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Abstract: In this paper, we present a novel method to construct cryptographically strong
bijective substitution-boxes based on the complicated dynamics of a new hyperchaotic system.
The new hyperchaotic system was found to have good characteristics when compared with
other systems utilized for S-box construction. The performance assessment of the proposed S-box
method was carried out based on criteria, such as high nonlinearity, a good avalanche effect,
bit-independent criteria, and low differential uniformity. The proposed method was also analyzed
for the batch-generation of 8 × 8 S-boxes. The analyses found that through a proposed purely
chaos-based method, an 8 × 8 S-box with a maximum average high nonlinearity of 108.5, or S-boxes
with differential uniformity as low as 8, can be retrieved. Moreover, small-sized S-boxes with high
nonlinearity and low differential uniformity are also obtainable. A performance comparison of the
anticipated method with recent S-box proposals proved its dominance and effectiveness for a strong
bijective S-box construction.

Keywords: substitution-box; bijective; 5-D hyperchaotic system; batch-generation; small-sized
S-boxes

1. Introduction

Recent advancements in cloud computing, smart devices, social media, etc., for communication
have substantially raised the amount of users’ private data. Consequently, the issue of ensuring
and maintaining end to end confidentiality of sensitive data has become more prominent than
before. To provide data secrecy for storage and communication, block cryptosystems have been
playing a crucial role in the past few decades. In modern block ciphers, cryptographically potent
S-boxes are meant to serve this purpose to meet Shannon’s requirement of confusion. S-boxes are
cornerstone components in many substitution-permutation (S-P) networks or Fiestal networks-based
block cryptosystems, such as the famous data encryption standard (DES), Blowfish, advanced
encryption standard (AES), Anubis, PRESENT, etc. [1]. According to C.E. Shannon, the confusion
establishes a correlation between a secret key and the encrypted text such that it is as complicated and
intricate as possible [2]. To achieve a strong confusion, applying complicated and highly nonlinear
transformations is demanded. The security of block ciphers directly relies on the strength of the
S-boxes employed. Therefore, designing methods that are credible to yield strong S-boxes have drawn
the attention of security experts and researchers worldwide [3].
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An n × n substitution-box takes a small block of n bits and transforms it to an output that is n bits
long. It acts as a nonlinear mapping S: {0, 1}n → {0, 1}n [4], and can be viewed as a Boolean vector that
consists of n Boolean functions, each in n-variable as S: gn(x)gn−1(x) . . . . . . g1(x), where each gi(x) is a
function from {0, 1}n to {0, 1}, and gi(a) = bi for i = 1, 2, . . . . . . , n [5]. A Boolean function gi is balanced if
its outputs have an equal distribution of 0’s and 1’s. A bijective S-box of size n × n, involving balanced
component functions, has distinct pre-images in the range [0, 2n − 1]. The bijectivity of the S-box

is verified through the satisfaction of hwt
(

n
∑

i=1
aigi

)
= 2n−1 [5], where, hwt() denotes the hamming

weight, ai ∈ {0, 1}, and (a1, a2, . . . , a8) 6= (0, 0, . . . , 0). Bijective S-boxes of different sizes have
significance in many cryptographic primitives and S-P network based ciphers. They have been utilized
in many popular ciphers such as AES, PRESENT, ARIA, KASUMI, hash function KECCAK, etc. [1].
Recently, the application of S-boxes has also been investigated for the design of image encryption,
video encryption, watermarking, pseudo-random sequence design, etc.

Chaos is a ubiquitous phenomenon in nature that is being widely utilized for numerous
applications in various fields of study, such as engineering, mathematics, physics, biology, and so
on [6]. It has deterministic and noise-like behavior, and it is present in nonlinear dynamical systems.
The generated sequences from chaotic systems are extremely sensitive to their initial conditions, have
a long periodicity, ergodicity, and spread spectrum [7]. These features of chaotic systems have a close
correlation with properties of cryptography. Therefore, they have been a preferred choice for designing
security primitives and cryptosystems in chaos-based cryptography for long time [8].

A dynamical system is said to have a high sensitivity to initial conditions and parameters
provided that it has positive Lyapunov exponent(s). The Lyapunov exponent (LE) of a nonlinear
dynamical system refers to the pace of separation of infinitesimally close trajectories. Mathematically,
it is defined as:

LEi = lim
t→∞

1
t

log2

[
pi(t)
pi(0)

]
(1)

where pi(t) denotes the length of the respective ellipsoidal principal axis. An n-D system has n number
of Lyapunov exponents. Presence of only one positive exponent indicates the existence of chaotic
behavior in a system. Whereas, if it has at least two positive LEs, then the system is hyperchaotic in
nature [9]. Simple-structured and one positive LE dynamical systems tend to possess weak security
due to a common correlation that allows it to be cryptanalyzed [10]. Compared to chaotic systems,
hyperchaotic systems tend to show more complex dynamics. The minimum dimension for a dynamic
system to exhibit hyperchaotic nature should be 4-D. The research has matured in the direction of
designing higher dimensional hyperchaotic systems and the present focus is on designing 5-D systems
with better dynamics and characteristics [10–15]. Hyperchaotic systems have found applications in
the area of security for realizing cryptosystems [16], hash functions [17], secure communication [18],
S-boxes [19], etc.

