers are covered. The ranking of the alternatives is on a
larger-the-better basis. The vector-based method, which makes decision mainly by comprehensive
weighted proximity, depends on a value for which the smaller the better. Through comparison,
decision-making by the proposed method is in accordance with that by the vector-based method;
however, the proposed method has one difference with the vector-based method in the principle
governing its decision-making. The similarity of, and difference between, the two methods are
analyzed next.

The two methods have a similarity: the proposed method and the method reported in [10] all
transform different types of data into a binary connection number which can be handled in the same
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way. In brief, the binary connection number is the main tool used when dealing with mixed attribute
values. The difference between the two methods is: the proposed method adopts the comprehensive
weighted K-L distance to determine the ranking of alternatives, which makes the decision from the
prospect of entropy as a measure of the uncertainty; while the method in [10] uses the comprehensive
weighted proximity to determine this ranking, as it works from the viewpoint of the similarity of
the vectors.

5. Conclusions

With this research, we arrive at the following conclusions:

(a) A novel generalized grey target decision method is presented and this method uses the binary
connection number and K-L distance as its bases.

(b) The decision making is based on the comprehensive weighted K-L distance.
(c) The calculation result is in agreement with the reported method; however, the proposed

method makes its decision based on K-L distance, as this can measure the uncertainty therein.
Thus, the proposed method is valuable with regard to its theoretical significance and benefits
conferred in practical application.
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