In the recent past, a number of high-dimensional chaotic systems have been utilized to design
methods for S-box generation. Of late, Islam et al. investigated a 4-D hyperchaotic system where
two pseudo-random 8-bit integer sequences were produced, which gave rise to an S-box after a
two-position swap operation [19]. In Reference [20], Özkaynak adopted a Lorenz chaotic system by
sampling the system trajectory after gaps of time steps. A coding table was formed, which resulted in
an S-box after some shifting operations. The method of Khan et al. [21] explored multiple systems,
namely 3D Lorenz and Rössler chaotic systems, to randomly generate all possible elements of an 8 × 8
S-box. The same author investigated a fractional order Rössler chaotic system and suggested a simple
method to synthesise S-boxes in Reference [22]. It was noted that their design is consistent for secure
communication. Liu et al. [23] applied a 3-D four-wing chaotic system to generate S-boxes with a
good performance. In Reference [24], another simple method was developed for S-boxes based on a
fractional-order Chen chaotic system. Cavusoglu et al. [25] scaled the 3-D Zhongtang chaotic system
to design a random number generator (RNG) for constructing 8 × 8 S-boxes based on this RNG.
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In this paper, a new high-dimensional hyperchaotic system is explored for generating strong
S-boxes. The proposed hyperchaos-based S-box construction method is capable of synthesizing strong
bijective S-boxes, and was found to possess excellent cryptographic strength when compared with
some recent S-box proposals. The main contributions of this paper include the following:

• A 5-D hyperchaotic system is proposed that has twelve terms, seven system parameters, and
three cubic nonlinear product terms.

• Based on the new hyperchaotic system, an S-boxes construction method is proposed to synthesize
efficient 8 × 8 S-boxes, and these are compared with recent methods.

• Performance of the same method is also investigated for a generation of small-sized bijective
S-boxes ranging from size 4× 4 to 7× 7, and is compared with some rare and prominent methods.

The remaining content of the paper is as follows. The model of the newly proposed 5-D
hyperchaotic system is discussed and analyzed in Section 2. The proposed method for constructing
strong S-boxes is presented in Section 3. Performance assessment of proposed method for S-boxes is
performed in Section 4 and compared with some of the most recent S-box methods. This section is
subsequently followed by conclusions drawn in Section 5.

2. 5-D Hyperchaotic System

Our novel 5-D nonlinear dynamical system is governed by the following state equations:

.
x = −c1x + c1y
.
y = c2x + c2y + w− xzu
.
z = −c3y− c4z− c5u + xyu
.
u = −c6u + xyz
.

w = −c7x− c7y


(2)

where, ci (1 ≤ i ≤ 7) are the system’s seven constants and x(0), y(0), z(0), u(0), w(0) are the initial
conditions that decide its trajectories in phase space. Computation of Lyapunov exponents is performed
following the well-known procedure reported in Reference [26]. Interestingly, when parameters are set
as ci = {30, 10, 15.7, 5, 2.5, 4.45, 38.5}, the obtained Lyapunov exponents for system (2) are LE1 = 4.90182,
LE2 = 0.38463, LE3 = 0, LE4 = −15.86286, and LE5 = −31.90952, thereby confirming the existence of
hyperchaos as there are two positive exponents. The proposed 5-D hyperchaotic system (2) holds some
positive characteristics, which are as follows:

• It contains three cubic-order nonlinear product terms, which is rare as the order of nonlinear
product terms is usually quadratic; this strengthens the system against some parameter
identification attacks [27].

• It has a large number of systems parameters, namely seven; these are with five initial conditions
that heavily enlarge the secret key space of the respective security primitive to make brute-force
attack impractical.

• The value of the largest Lyapunov exponent is 4.90182, which is quite high. This value is
substantially higher than 0.9899 [10], 0.0981 [11], 0.0792 [12], 0.4195 [13], and 0.5441 [14] in recent
5-D hyperchaotic systems. A larger positive Lyapunov exponent shows that system trajectories
vary more sharply in phase space and this makes the system’s dynamics more complicated by
establishing stronger sensitivity to initial conditions.

• It is invariant under coordinate transformation (x, y, z, u, w)→ (−x, −y, −z, −u, −w); that is,
the symmetry persists for all system variables.

• The Kaplan-Yorke (Lyapunov) dimension DKY for any dynamical system is defined as [28]:

DKY = j +
1∣∣LEj+1
∣∣ j

∑
i=1

LEi
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where, j is the largest integer for which ∑
j
i=1 LEi ≥ 0 and ∑

j+1
i=1 LEi < 0. The Lyapunov dimension

DKY for the hyperchaotic system (2) is DKY = 3.334, which indicates that the Lyapunov dimension
of our system is fractional.

• The vector field of our system (2) has negative divergence as:

∇V =
∂

.
x

x
+

∂
.
y

y
+

∂
.
z

z
+

∂
.
u

u
+

∂
.

w
w

= −c1 + c2 − c4 − c6 < 0 (3)

This indicates that the system (2) is dissipative in nature, with an exponential contraction rate of
dV
dt = e−(c1−c2+c4+c6)t. Dissipation is needed to attract trajectories in the system’s phase space.

The characteristics of the proposed nonlinear system (2) are compared with some high-dimensional
chaotic/hyperchaotic systems adopted by researchers to construct S-boxes in Table 1. It is worth noting
that unlike our method, in all high dimensional system based S-box methods [19–25,29], the systems
were not modeled by S-box investigators. The comparison table ascertains that system (2) holds
excellent characteristics over other adopted systems. Figure 1 displays the phase portraits of the
proposed system in various planes and phase spaces. It should be noted that the phase portrait is
only an indicative tool for displaying a system’s dynamic behavior. Thus, from the phase portraits,
we assume the system’s (2) complex behavior, which is confirmed by the calculation of the Lyapunov
exponents for a chosen set of the system’s parameters.

Table 1. Comparison of high dimensional chaotic/hyperchaotic systems adopted for 8 × 8
S-box construction.

S-Box Method Type of Chaos Dimension LE DKY

Ref. [19] Hyperchaotic 4-D 0.0905 2.0529
Ref. [20,21] Lorenz chaotic 3-D 0.906 2.062

Ref. [22] fractional Rössler chaotic 3-D NR NR
Ref. [23] Chaotic 3-D 0.064 2.05
Ref. [24] fractional Chen chaotic 3-D 0.0119 NR
Ref. [25] Chaotic 3-D NR NR

Ref. [21,29] Rössler chaotic 3-D 0.0714 2.0132
Proposed Hyperchaotic 5-D 4.90182 3.334
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3. Proposed Bijective S-Box Generation Method

The method proposed to efficiently search for S-boxes using the new 5-D hyperchaotic system
is provided below. This method performs a random search on the basis of the maximization of
nonlinearity to find an optimal configuration of the SG S-box. The proposed method calls the
hyperchaos5D() routine, which solves system (2) using Runge-Kutta of order 4 with a step size of 0.001,
and takes the initial conditions of five state variables to produce the variable’s floating values after t0

or τ iterations. Routine reverse() is intended to reverse the input vector. CreateS() is used to prepare an
S-box candidate using a random input vector, and the sort() function performs sorting of the input array
in increasing order. The routine nonlinearity() is meant to compute the average of the nonlinearities
of all component Boolean functions of the input S-box. The details of the nonlinearity metric are
discussed in Section 4. The max() function returns the largest among all inputs and index ∈ [1,5] return
the largest value in the input vector.

The proposed method prefers an S-box over previous methods on the basis of nonlinearity of
the S-boxes. Since these two are considered to be mainly responsible for strong confusion, nonlinear
transformation, and the potential to mitigate differential and linear attacks. S-box SG is updated as SP
if and only if SP is no worse than SG on the grounds of nonlinearity. The target nonlinearities for the
bijective S-box of dimension n = 4, 5, 6, 7, 8 are 4, 12, 24, 56, 112, respectively [30].
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1. Assign initial values to size n, parameters ci, initial conditions for x, y, z, u, w, t0, τ, itr_max
Set nl_max = 0, numel = 2n, len = numel/2, x1(0) = x, x2(0) = y, x3(0) = z, x4(0) = u, x5(0) = w

2. Take SP, SG as two empty look-up tables(LUTs) and five empty arrays Xj, each of size numel
3. Iterate system (2) t0 times to die out the transient effect and discard xj except the last:

[x1, x2, x3, x4, x5] = hyperchaos5D(x1(0), x2(0), x3(0), x4(0), x5(0), t0)
x1(0) = x1, x2(0) = x2, x3(0) = x3, x4(0) = x4, x5(0) = x5

4. Generate the lower halves of the random arrays Xj as:
for k = 1 to len

[x1, x2, x3, x4, x5] = hyperchaos5D(x1(0), x2(0), x3(0), x4(0), x5(0), τ)
xj(0) = (xj × 10,000) − floor(xj × 10,000)
Xj(k + len) = xj(0)

end
5. Generate new higher halves of the random arrays Xj as:

Xj = reverse(Xj)
for k = 1 to len

[x1, x2, x3, x4, x5] = hyperchaos5D(x1(0), x2(0), x3(0), x4(0), x5(0), τ)
xj(0) = (xj × 10,000) − floor(xj × 10,000)
Xj(k + len) = xj(0)

end
6. Create S-box candidates:

Sj = CreateS(Xj)
7. Compute nonlinearity of candidates Sj:

nlj = nonlinearity(Sj)
8. Choose the local best candidate:

[nlP, index] = max(nl1, nl2, nl3, nl4, nl5)
SP = Sindex // where, Sindex = Sj for j = index

9. Update the global best candidate (if required):
If (nlP ≥ nl_max)

SG = SP

nl_max = nlP
end

10. Repeat from step 5 for itr_max times.
11. Declare SG as the final S-box and display as LUT.

S = CreateS(X)

1. Y = sort(X)
2. for k1 = 1 to numel
3. t = Y(k1)
4. for k2 = 1 to numel
5. if(t = = X(k2))
6. S(k1) = k2 − 1
7. break
8. end
9. End
10. end

4. Performance Analysis

For the simulation, the experimental values are initialized as ci as provided earlier, x1(0) = 0.8,
x2(0) = 4.9, x3(0) = 7.6, x4(0) = 3.7, x5(0) = 6.5, t0 = 1000, and τ = 2. The secret key includes ci, xj(0),
t0, and τ. In order to avoid the problem of dynamic degradation, we carried out all floating point
computation as per the IEEE-754 floating point standard of double floating point arithmetic. In our
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working 15-digit precision implementation system, the key space is more than 10180 ≈ 2598, which quite
large enough to resist brute-force attack. The proposed S-box obtained for n = 8 is shown in Table 2. It is
well-known that an S-box is deemed strong if it satisfies a number of performance criteria. This section
deals with the performance analysis of the proposed 8 × 8 S-box against a number of well-accepted
criteria, such as bijectivity, nonlinearity, strict avalanche criteria, bits independent criterion, differential
uniformity, and linear approximation probability [19–25,31]. The security strength of the S-box in
Table 2 is compared with recent S-boxes.

Table 2. Proposed 8 × 8 Substitution-box.

160 176 224 194 124 25 15 158 234 200 236 220 81 238 173 155
149 31 94 199 55 57 110 23 40 18 174 117 11 196 135 221
175 205 82 125 203 212 241 109 139 76 206 43 148 195 126 129
248 159 28 20 187 223 213 33 231 165 197 45 182 120 192 116
63 36 133 106 100 145 216 214 243 21 7 8 204 5 210 68
89 48 153 178 14 147 103 41 143 115 232 46 172 237 93 167
12 180 70 202 107 80 29 251 75 42 71 131 235 72 101 19
146 138 222 34 161 84 104 186 85 122 229 38 166 118 190 53
171 230 67 113 69 51 96 6 111 156 150 32 54 123 255 183
245 121 10 188 209 211 127 177 169 250 86 228 52 92 47 3
218 144 17 154 170 142 9 132 157 112 65 1 225 249 73 163
59 219 254 27 191 207 189 95 130 181 2 141 61 0 246 50
226 227 22 128 62 201 151 91 39 77 102 253 98 66 108 49
215 152 105 30 247 239 24 88 78 60 136 114 26 56 64 119
198 179 44 13 97 185 140 35 58 244 4 90 87 79 83 208
37 242 134 168 162 240 184 74 99 193 16 164 233 137 217 252

4.1. Bijectiveness

A bijective function is a combination of one-to-one (injective) and onto (surjective) mapping
functions. It implies that every element of one set is paired with exactly one element of the other
set, and vice versa, with no unpaired elements. This is an important property that is used to test the
cryptographic liability of S-boxes. It is verified from S-box LUTs that a proposed S-box satisfies the
bijectivity property as it has distinct pre-images in a specified range.

4.2. Nonlinearity

In the nonlinearity analysis, the constituent Boolean functions were assessed with reference to
the behavior of the input/output bit patterns. The set of all affine functions is used to compare the
distance from the given Boolean function. Once the initial distance is determined, the bits in the truth
table of the Boolean function were modified to approximate to the closest affine function. The number
of modifications required to reach the closest affine functions determined the nonlinearity of the
Boolean function. In practice, the nonlinearity of the Boolean function g in n-variable is measured
using Equation (3) through Walsh spectrum [32]:

nl(g) = 2n−1

(
1− 2−n max

ω∈{0,1}n

∣∣WSg(ω)
∣∣) (4)

where WSg(ω) is the Walsh spectrum of function g, computed as:

WSg(ω) = ∑
x∈{0,1}n

(−1)g(x)⊕x.ω

where, x.ω refers to a bit-by-bit dot product and ω ∈ {0, 1}n. It is also expressed as the least hamming
distance between the set of all non-constant linear combinations of function g and set of all affine
functions on {0, 1}n [33]. The best affine and linear approximation attacks [34,35] show the significance
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of constructing S-boxes with high nonlinearity. The nonlinearity of Boolean functions in the proposed
8 × 8 S-box, provided in Table 3, are found as nl(g1) = 110, nl(g2) = 108, nl(g3) = 110, nl(g4) =106,
nl(g5) = 108, nl(g6) = 108, nl(g7) = 110, and nl(g8) = 108, showing that nlmin = 106, nlmax = 110, and
nlavg = 108.5. The nonlinearity values of all component functions were quite high, and larger than or
equal to 106. It clearly shows the nonlinearity of the proposed S-box.

Table 3. Nonlinearities of the component Boolean functions in the proposed S-box.

g8 g7 g6 g5 g4 g3 g2 g1

108 110 108 108 106 110 108 110

4.3. Strict Avalanche Criteria

The idea of a strict avalanche criterion (SAC) is a generalization of the avalanche effect, introduced
by Webster and Tavares in 1985 [36], is based on Shannon’s property of diffusion and implies that
a little change in input causes a significant effect in the output. According to Webster and Tavares,
if a Boolean function satisfies SAC, it means that if we change any one of the input bits, then all the
output bits should change with a probability of a half. The SAC can be evaluated through an 8 × 8
dependency matrix by a procedure suggested in Reference [36]. The average of this matrix is referred
to as the SAC value. We calculated the dependency matrix for the proposed S-box and this is shown in
Table 4. It can be seen that almost all values are somewhat close to 0.5. The average of the dependency
matrix is SAC = 0.5017, which is fairly close to the theoretical SAC with an offset of only 0.0017; this
shows that the proposed S-box exhibited a good avalanche effect and satisfied the stated criteria well.

Table 4. Dependency matrix for SAC.

0.4687 0.5312 0.5312 0.5312 0.4062 0.5 0.5312 0.4531
0.5937 0.5625 0.5 0.5 0.5 0.5156 0.4687 0.5468
0.5625 0.5312 0.5312 0.5 0.5156 0.5 0.4531 0.4843
0.4687 0.5 0.4843 0.4843 0.5156 0.5156 0.5937 0.4843
0.4218 0.5625 0.5156 0.4843 0.4531 0.5312 0.5468 0.4843
0.4062 0.5625 0.4843 0.5781 0.4687 0.5 0.5312 0.5
0.5156 0.48437 0.5 0.4687 0.4843 0.4687 0.4375 0.4531
0.4843 0.5 0.5312 0.5156 0.5156 0.4531 0.5312 0.4687

4.4. Bits Independence Criteria

The bits independent criterion (BIC) manages testing an individual bit at the input of the cipher
by playing out the flip operation. It implies that all the avalanche vectors ought to be match pair-wise
independent for a given arrangement of vectors produced by complementing a solitary plaintext bit.
The avalanche vectors are created by bit patterns generated because of flipping bit(s) at the inputs. It is
an attractive property for any cryptographic primitive. The S-box fulfills BIC if the function g = gi xor gj
(i 6= j, 1 ≤ i, j ≤ 8) is highly nonlinear and also satisfies the SAC [32]. Based on this method, BIC for the
proposed S-box was verified by computing the nonlinearity and SAC of g = gi xor gj [37]. The result of
BIC for nonlinearity is provided in Table 5 and that of the BIC for the SAC is in Table 6. The average of
the BIC-nonlinearity is 104 with a least value of 100 (a commendable score), and the average of the
BIC-SAC matrix is 0.5006, which is very close to 0.5. The scores indicate that the proposed S-box is
competent enough to satisfy the output bits independence criteria.
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Table 5. BIC results for nonlinearity.

g1 g2 g3 g4 g5 g6 g7 g8

g1 - 104 104 104 106 102 106 104
g2 104 - 104 106 104 104 102 104
g3 104 104 - 102 102 106 100 104
g4 104 106 102 - 106 102 106 102
g5 106 104 102 106 - 100 108 104
g6 102 104 106 102 100 - 106 102
g7 106 102 100 106 108 106 - 108
g8 104 104 104 102 104 102 108 -

Table 6. BIC results for the SAC.

g1 g2 g3 g4 g5 g6 g7 g8

g1 - 0.4960 0.4765 0.4980 0.5175 0.5058 0.4707 0.4980
g2 0.4960 - 0.4726 0.5 0.5273 0.4863 0.5332 0.4843
g3 0.4765 0.4726 - 0.5156 0.4726 0.5019 0.5058 0.4960
g4 0.4980 0.5 0.5156 - 0.4863 0.5390 0.5175 0.4980
g5 0.5175 0.5273 0.4726 0.4863 - 0.4824 0.5078 0.5019
g6 0.5058 0.4863 0.5019 0.5390 0.4824 - 0.5097 0.4902
g7 0.4707 0.5332 0.5058 0.5175 0.5078 0.5097 - 0.5253
g8 0.4980 0.4843 0.4960 0.4980 0.5019 0.4902 0.5253 -

4.5. Differential Uniformity

The differential uniformity (DU) measure is associated with the change in the output or the
differential output observed with respect to a change in input. Its intensity determines the S-box’s
ability to resist the differential cryptanalysis framed by Biham and Shamir to break the famous DES
block cipher [38]. The differential uniformity of an S-box ensures uniform mapping of the input and
output differentials. It denotes the maximum likelihood of generating an output differential δb = bi xor
bj when the input differential is δa = ai xor aj. Mathematically, it is expressed as [23,38,39]:

duS = max
δa 6=0,δb

(#{a ∈ A|S(a)⊕ S(a⊕ δa) = δb}) (5)

where, # denotes cardinality, and X is the set of all inputs x. The output exclusive XOR score as
explained should have equal likelihood for a corresponding input score. As a good S-box design
guideline, the maximum differential uniformity has to be kept as small as possible to resist differential
cryptanalysis. Following the approach, an input/output XOR distribution matrix, for differential, is
obtained for the proposed S-box and is provided in Table 7. The maximum differential uniformity for
our S-box was 10, which is the highest value of the differential matrix in Table 7. The count of this
highest value in differential table is only 4. This value of DU is compared with some recent S-boxes in
Table 8 to show the effectiveness of proposed S-boxes.

Table 7. Differential matrix for DU.

6 6 6 8 6 6 8 6 10 4 8 8 8 6 8 8
6 6 8 10 6 8 8 6 6 6 8 6 8 6 6 6
4 8 8 8 8 6 6 6 8 8 6 6 6 6 6 6
6 6 8 8 8 6 6 8 6 6 6 6 8 8 6 6
10 8 6 6 6 6 6 6 6 6 8 6 6 6 6 6
8 6 6 8 6 6 8 6 8 6 8 6 6 6 6 8
6 6 6 8 8 6 8 6 6 6 6 6 6 6 8 8
8 8 8 8 6 8 8 4 6 6 6 8 6 6 8 6
6 6 6 6 6 8 6 6 6 8 8 8 6 6 6 6
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Table 7. Cont.

6 6 8 6 6 6 6 6 8 6 6 6 8 6 6 6
8 6 6 8 8 6 8 6 8 8 6 6 6 6 6 8
8 8 6 8 6 6 6 6 8 6 6 6 6 8 6 8
8 6 8 8 6 6 8 8 8 6 6 6 6 8 8 8
8 6 8 6 8 6 6 6 8 8 6 6 8 6 6 6
8 8 8 6 8 6 6 8 8 6 6 6 10 6 6 6
8 6 8 6 6 6 8 6 6 6 6 8 8 8 6 -

Table 8. Comparison of nonlinearity, SAC, and BIC scores of recent 8 × 8 S-boxes.

S-Box Method
Nonlinearity

SAC BIC-SAC BIC-NL DU
nlmin nlmax nlavg

Proposed 106 110 108.5 0.5017 0.5026 104 10
Ref. [19] 102 108 106 0.5002 0.5013 104.4 10
Ref. [20] 100 106 103.2 0.5048 0.5009 103.7 10
Ref. [21] 98 108 103 0.5012 0.4988 104.07 12
Ref. [22] 100 108 104.5 0.4978 0.5009 103.6 12
Ref. [23] 104 108 105.80 0.4976 0.5032 104.5 10
Ref. [24] 100 108 104.7 0.4982 0.4942 103.1 10
Ref. [25] 104 110 106 0.5039 0.5058 103.38 10
Ref. [29] 102 108 105.25 0.4985 0.4985 103.7 12
Ref. [33] 98 110 105.5 0.4937 0.5013 105.7 32
Ref. [39] 102 108 105.25 0.4956 0.4996 103.8 10
Ref. [40] 106 108 106.7 0.4941 0.4957 103.5 10
Ref. [41] 106 108 107.25 0.5034 0.4980 105.29 12
Ref. [42] 99 106 103.5 0.5066 0.5029 103.35 12
Ref. [43] 106 110 107 0.5014 0.5016 104.21 10
Ref. [44] 104 108 106.75 0.5031 0.5074 103.64 12
Ref. [45] 96 106 103.25 0.5151 0.4864 103.07 44
Ref. [46] 98 108 102.25 0.4836 0.4948 101.57 14
Ref. [47] 98 108 104 0.5039 0.5078 104 12
Ref. [48] 84 106 100 0.4812 0.4962 101.9 16
Ref. [49] 100 106 103 0.5020 0.4998 102.93 10
Ref. [50] 106 108 106.5 0.4978 0.5029 104.21 10
Ref. [51] 105 107 106 0.5066 0.5065 103 12
Ref. [52] 106 108 107.5 0.4943 0.4982 104.36 10

4.6. Comparison

The comparison is done in Table 8 based on the criteria discussed in previous subsections.
The outcomes of the comparisons are as follows:

The nonlinearity strength of the proposed S-box is worth noting as its average value nlavg of
108.5 was the highest among all S-box methods in Table 8. The nlmin is similar to three S-boxes in
References [40,41,50,52], and better than all other S-boxes. Similarly, the nlmax value was comparable
to two S-boxes investigated in References [25,33], and larger than the remaining S-boxes. Thus,
the proposed S-box provided high nonlinearity, and in turn, strong confusion, and good resistance to
linear and affine approximation attacks while transforming input plaintext bits to output bits.

The ideal value for SAC is 0.5, any value closer to this is considered as better than others.
According to Table 8, our SAC of 0.5017 is closer to the ideal value and better than the SAC of
almost all S-boxes in Table 8. However, all SAC scores in Table 8 were more or less close to 0.5 with
almost negligible offsets. The proposed S-box satisfied the SAC criteria very well, and marginally
outperformed most of the other S-boxes.

According to the BIC test, referring to Tables 5 and 6 for our S-box, the average of the
BIC-nonlinearity is 104, which is higher than the value reported in References [20,22,24,25,29,39,
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40,42,44–46,48,49,51], and the BIC-SAC is 0.5026, which is again quite close to 0.5 and better than in
References [23–25,40,42,44–48,50,51]. The BIC performance of the proposed S-box for nonlinearity and
SAC is satisfactory.

The S-box should have adequacy to thwart differential cryptanalysis as practiced by Biham
and Shamir [38]. It is well accepted that an S-box having a lower DU offers more resistance to this
cryptanalysis. It is worth noting that the DU of the proposed S-box was only 10, which is similar to the
DU of the S-boxes investigated in References [19,20,23–25,39,40,43,49,50,52], and better than the DU
of the S-boxes in References [21,22,29,33,41–48,51]. This means there is an excellent fulfillment of our
method on the DU criteria of strong S-boxes.

4.7. Analysis of the Batch-Generation of 8 × 8 S-Boxes

This subsection deals with the performance analysis of all intermediate 8 × 8 SP S-boxes obtained
while running the proposed method for itr_max = 100,000. The features of these S-box structures,
such as average nonlinearity, differential uniformity, SAC, BIC-nonlinearity, and BIC-SAC, are shown
graphically in Figure 2. The statistics of these S-boxes for worst, best, average cases, and different
conditions are reported in Tables 9 and 10.
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Table 9. Statistics of 100,000 generated 8 × 8 S-boxes.

Parameter Worst Best Average

Average Nonlinearity 102 108.5 104.665
DU 18 8 -
SAC 0.5249 0.5 0.5019

BIC-Nonlinearity 100.5 105.57 103.53
BIC-SAC 0.5135 0.5 0.5019

Table 10. Analysis of 100,000 generated 8 × 8 S-boxes under some conditions.

Condition Percentage of S-Boxes

average Nonlinearity ≥ 104 90.932
average Nonlinearity ≥ 105 35.467

DU ≤ 10 40.871
0.495 ≤ SAC ≤ 0.505 62.677

BIC- Nonlinearity ≥ 103.5 56.109
BIC- Nonlinearity ≥ 104 21.549
0.495 ≤ BIC-SAC ≤ 0.505 85.7

Performance statistics showed that the batch-generation capability of the proposed method was
excellent. Reason being, the worst, best, and average nonlinearities of all intermediate S-boxes are
102, 108.5, and 104.665, respectively, which is far better than the respective statistics of 99.25, 106.75,
and 103.55, respectively, of S-box structures by Özkaynak’s recent method [40]. This means that all
generated 100,000 S-boxes had an average nonlinearity equal to or above 102. The proposed method
generated 90.932% S-boxes with average nonlinearity higher than or equal to 104, and 53.467% had a
nonlinearity greater than or equal to 105. As far as differential uniformity is concerned, there were
40.871% S-boxes having a DU less of than or equal to 10. The worst DU was 18, and only 16 such
S-boxes exists; the best achievable DU with the proposed method was 8, and there are five S-boxes
with this lowest DU. By way of comparison, 18 and 10 are the worst and best achievable DU scores
in Reference [40]. The features of all five S-boxes having the lowest DU by the proposed method
are listed in Table 11. If we change the preference criteria in the proposed method to update the
SG S-box from nonlinearity to differential uniformity, then the best obtainable S-box is S3 listed in
Table 11. It is worth noting that the features of S-box S3 when compared with existing ones listed in
Table 8 are cryptographically better than most of the S-boxes of Table 8. For the SAC criteria, there
were 1717 S-boxes which have a SAC equal to the ideal value that is exactly 0.5. Our worst, best,
and average SAC was 0.5249, 0.5, and 0.5019, respectively, which was slightly better than respective
scores of 0.4832, 0.5264, and 0.5020, respectively, in Reference [40]. The number of S-boxes satisfying
0.495 ≤ SAC ≤ 0.505 is 62677. The worst, best, and average BIC-nonlinearity values were 100.5, 105.57,
and 103.53, respectively. There exist more than 56% of all S-boxes whose BIC-Nonlinearity was higher
than 103.5, and more than 21% with a BIC-NL above 104. Regarding BIC-SAC, the worst, best, and
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average scores are 0.5135, 0.5, and 0.5019, respectively, and as much as 85.7% of all S-boxes had a
BIC-SAC in [0.495, 0.505]. Thereby, all generated S-boxes showed good satisfaction of the BIC property.

Table 11. Features 8 × 8 S-boxes having differential uniformity equals to 8.

# DU Average NL SAC BIC-NL BIC-SAC

S1 8 105 0.4963 104.21 0.5006
S2 8 104.5 0.4963 103.64 0.5015
S3 8 105.75 0.5017 103.57 0.4990
S4 8 104.25 0.4976 104.36 0.5035
S5 8 105 0.5061 102.36 0.5015

Thus, it is evident that the batch-generation capability of the proposed method for bijective
S-boxes construction is commendable as it satisfies cryptographic properties reasonably well under
different cases and conditions.

4.8. Performance of Small-Sized S-Boxes

In addition, we investigated the proposed method for the construction of small-sized bijective
S-boxes of sizes 4× 4, 5× 5, 6× 6, and 7× 7. Different small-sized S-boxes obtained with the proposed
method for different n are provided in Table 12. Their nonlinearity scores and differential uniformities
are listed in Table 13. The generic methods that can synthesize S-boxes of varied small sizes are rarely
investigated. In the literature, there exist optimization-based methods for the synthesis of bijective
S-boxes for 5 ≤ n ≤ 8. In 1998, one such approach was suggested by Millan, which was based on a
hill climbing technique for the evolution of S-boxes [53]. Fuller et al. applied a heuristic technique to
optimize the power mapping-based S-boxes through some iterated mutation operations suggested
by him [54]. In Reference [55], Laskari et al. adopted a particle swarm optimization and differential
evolution techniques to obtain a number of optimized bijective S-boxes. Tesar designed a special
genetic algorithm with a total tree search to evolve small-sized S-boxes in Reference [56]. Of late, Picek
et al. has designed a new cost function for evolving S-boxes and different evolutionary techniques,
such as genetic algorithm (GA), genetic with tree search (GaT), and local search algorithm (LSA), were
analyzed for evolving S-boxes with a new cost function [30]. To justify the improved performance of
our method, results were compared with these existing methods in Table 14. We reported the best
results for all methods. It is clear from Table 14 that the proposed S-boxes had a significantly higher
nonlinearity than existing methods for all sizes. The comparison verified the better performance of our
proposed method for the construction of small-sized bijective S-boxes as well.

Table 12. Proposed small-sized bijective S-boxes.

4 × 4 S-Box

11 9 4 2
10 3 7 14
1 12 5 0
13 6 8 15

5 × 5 S-box
3 12 30 28 15 27 11 25

14 31 23 8 5 7 4 1
29 10 0 16 19 26 2 21
18 24 9 20 17 13 22 6

6 × 6 S-box
60 48 62 21 61 4 54 45
46 20 11 55 25 16 9 57
31 39 12 26 6 24 19 44
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Table 12. Cont.

13 63 23 52 0 37 33 35
17 10 41 1 36 18 51 58
42 8 38 5 40 2 14 59
43 27 28 15 53 32 56 3
50 22 29 34 30 7 49 47

7 × 7 S-box
125 88 54 109 1 86 64 115 0 27 106 13 56 8 42 65
100 92 28 23 61 117 30 96 73 49 32 122 98 80 76 43
123 59 47 70 12 6 22 116 10 118 31 101 50 114 33 52
84 14 48 113 26 67 46 58 75 17 69 29 79 82 7 35
83 112 45 110 51 16 53 5 107 57 121 127 102 36 93 40
71 68 2 95 21 62 89 38 15 44 94 9 20 37 124 119
41 4 19 97 66 24 39 120 99 60 25 72 55 11 108 126
63 77 85 105 81 103 91 90 18 111 74 87 3 78 104 34

Table 13. Nonlinearity of the component functions and differential uniformity of the proposed
small-sized S-boxes in Table 12.

S-Box
Nonlinearities

DU
nlg1 nlg2 nlg3 nlg4 nlg5 nlg6 nlg7

4 × 4 4 4 4 4 4
5 × 5 10 12 12 12 10 6
6 × 6 22 24 24 24 24 24 6
7 × 7 52 52 52 52 50 48 52 8

Table 14. Comparison of the average nonlinearities of the small-sized S-boxes.

S-box Ref. [30] Ref. [53] Ref. [54] Ref. [55] Ref. [56] Proposed

4 × 4 4 - - - - 4
5 × 5 10 10 6 10 10 11.2
6 × 6 22 20 18 22 22 23.67
7 × 7 48 46 42 48 48 51.14
8 × 8 104 102 104 98 104 108.5

5. Conclusions

This paper reports a design procedure for cryptographic substitution-boxes using a hyper-chaotic
system. Firstly, a new five-dimensional hyperchaotic system was modeled, which holds some merits
over the existing systems. Then, the new hyper-chaotic system was utilized to propose a method for
bijective S-box construction. The anticipated method systematically searched the best possible S-box
for a given size on the basis of nonlinearity by exploiting the dynamics of new hyperchaotic system.
Some standard performance criteria were applied to assess the security strength of the proposed
S-box method. The obtained results were compared with some recent S-box proposals to justify the
upright performance of the proposed method. The effectiveness of the batch-generation capability of
our method was analyzed statistically. It showed that it was possible to obtain 8 × 8 S-boxes with a
differential uniformity of 8. Additionally, the same method was also investigated to yield small-sized
S-boxes. It has been shown that our method was competent enough to yield better nonlinear small-sized
S-boxes. To the best of our knowledge, this is first chaos-based method that attempts to synthesis
small-sized S-boxes. The S-box construction method is key-dependent and a large number of strong
S-boxes can be obtained with a minute change of any of the key components. The proposed method
for S-box generation satisfied all the criteria of a strong S-box very well, and the constructed S-boxes
were suited for usage in a strong block cipher design and other security applications.
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